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Abstract
The burgeoning popularity of the Web is pushing against

the performance limits of the underlying infrastructure, pre-
senting a number of difficult challenges for the Web as a sys-
tem. We believe that resources such as connectivity, stor-
age, computation, latency, and bandwidth are likely to re-
main constrained in the future. Thus, we are building a
higher level Web operating system to efficiently manage
these resources for the benefit of all Web users. Our pro-
totype, WebOS, is designed to support highly available, in-
crementally scalable, self-tuning, dynamically reconfigur-
ing and geographically aware Web services. WebOS in-
cludes mechanisms for naming Web services, coherent data
replication, efficient distribution of client requests across
the wide area, safe execution of arbitrary executables on re-
mote sites, and authentication for secure access to Web re-
sources.

1 Introduction

The growth rate and scale of the Web presents a fam-
ily of difficult challenges for the Web as a system.
While the underlying communications infrastructure
has proved surprisingly robust, we believe that the
presence of a higher level system design will enable
advances in the capabilities of Web applications. In
short, we believe the development of an operating sys-
tem for the Web will provide Web applications conve-
nient access to shared resources. The operating sys-
tem will efficiently manage these resources for the
benefit of all users of the system.

Today, the operating environment of the Web
could be characterized as location-unaware browsers
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making mostly read-only requests to hardware-
constrained servers over an almost oblivious network
fabric. Our goal is to demonstrate a different vision
of the Web operating environment where com-
putation and storage servers in the Web function
cooperatively to provide efficient access to resources
supporting Web applications. These core servers
are incrementally scalable and highly available,
browsers are aware of the service characteristics
and the state of the network connection to these
servers, and servers can cooperate to share load and
distribute data throughout the Web to both reduce
latency and save bandwidth. This vision requires a
software framework for development of advanced
Web applications.

To demonstrate that our vision of the Web is
achievable, we are constructing WebOS, a framework
for building highly available, incrementally scalable,
self-tuning, dynamically reconfiguring and geograph-
ically aware Web services. WebOS must provide tra-
ditional local OS functionality at the global level, in-
cluding: naming, resource allocation, inter-process
communication, scheduling, fault tolerance, and au-
thentication. To this end, we have initial prototypes
of: (i) Smart Clients for fault tolerant, load balanced
access to Web services, (ii) WebFS, a global cache
coherent filesystem, (iii) a virtual machine support-
ing secure program execution and mechanisms for re-
source allocation, and (iv) authentication for secure
access to global Web resources. To evaluate WebOS,
we are developing a global cooperative cache of Web
pages, allowing replication and migration of Web ser-
vices during times of peak demand.

The rest of this paper will describe the WebOS de-
sign, implementation status, and supported applica-
tions. Section 2 describes our requirements for high-
performance scalable Web services. Section 3 and 4
presents the WebOS design and implementation sta-
tus. Section 5 details an application we are building
to evaluate WebOS. Section 6 describes related work



and Section 7 concludes.

2 Web Service Requirements

In this section, we outline some of the requirements
for a software framework supporting high perfor-
mance scalable Web services.� End-to-end continuous operation: With millions

of potential clients geographically distributed
around the world, someone somewhere is always
requesting service. Computer systems providing
continuous service over a period of years must
not only mask failures, but must also demon-
strate end-to-end availability based on client per-
ceptions. It does not matter if the service is
“working” if the client cannot access it because
of router or DNS problems. As a motivating ex-
ample, one study [44] found that the probability
of encountering a major Internet routing pathol-
ogy was between 1.5% and 3.4%, and that the
failure rate may increase with increasing Internet
use.� Cheap incremental scalability: To make it easy
to create new services, it is crucial to minimize
the initial hardware and software investment re-
quired to go on-line. It is equally crucial for the
service to be able to add hardware resources as
the service becomes more popular.� Graceful burst behavior: The aggregate behav-
ior of millions of clients is highly bursty; for ex-
ample, the USGS web site was effectively un-
usable for hours after a recent (small) Northern
California earthquake [50]. Bursty client behav-
ior requires server software to be able dynami-
cally recruit resources over the Internet. In ad-
dition, burstiness puts a premium on adapting in
advance—using idle time to reconfigure the sys-
tem to better handle any impending spikes in de-
mand. For example, the IRS Web site becomes
extremely loaded every year in mid-April.� Geographically dispersed resources: The Inter-
net is slow, costly, and prone to congestion. La-
tency (often best predicted by the number of net-
work hops between client and server) is often
the most important metric for measuring perfor-
mance delivered to the client. Further, the cur-
rent (hidden) cost of Internet traffic is a few dol-
lars per terabyte-mile [25]. These considera-
tions suggest that to both reduce latency and con-
sume less bandwidth, service providers should

move portions of their service across the Inter-
net. Once a service becomes sufficiently popu-
lar, it is almost forced to become geographically
distributed; no single point of connection on the
Internet is capable of servicing simultaneous re-
quests from millions of users all over the world.

Existing Web services currently address these
requirements on an ad-hoc and incomplete basis.
WebOS is designed to support construction services
capable of dynamic geographic migration and repli-
cation based on client demands. Any necessary
service state is replicated on demand through a global
cache coherent file system. Service code such as
HTTP servers or CGI-bin programs are executed in a
protected environment. Authentication mechanisms
are provided to ensure secure access to private
service state (e.g. customer database or Web index)
and to safeguard against unauthorized execution of
service programs. To allow the client to automat-
ically choose the service provider able to deliver
the best performance to the user, the client code is
enhanced to become aware of service replication, its
location relative to the nearest server, and the relative
load of each of the servers. Similarly, clients can
transmit their geographic location to the service so
that intelligent migration/replication decisions can be
made before a service becomes overloaded.

3 Scalable Web Service Access

This section and the next describe the design and im-
plementation status of the WebOS prototype. The
goal of the prototype is to support services running
at multiple, geographically distributed sites across the
Internet. One motivation is to optimize for Internet
latency and congestion; by moving services closer to
clients, we reduce response time and consume less In-
ternet bandwidth. Another motivation is the bursti-
ness of Web requests. We believe the appropriate
model for effectively delivering Web services to end
users is that of the power grid where underutilized re-
sources can serve excess demand. For example, a spo-
radically popular web site, such as the IRS near April
15th, should buy only enough local hardware to han-
dle the typical demand and dynamically recruit extra
hardware resources over the Internet to handle peak
loads.

3.1 Current Approaches

Today, some popular services such as the Alta Vista
search engine [21] or the Netscape home page [43]



are geographically distributed but replicated manu-
ally by the service provider. Load balancing across
the wide area is achieved by instructing users to ac-
cess a particular “mirror site” based on their location.
To distribute load in the local area techniques such
as HTTP redirect [6] or DNS Aliasing [11, 38] can
be used to send user requests to individual machines.
With HTTP redirect, a front end machine redirects the
client to resend the request to an available worker ma-
chine. This approach has the disadvantage of adding
a round trip message latency to each request. Further,
the front-end machine serving redirects is both a sin-
gle point of failure and a central bottleneck for very
popular services. Finally, any load-balancing mecha-
nisms must be re-implemented on the front-end on a
service-by-service basis.

DNS aliasing allows the Domain Name Service
to map a single hostname (URL) to multiple IP ad-
dresses in a round robin fashion. Thus, DNS alias-
ing does not suffer from the added latency and cen-
tral bottlenecks associated with HTTP redirect. How-
ever, currently load balancing with DNS aliasing is
restricted to round-robin, making it difficult to use
service-specific knowledge such as load information.
Further, because clients cache hostname to IP address
mappings, a single server can become overloaded
with multiple requests while other servers remain rel-
atively idle [19].

3.2 Smart Clients

In WebOS, we address the shortcomings of exist-
ing solutions for scalable service access through the
Smart Client architecture [56]. Smart Clients allow
service-specific extensions to be dynamically loaded
into the client to provide tracking of the mobile ser-
vice, load balancing among individual servers, and
fault transparency to end users. The portability of
Java and its availability in all major Internet browsers
allow us to distribute these extensions as Java applets.
A service-specific applet is retrieved by the user’s
browser each time a service is accessed. The applet
contains hints for the locations of service providers.
A typical applet’s code is composed of two coop-
erating threads: a customizable graphical interface
thread providing the user’s view of the service and a
director thread responsible for performing load bal-
ancing among service representatives and maintain-
ing the necessary state to mask transparency in the
case of failure. Both the interface and director are ex-
tensible in a service-specific manner. A prototype of
Smart Clients is currently operational and has been
used to implement scalable access to Internet services,
including FTP, telnet, and Internet chat.
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Figure 1: Two cooperating threads make up the Smart
Client architecture. The GUI thread presents the ser-
vice interface and passes user requests to the Director
Thread. The Director is responsible for picking a ser-
vice provider likely to provide best service to the user.
The decision is made in a service-specific manner. In
this case, the nearest mirror site is chosen.

Figure 1 describes the Smart Clients architecture.
A GUI thread presents the service interface and ac-
cepts requests which are in turn passed to the direc-
tor thread. The director is responsible for choosing
the individual server likely to provide the best possi-
ble performance to the user. This decision is made in
a service-specific manner, using state such as server
load, distance from the client, and past server perfor-
mance. The director also maintains any information
necessary to retransmit the request in case of server
failure. As part of the reply, servers are able to trans-
mit service update information to the Smart Client ap-
plet, such as additional service representatives or sig-
nificant changes in server load.

3.3 Bootstrapping Applet Retrieval

While the Smart Client architecture provides a
portable mechanism for fault tolerant, load balanced
access to Web services, a number of issues remain to
be addressed. Services must still be named through
URLs, implying a single point of failure and a central
bottleneck. Further, an applet must be downloaded
each time the service is to be accessed, effectively
doubling latency for small requests.

Figure 2 summarizes our approach to addressing
these issues. A meta-applet runs in a Java enabled
browser and is responsible for bootstrapping access-
ing to Web services. A new service namespace is
introduced, allowing users to make requests of the
form service://chat. The meta-applet trans-
lates these names into service certificate requests to
well-known and highly available Internet search en-
gines (such as Alta Vista). The certificate contains
a hint as to initial service membership (individual
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Figure 2: Bootstrapping applet retrieval in Smart
Clients. A new service name space is introduced.
A name is translated into a certificate request from
highly-available search engines. The certificate con-
tains hints as to initial service group membership.
The Smart Client applet is retrieved from one of these
sites. Both the certificate and applet are cached to
disk to avoid future bootstrapping.

server machines). The service’s Smart Client applet is
downloaded from one of these sites and operation pro-
ceeds normally as described in Section 3.2. Both the
service certificate and Smart Client applet are cached
to disk by the meta-applet to avoid this bootstrapping
mechanism on subsequent accesses. Further, Java ob-
ject serialization [36] is used to cache the Smart Client
applet, allowing persistent service state between suc-
cessive accesses.

4 Moving Services Around the
Internet

The Smart Clients architecture provides a model for
moving some service functionality onto the client ma-
chine. Further, common solutions to naming, load
balancing, and fault tolerance are packaged in the
Smart Client applets. In this section, we describe
WebOS support for services capable of dynamically
growing across the Internet to best support client de-
mands. In our vision, machines across the Internet
will be available (perhaps for compensation) to host,
either permanently or temporarily, expansion of pop-
ular Internet services. To support this model, the
WebOS design provides the following components:
(i) a global cache coherent file system to enable ser-
vices to name, access, and modify shared state, (ii)
a web virtual machine to safely execute any pro-
grams needed by the service, and (iii) an authentica-
tion model allowing secure access to private service
state (data and executables).

4.1 Global Cache Coherent Filesystem

WebFS [54] is the initial prototype of a URL-based
cache coherent file system. WebFS allows UNIX pro-
grams to take URLs (and URLs in a pathname syn-
tax) in place of conventional file names (e.g., lpr
/http/www.cs.berkeley.edu/ps/*). This
global file system provides a common set of services
to both clients and servers, allowing them to abstract
the mechanics of moving data around the Internet. An
application running on a remote machine can access
data in the user’s home file system and home applica-
tions can access remote data without cross-mounting
file systems or explicitly dropping to a network trans-
fer protocol, such as FTP or HTTP. Migrating ser-
vices operate on both the home and remote cluster
in the same global file space. Data is paged over to
the remote site on demand, rather than being explic-
itly replicated from outside the application. In this re-
spect, the global name space provided by WebFS pro-
vides a similar service as location-independent object
references in Emerald [37]. With WebFS, spawning a
service on a remote server is analogous to spawning
a thread on another processor in an SMP, except that
the inter-server interaction is through a shared global
file space, rather than a shared memory address space,
and it is an entire collection of service threads that are
spawned.

A fundamental difference between WebFS and ex-
isting naming and caching proposals is that WebFS
is designed to be used by programs, not just by in-
dividuals accessing widely-shared, infrequently up-
dated data. Web users have demonstrated that they
can live with out-of-date data with manual revalida-
tion. By contrast, we believe Web applications re-
quire complete and well-defined file system seman-
tics. Since the choice of coherence semantics implies
tradeoffs in performance, consistency, and availabil-
ity, WebFS provides application-controllable and dy-
namically adaptable cache coherence policies. For
example, strict consistency with optimistic reinte-
gration could be used for files shared between two
geographically distributed sites implementing a ser-
vice [39, 52], while weaker consistency could be used
for widely shared files at client machines. As an-
other example, to support service migration, WebFS
may initially use large block sizes or prefetching to
reduce cold-start misses and then convert to smaller
blocks for minimizing false sharing. A number of
cache coherence mechanisms have been proposed for
distributed systems, such as leases [30], last writer
wins [35], volume reintegration [41], and modified
time to live [33]; we plan to evaluate these in the con-
text of the workloads generated by Web services.



Another avenue we plan to explore is using IP
Multicast [18, 23] to provide update-based cache co-
herence. For example, a news service could select
multicast update policy for its widely shared, fre-
quently updated files, such as vote counts on elec-
tion night. Other Web services such as chat rooms
and whiteboards have long been structured using mul-
ticast; we can simplify these applications by fold-
ing the multicast support into the file system (for
these applications, we use weak coherence since up-
dates need not arrive in a consistent order at all
sites [7]). Both the last-writer wins and the multi-
cast update/invalidate coherence policies have been
implemented in WebFS [54].

We also plan to investigate transparent result
caching. HTTP servers translate some URLs into re-
quests to dynamically generate a Web page. HTTP
servers translate URLs matching a certain pattern (i.e.
having cgi-bin at a certain point in the path) into
requests to run a program responsible for dynami-
cally generating the contents of the page. Today, these
pages cannot be cached since the generation of these
objects is dependent on the program input (i.e. from
an HTML form). We have prototyped a system that
records the program, the environment, and inputs to
such programs. These records are generated by in-
tercepting the certain system calls using the Solaris
proc filesystem interface. If any of the program in-
puts or the program itself are modified, the file sys-
tem invalidates all cached copies of the file (the result
of the program). As an example, a news service may
maintain a database of news stories. Requests for the
“front-page” might be translated into a query for ab-
stracts of the most recent stories. Since the database
may be updated frequently (i.e. if the news site is pro-
viding election results), any resulting HTML should
not be cached by Web browsers. With transparent re-
sult caching however, the filesystem is able to track
changes to the underlying database and is able to in-
validate any cached copies of the query result once the
underlying database is modified.

4.2 Web Virtual Machine

We believe that compute engines across the Internet,
called surrogate sites, will be available to host the
expansion of popular Web services or simply to act
as compute engines. These surrogates may be re-
cruited on a permanent basis to allow a service to bet-
ter handle its average load, or on a temporary basis
to handle temporal spikes in demand. Internet hosts
can be motivated to provide surrogate service in ex-
change for compensation, monetary or otherwise. In
our model, services provide a template for duplicat-
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Figure 3: Surrogate host design. Overloaded services
contact a front-end process on a surrogate host to re-
quest expansion. Once terms are negotiated, a startup
template is accessed in step 2, allowing the front end
to start necessary processes in a virtual machine in
step 3. These processes can access and modify any
shared service state through the global file system in
step 4.

ing themselves on remote surrogates. Through the
WebOS security model, the surrogate is given the nec-
essary capabilities to start the appropriate programs
(perhaps a custom HTTP server) and to access any
necessary state (such as a customer database) through
the global file system.

The surrogate system design is summarized in Fig-
ure 3. A front-end process on the surrogate is re-
sponsible for negotiating terms of setup. To ensure
the system integrity of the surrogate and to ensure
that executed processes do not interfere with other
processes running locally, the front-end creates a vir-
tual machine where all processes for the service exe-
cute. We are using the Secure Remote Helper Appli-
cations model [29] to create a virtual machine which
executes processes with limited privileges, preventing
them from interfering with the operation of processes
in other virtual machines. Once processes are initial-
ized in the virtual machine, the expanding service can
inform Smart Clients of the location of a new service
provider. In the absence of Smart Clients, traditional
techniques such as HTTP redirect or DNS aliasing can
be used to utilize the new surrogate site.

4.3 Security and Authentication

To fully support dynamically migrating services we
need to provide secure authenticated access to public
and private Web data. In WebOS, we leverage work
in wide area distributed system authentication and ac-



cess control [20, 46, 49, 27, 12, 55, 26] to build ac-
cess control lists for access to files in the global name
space. Individuals are uniquely identified by a pub-
lic key, allowing for unique identities across organiza-
tional boundaries. We assume the presence of one or
more trusted, replicated authorities (similar to DNS)
which associate individuals with their public key. Us-
ing this model, WebFS files can be protected from
unauthorized access. Further, WebOS authentication
will be used as a basis for resource allocation poli-
cies in the Web virtual machine, allowing job prior-
ities and access rights to be set on a per-user basis. A
description of a prototype implementation of WebFS
authentication is available [5].

5 Web Cooperative Cache

We are using WebOS to build a geographically dis-
tributed Web cooperative cache to both validate our
design and to provide an immediate benefit to the In-
ternet by doing more intelligent caching of Web con-
tent. Rather than caching pages only at a single server
site or at the client, the Web cooperative cache will
reposition and replicate the content of the Web to min-
imize latency while limiting consumed bandwidth and
storage capacity. Because of Internet latency and con-
gestion, performance will be improved if clients can
exploit the contents of Web caches of geographically
nearby servers. A number of challenges must be ad-
dressed in building this service: (i) naming of the site
able to deliver the best performance from the client’s
perspective, (ii) allowing cache servers to replicate
the execution environment necessary to create dy-
namic Web pages (i.e. created by CGI-bin programs),
(iii) allowing end users to coherently cache these dy-
namic pages, and (iv) replicating and migrating Web
services in response to client demands.

Individual WebOS components support construc-
tion of such a Web cooperative cache. In our design,
a Smart Client applet will be responsible for retriev-
ing URLs on behalf of the user. A well-known func-
tion is applied to each URL to determine the required
service certificate for the URL group. Roughly speak-
ing, each URL group will thus constitute an Internet
service. At least one cache server is associated with
each URL group and is included in the service cer-
tificate. The exact membership of the server group is
discovered through interaction with the well-known
server(s). Over time, the Smart Client applet is able
to maintain relatively accurate server group member-
ship for all URL groups that the user is interested in.

If pages in a single URL group become very pop-
ular, a strategically located surrogate machine is re-

cruited to augment the overloaded group. Once the
identity of this new new server is propagated to Smart
Clients, part of the load for the URL group can
be transferred to this new server. Normal WebFS
caching mechanisms are used to demand page re-
quested pages. WebFS cache coherence mechanisms
make the chances of delivering stale pages to end
users less likely than using current Web caching
mechanisms. The Web Virtual Machine and WebOS
authentication model are used to execute CGI-bin pro-
grams (or other custom executables) and to securely
access any necessary state information (such as a cus-
tomer database). Finally, transparent result caching is
used to cache dynamic Web pages and to ensure inval-
idation of these dynamic pages at the proper time.

6 Related Work

We are able to leverage and evaluate a huge research
literature in the context of Web services, including:
models for building fault tolerant applications [4, 8,
45, 34, 9, 40, 7, 17, 31, 47, 10, 48]; process manage-
ment across the local area [53, 22, 42, 28, 57, 14];
wide area file systems [35, 15, 39, 52, 16, 33, 1]; wide
area security systems [20, 46, 49, 27, 12, 55, 26]; and
mechanisms for hiding fault tolerance, load balanc-
ing, and dynamic relocation from end-users [31, 38,
6, 11, 2].

In this section, we focus our discussion on efforts to
exploit computing and storage resources of the Inter-
net. Perhaps the closest to our work is the recent Ac-
tive Networks proposal [51]. Active Networks moves
computing into the Internet by modifying Internet
routers to be dynamically programmable, either at the
connection or the packet level. The goal is to make
it easier to extend network protocols to provide new
services, such as minimizing network bandwidth con-
sumed by multicast video streams. As in our work, a
major motivation of Active Networks is to move com-
putation into the Internet to minimize network latency
and congestion. WebOS can be seen as a logical ex-
tension of Active Networks, where the active comput-
ing elements in the Internet can be servers in addition
to the individual processors inside of routers operat-
ing on packet streams.

Finally, a number of recent efforts exploit com-
putational resources available on the Internet for
wide area parallel programming, including Atlas [3],
Globus [24], Legion [32], and NetSolve [13]. Al-
though we share a lot of underlying technology with
these systems (such as the need for a global name
space and file system), our emphasis and our solution
is different. These systems all assume that wide area



network performance will improve to the point where
the world can be seen as a single, huge parallel com-
puter. By contrast, our work is motivated by the ob-
servation that in practice wide area networks are slow
and expensive, and are likely to remain so for the fore-
seeable future. Thus, we move computation around
the Internet, not to exploit parallelism, but to min-
imize network latency and congestion in delivering
services to clients. One implication is that web ser-
vice providers will pay to install physically and log-
ically secure high performance servers at geographi-
cally strategic Internet locations. As a result, we ben-
efit from a simpler security model relative to these ef-
forts, since we are not trying to exploit idle resources
on millions insecure desktops.

7 Conclusions

The explosion in the use of the Internet has created
a need for scalable, fault tolerant, and geographically
distributed web services. Unfortunately, the technical
understanding of how to build web services that can
support very large numbers of clients has lagged far
behind the demand. Our hypotheses are that services
need to be able to migrate dynamically between geo-
graphically distributed sites to handle bursty requests
and to avoid network congestion, and that clients have
a role in providing transparent access to dynamically
migrating services. The goal of WebOS is to provide
a software framework for highly available, dynami-
cally adaptable, and incrementally scalable web ser-
vices running on a set of geographically distributed
machines.

A number of key components comprise the WebOS
architecture. Smart Clients allow portions of service
functionality to be migrated onto the client machines.
Smart Clients cooperate with servers to provide load
balanced fault tolerant access to Web services. To
aid in construction of scalable services, WebOS also
includes a global cache coherent file system, an au-
thentication model to ensure secure access to private
state and executables, a virtual machine for safe ex-
ecution of service binaries, and resource allocation
tools to allow for adjudication among competing Web
services. Most of the key WebOS components have
been prototyped. To demonstrate the viability of our
ideas and the prototype, we are building a Web co-
operative cache of web pages, allowing surrogates lo-
cated at strategic points in the Internet to serve cache-
coherent content on behalf of heavily loaded or dis-
tant Web services. We believe that the WebOS infras-
tructure will also allow rapid prototyping of a number
of other compelling scalable Internet services, includ-

ing: a low-latency chat service, a distributed compute
server, and multicast-based news broadcast applica-
tions.
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