
University of California — Berkeley Handout PS2
CS276: Cryptography February 26, 2002
Professors Luca Trevisan and David Wagner

Problem Set 2

This problem set is due in class on Thursday, March 7th.

Problem 1. [Access control]

You have founded a hot new startup that is building a trendy new high-tech padlock. Your
padlock comes with a factory-set combination, and a serial number printed on the back.
However, one potential problem is that some customers will forget their combination, and
when they call you up and give their serial number, you need to be able to tell them their
combination. Moreover, you need to make sure that only the factory can do this: thieves
should not be able to deduce the combination by looking at the serial number.

(a) You’re going to sell a lot of locks. Describe a solution that does not require
much storage at the factory: say, sub-linear in the number of locks sold. (The
lower the storage needed, the better.)

(You may make reasonable computational assumptions, such as that there exist
secure one-way functions.)

(b) You tried the above, but were forced to disclose in your business plan the risk
that, if some researcher finds a constructive proof that P = NP , then your
padlocks may become insecure. This got too many confused looks from the
venture capitalists, so now the goal is to try to avoid this. Describe a solution
that is unconditionally secure.

(You may not make any unproven computational assumptions.)

Problem 2. [Computational indistinguishability]

We define a distance measure on probability distributions as follows:

dR(D, D′) = max
A

| Pr
x←D

[A(x) = 1] − Pr
x′←D′

[A(x′) = 1]|

where the maximum is taken over all algorithms running with resources R. Here R denotes
a set of resources, which is used to restrict the adversary. For instance, R might list a bound
on number of steps of computation, on queries to the oracle, on the amount of memory used,
or something else. If algorithm A runs with resources R and A′ with R′, then let R + R′

denote the resources used by running first A then A′.

Note that D, D′ are (t, e)-indistinguishable if and only if dt(D, D′) ≤ e, so we can see that
this distance measure is of fundamental interest in cryptography. This problem will ask you
to study basic properties of this distance measure.

Handout PS2: Problem Set 2 2

(a) [Composition] Let L be any (possibly randomized) algorithm running with re-
sources R′, and let L(D) denote the distribution obtained by picking x from D
and then outputting L(x). Prove: dR(L(D), L(D′)) ≤ dR+R′(D, D′).

(b) [Triangle inequality] Let D′ be any distribution whatsoever. Prove: dR(D, D′′) ≤
dR(D, D′) + dR(D′, D′′).

(c) [Multiple samples] If D1, D2 are distributions, let D1×D2 denote the distribution
on pairs whose first component is chosen according to D1 and second component
according to D2 (independently), i.e., PrD1×D2

[(x1, x2)] = PrD1
[x1] × PrD2

[x2].

Prove: dR(D × D, D′ × D′) ≤ 2dR(D, D′).

(d) [Information-theoretic security and the variation distance] Recall that the varia-
tion distance is defined by V (D1, D2) = 1

2

∑
x |PrD1

[x]−PrD2
[x]|. When used as

a resource bound, let ∞ denote that there are no restrictions on the adversary
(e.g., the algorithm can have unbounded running time).

Prove: d∞(D, D′) = V (D, D′).

(e) [Information-theoretic security] Prove: dR(D, D′) ≤ d∞(D, D′).

(f) [Conditioning] If E is an event, let D|E represent the distribution of the output
of D conditioned on E occurring, i.e., PrD|E [x] = PrD[x|E] = PrD[x and E]/ Pr[E].

Let E denote the complementary event to E, i.e., that E does not occur.

Prove: dR(D, D′) ≤ dR(D|E, D′|E) + Pr[E].

(g) [A XOR lemma] If D1, D2 are distributions on k-bit strings, let D1 ⊕D2 denote
the distribution on x1⊕x2 when x1 is chosen from D1 and x2 is chosen from D2

(independently). Here ⊕ denotes the xor operator. In other words, PrD1×D2
[y] =

∑
PrD1

[x1] × PrD2
[x2], where the sum is taken over all pairs (x1, x2) such that

x1 ⊕ x2 = y. Let U denote the uniform distribution on k-bit strings.

Prove: dR(D ⊕ D′, U) ≤ 2d∞(D, U)d∞(D′, U).

Problem 3. [Symmetric-key Crypto in the Random Oracle Model]

Let R : {0, 1}n → {0, 1}3n be a random oracle. The following two parts are to be solved in
the random oracle model, i.e., given access to R.

(a) [One-way functions] Show that there exists a (t, 2t/2n)-secure one-way function
in this model.

(Here the definition of security for a one-way function should be modified to
allow the adversary to make queries to its oracle R: i.e., fR : X → Y is a (t, p)-
secure one-way function if Pr[fR(AR(fR(x))) = fR(x)] ≤ p for all adversaries
A running in time at most t, where the probability is taken over the choice of
x uniformly at random from X, over the choice of the random oracle R, and
over the coin flips of A. Note that f is allowed to make queries to R during its
execution, as is A; of course, the choice of the algorithm A itself must be made
without knowledge of R.)

Handout PS2: Problem Set 2 3

(b) [Pseudorandom generators] Show that there exists a (t, t/2n)-secure pseudoran-
dom generator, too, in this model.

(As before, the definition of security for a PRG should be modified to allow
the adversary to make queries to the random oracle R, i.e., GR : X → Y is a
(t, ε)-secure PRG if |Pr[AR(GR(x)) = 1]−Pr[AR(y) = 1]| ≤ ε for all adversaries
A running in time at most t, where the probabilities are taken over the choice of
x uniformly at random from X, over the choice of y uniformly at random from
Y , over the choice of the random oracle R, and over the coin flips of A. Note
that the PRG G is allowed to query R during its execution.)

Problem 4. [P vs. NP]

This problem will ask you to provide evidence that finding some provably-secure symmetric-
key cryptosystem is likely to be at least as hard as showing that P 6= NP .

(a) Suppose there exists a sequence f1, f2, . . . of one-way functions so that fn :
{0, 1}n → {0, 1}q(n) is (t(n), p(n))-secure, where t(n) and 1/p(n) are super-
polynomial functions of n and where fn can be computed in time polynomial in
n. Show that, in this case, P 6= NP .

(b) Suppose G : {0, 1}k → {0, 1}2k is a (t, e)-secure PRG. Show that G is a (t, e +
2−k)-secure one-way function.

(c) Suppose F : {0, 1}k ×{0, 1}k → {0, 1}k is a (t, q, e)-secure PRF, for some q ≥ 2.
Show that there exists a (t, e)-secure length-doubling PRG.

Hence conclude that if there exists any construction of OWF’s, PRG’s, or PRF’s with
super-polynomial security, then P 6= NP .

Remark. This provides evidence that finding provably-secure constructions of one-way
functions or PRG’s will be very difficult, since this crypto-design problem seems to inherit

al the difficulties of the P
?
= NP question. (In fact, since we usually ask for security against

randomized adversaries, it seems one must also resolve the question BPP
?
= NP , which

is at least as hard and possibly harder; moreover, even BPP 6= NP does not seem to
be sufficient for the existence of symmetric-key cryptography.) It seems the best we can
hope for is that our constructions are proven secure under some plausible (but unproven)
assumption, such as that factoring is hard.

Problem 5. [A length-expanding construction suggested in class]

Let G : {0, 1}k → {0, 1}k+1 be a PRG. If y is a k + 1-bit string, define L(y) to be its
left k bits and R(y) to be its right k bits (note that they overlap in k − 1 bits), and
define GL(x) = L(G(x)), GR(x) = R(G(x)). Define H : {0, 1}k → {0, 1}2k+2 by H(x) =
(G(GL(x)), G(GR(x))).

A salesperson claims if G is any (t, e)-secure PRG, then H is guaranteed to be a (t/4, 8e)-
secure PRG, and offers to sell you the rights to this construction. Should you believe her
security claims? Give a convincing argument: e.g., a proof or counterexample will do nicely.

Handout PS2: Problem Set 2 4

Problem 6. [Pseudorandom functions and permutations]

(a) Show that applying two Feistel rounds does not yield a pseudorandom function.
In other words, define Ff,f ′(L, R) = (L ⊕ f(R), R ⊕ f ′(L ⊕ F (R))) where the
secret key f, f ′ holds two randomly chosen functions, and show that F is not a
secure pseudorandom function.

(b) Give a secure pseudorandom function F : K × X → X so that Fk is bijective
for each k ∈ K, yet F is not a secure pseudorandom permutation. Be sure
to prove that F is a pseudorandom function (by giving a security proof under
some plausible assumptions) but not a pseudorandom permutation (by giving
an attack).

In other words, you’re showing a separation: F is intended to be secure against
chosen-plaintext attack, but not against adaptive chosen-plaintext/ciphertext
attack.

