
Security Considerations for IEEE 802.15.4 Networks

Naveen Sastry
University of California, Berkeley

nks@cs.berkeley.edu

David Wagner
University of California, Berkeley

daw@cs.berkeley.edu

ABSTRACT
The IEEE 802.15.4 specification outlines a new class of wire-
less radios and protocols targeted at low power devices, per-
sonal area networks, and sensor nodes. The specification
includes a number of security provisions and options. In
this paper, we highlight places where application designers
and radio designers should exercise care when implementing
and using 802.15.4 devices. Specifically, some of the 802.15.4
optional features actually reduce security, so we urge imple-
mentors to ignore those extensions. We highlight difficulties
in safely using the security API and provide recommenda-
tions on how to change the specification to make it less likely
that people will deploy devices with poor security configu-
rations.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection Ac-
cess controls; D.4.6 [Operating Systems]: Security and
Protection Authentication

General Terms
Security

Keywords
IEEE 802.15.4, Link Layer Security, Sensor Networks

1. INTRODUCTION
The growing importance of small and cheap wireless de-

vices demands a common platform so that the devices can
communicate with each other and share components to lower
costs. The 802.15.4 specification [6] (802.15.4) describes
wireless and media access protocols for personal area net-
working devices. The sensor network community has be-
gun using these protocols as well. The protocols are in-
tended for hardware implementation on a dedicated radio
chip. The range of envisioned applications is broad, span-
ning wireless game controllers, environmental, medical, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WiSE’04, October 1, 2004, Philadelphia, Pennsylvania, USA.
Copyright 2004 ACM 1-58113-925-X/04/0010 ...$5.00.

building monitoring instruments, to heating and ventilation
sensors [3, 14, 16, 17, 18]. These applications frequently
use embedded devices controlled by an 8 or 16 bit micro-
controller meant to operate without human intervention for
months. The long period of unattended operation with un-
derpowered hardware has two implications for the design of
such systems: the software that runs on these devices must
be simple and correct, and the devices must make efficient
use of their limited energy. The wireless communication
chip that is a part of these devices must honor these re-
quirements, since it and the microcontroller represent the
two largest sources of energy consumption.

The 802.15.4 specification is meant to support a variety
of applications, many of which are security sensitive. For
example, consider the case of a sensor network that mea-
sures building occupancy as an alarm system: there is an
obvious privacy concern about tracking the people in the
building. Additionally, if the network is not secured, an
adversary could modify and inject messages to either cause
an alarm, or more worryingly, to suppress legitimate alarm
signals. Many applications require confidentiality and most
have a need for integrity protection. The 802.15.4 specifi-
cation addresses these needs through a link-layer security
package.

There are two intended uses of the 802.15.4 API, one for
application designers that will use the features of the wire-
less radio chip directly and one for higher level libraries and
specifications that use the 802.15.4 API to export their own
higher-level services. The ZigBee specification, still in de-
velopment [1], is one important example of the latter.

Contributions. In this paper, we analyze the 802.15.4 pro-
tocol from a security standpoint and outline a number of
problems in the specification. We can broadly classify the
vulnerabilities we have observed in the 802.15.4 protocol as
stemming from three distinct problems: IV management,
key management, and insufficient integrity protection. The
802.15.4 specification mandates a particular key and IV for-
mat that leads to vulnerabilities. Additionally, we believe
the specification committee did not include enough support
for integrity. We propose several changes to the specification
that we believe will improve security for 802.15.4 users.

2. 802.15.4 SECURITY OVERVIEW
A link layer security protocol provides four basic security

services: access control, message integrity, message confi-
dentiality, and replay protection.

Access control and message integrity. Access control
means the link layer protocol should prevent unauthorized
parties from participating in the network. Legitimate nodes
should be able to detect messages from unauthorized nodes
and reject them. Also, a secure network should provide mes-
sage integrity protection: if an adversary modifies a message
from an authorized sender while the message is in transit,
the receiver should be able to detect this tampering. In-
cluding a message authentication code (MAC)1 with each
packet provides message authentication and integrity. A
MAC can be viewed as a cryptographically secure checksum
of a message. Computing it requires authorized senders and
receivers to share a secret cryptographic key, and this key is
part of the input to the computation. The sender computes
the MAC over the packet with the secret key and includes
the MAC with the packet. A receiver sharing the same secret
key recomputes the MAC and compares it with the MAC in
the packet. The receiver accepts the packet if they are equal,
and rejects it otherwise. Message authentication codes must
be hard to forge without the secret key. Consequently, if an
adversary alters a valid message or injects a bogus message,
she will not be able to compute the corresponding MAC,
and authorized receivers will reject these forged messages.

Confidentiality. Confidentiality means keeping information
secret from unauthorized parties. It is typically achieved
with encryption. Preferably, an encryption scheme should
not only prevent message recovery, but also prevent adver-
saries from learning even partial information about the mes-
sages that have been encrypted. This stronger property is
known as semantic security [10].

One implication of semantic security is that encrypting
the same plaintext two times should give two different ci-
phertexts. If the encryption process is identical for two in-
vocations on the same message, then semantic security is
clearly violated: the resulting ciphertexts are identical. A
common technique for achieving semantic security is to use
a unique nonce for each invocation of the encryption algo-
rithm. A nonce can be thought of as a side input to the
encryption algorithm. The main purpose of a nonce is to
add variation to the encryption process when there is little
variation in the set of messages. Since the receiver must use
the nonce to decrypt messages, the security of most encryp-
tion schemes do not rely on nonces being secret. Nonces
are typically sent in the clear and are included in the same
packet with the encrypted data.

Replay Protection. An adversary that eavesdrops on a le-
gitimate message sent between two authorized nodes and re-
plays it at some later time engages in a replay attack. Since
the message originated from an authorized sender it will
have a valid MAC, so the receiver will accept it again. Re-
play protection prevents these types of attacks. The sender
typically assigns a monotonically increasing sequence num-
ber to each packet and the receiver rejects packets with
smaller sequence numbers than it has already seen.

2.1 Protocol Description
1The 802.15.4 specification refers to the message authentica-
tion code as a message integrity code (MIC) to differentiate
it from media access control. In this paper, we follow the
cryptographic convention of referring to the integrity code
as a MAC, and we do not abbreviate media access control.

In this section, we will provide a brief outline of the 802.15.4
security architecture. We will provide more detail as needed
when we outline more specific problems.

802.15.4. Addressing in 802.15.4 is accomplished via a 64-
bit node identifier and a 16-bit network identifier. 802.15.4
supports a few different addressing modes. For example, a
16-bit truncated address may be used in place of the full 64-
bit node identifier in certain cases. This allows the sizes of
the source and destination addresses to vary between 0 and
10 bytes depending on whether truncated or full addresses
are used, and whether or not the node sends to the broadcast
address. For our purposes, it is sufficient to only consider the
64-bit node identifier as the address. We urge the interested
reader to see the specification for complete details.

There are two important packet types that are relevant to
the security of 802.15.4: data packets and acknowledgment
packets. A data packet, seen in Figure 1(a), has variable
length and is used by a node to send a message to a single
node or to broadcast a message to multiple nodes. Each
data packet has a flags field that indicates the packet type,
whether security is enabled or not, the addressing modes
that are in use, and whether the sender requests an acknowl-
edgment. A 1 byte sequence number serves to identify the
packet number for acknowledgments. The packet optionally
includes source and destination addresses. As noted above,
each field is variably sized between 0 and 10 bytes. The
data payload field comes after the addressing fields. It is
less than 102 bytes. Finally, a 2 byte CRC checksum field
protects the packet against transmission errors.

The acknowledgment packet, as depicted in Figure 1(b),
is sent by the recipient only if the corresponding data packet
was not sent to a broadcast address and the sender requested
an acknowledgment. Its format is simple: a 2 byte flags
field similar to the one in the data packet, the 1 byte se-
quence number from the packet that it is acknowledging,
and a 2 byte CRC. There is no addressing information in
the acknowledgment packet.

Security. The 802.15.4 security layer is handled at the me-
dia access control layer, below application control. The ap-
plication specifies its security requirements by setting the
appropriate control parameters into the radio stack. If an
application does not set any parameters, then security is
not enabled by default. An application must explicitly en-
able security, as we detail below. The specification defines
four packet types: beacon packets, data packets, acknowl-
edgments packets, and control packets for the media access
control layer. The specification does not support security for
acknowledgement packets; other packet types can optionally
support integrity protection and confidentiality protection
for the packet’s data field.

An application has a choice of security suites that con-
trol the type of security protection that is provided for the
transmitted data. Each security suite offers a different set
of security properties and guarantees, and ultimately dif-
ferent packet formats. The 802.15.4 specification defines
eight different security suites, outlined in Table 1. We can
broadly classify the suites by the properties that they of-
fer: no security, encryption only (AES-CTR), authentica-
tion only (AES-CBC-MAC), and encryption and authenti-
cation (AES-CCM). Each category that supports authenti-
cation comes in three variants depending on the size of the

Len.

1 byte

Flags

2 bytes

Seq.
No

1 byte

Dest. Address

0/2/4/10 bytes

Source Address

0/2/4/10 bytes

Data payload

variable

CRC

2 bytes

(a) Data packet format

Len.

1 byte

Flags

2 bytes

Seq.
No

1 byte

CRC

2 bytes

(b) Acknowledgment packet format

Figure 1: Data and acknowledgment packet formats

Frame Counter

4 bytes

Key
Ctr

1 byte

Encrypted Payload

variable

(a) AES-CTR

Payload

variable

MAC

4/8/16 bytes

(b) AES-CBC-MAC-b, b ∈ {4, 8, 16} MAC size

Frame Counter

4 bytes

Key
Ctr

1 byte

Encrypted Payload

variable

Encrypted MAC

4/8/16 bytes

(c) AES-CCM-b, b ∈ {4, 8, 16} MAC size

Figure 2: The formatting of the data field (see Figure 1(a)) for the three main security suites. When included,
the MAC protects the packet headers as well as data contents.

Name Description

Null No security
AES-CTR Encryption only, CTR Mode
AES-CBC-MAC-128 128 bit MAC
AES-CBC-MAC-64 64 bit MAC
AES-CBC-MAC-32 32 bit MAC
AES-CCM-128 Encryption & 128 bit MAC
AES-CCM-64 Encryption & 64 bit MAC
AES-CCM-32 Encryption & 32 bit MAC

Table 1: Security suites supported by 802.15.4 (see
Table 75 from the 802.15.4 specification). The spec-
ification mandates that implementations must sup-
port the AES-CCM-64 and Null suites while the
other suites are optional (§7.6).

Address Security Suite Key Last IV Replay Ctr

Figure 3: Format of an ACL entry. The destination
address of an outgoing packet is matched with the
address field in an ACL entry. The packet is then
processed using the indicated security suite with the
key and IV listed in the ACL entry. For incoming
packets, the source address is matched with the ad-
dress field in the ACL entry. Cryptographic opera-
tions use the key from the ACL entry and the replay
counter field acts as a high water mark if replay de-
tection is enabled.

MAC that it offers. Each variant is considered a different
security suite and has its own name. The MAC can be either
4, 8, or 16 bytes long. The longer the MAC the lower the
chance that an adversary has to blind forgery by guessing an
appropriate code. For example, with an 8 byte MAC, an ad-
versary has a 2−64 chance of forging the MAC. The tradeoff
is a larger packet size for increased protection against au-
thenticity attacks. Additionally, for each suite that offers
encryption, the recipient can optionally enable replay pro-
tection. Radio designers do not have to implement all of
the suites. The specification only requires that radio chips
provide support for the Null suite and the AES-CCM-64
suite.

An application indicates its choice of security suites based
on source and destination addresses. 802.15.4 radio chips
have an access control list (ACL) that controls what secu-
rity suite and keying information to use. Compliant devices
may support up to 255 ACL entries. Each entry contains
an 802.15.4 address, a security suite identifier, and security
material, as shown in Figure 3. The security material is
persistent state necessary to execute the security suite. It
consists of the cryptographic key and, for suites that provide
encryption, the nonce state that must be preserved across
different packet encryption invocations. When replay pro-
tection is invoked, the security material also includes a high
water mark of the most recently received packet’s identifier.

As a part of the interface for sending packets, the appli-
cation must specify a boolean indicating whether security is
enabled. If no security is requested, the packet is sent out
as is. If security is enabled, the media access control layer
looks up the destination address in its ACL table. If there
is a match ACL entry, the security suite, key, and nonce
specified in that ACL entry are used to encrypt and/or au-

thenticate the outgoing packet, and the flags field on out-
going packet is set accordingly. If the destination address
is not listed in the ACL table, a default ACL entry is used
instead; the default ACL entry is similar to the other ACL
entries except that it matches all destination addresses. If
the default ACL entry is empty and the application has re-
quested security, the media access control layer returns an
error code.

On packet reception, the media access control layer con-
sults the flags field in the packet to determine if any security
suites have been applied to that packet. If no security was
used, the packet is passed as is to the application. Other-
wise, the media access control layer uses a similar process
to find the appropriate ACL entry, this time based on the
sender’s address. It then applies the appropriate security
suite, key, and replay counter to the incoming packet, pre-
senting the application with an error message if no appro-
priate ACL entry could be located.

We will now provide more detail about the categories of
security suites:

• Null: This is the simplest security suite. Its inclusion
is mandatory in all radio chips. It does not have any
security material and operates as the identity function.
It does not provide any security guarantees.

• AES-CTR: This suite provides confidentiality pro-
tection using the AES block cipher [15] with counter
mode. To encrypt data under counter mode, the sender
breaks the cleartext packet into 16-byte blocks p1, . . . , pn

and computes ci = pi ⊕ Ek(xi). Each 16-byte block
uses its own varying counter, which we call x1. The
recipient recovers the original plaintext by computing
pi = ci ⊕ Ek(xi). Clearly, the recipient needs the
counter value xi in order to reconstruct pi. The xi

counter, known as a nonce or IV, is composed of a
static flags field, the sender’s address, and 3 separate
counters: a 4 byte frame counter that identifies the
packet, a 1 byte key counter field, and a 2 byte block
counter that numbers the 16 byte blocks within the
packet as shown in Figure 4. The frame counter is
maintained by the hardware radio. The sender incre-
ments it after encrypting each packet. When it reaches
its maximum value, the radio returns an error code and
no further encryptions are possible. The key counter is
a one byte counter under the application’s control. It
can be incremented if the frame counter ever reaches
its maximum value. The requirement is that the nonce
must never repeat within the lifetime of any single key,
and the role of the frame and key counters is to pre-
vent nonce reuse. The 2 byte block counter ensures
that each block will use a different nonce value; the
sender does not need to include it with the packet,
since the receiver can infer its value for each block.

In summary, the sender includes the frame counter,
key counter, and encrypted payload into the data pay-
load field of the packet, as in Figure 2(a).

• AES-CBC-MAC: This suite provides integrity pro-
tection using CBC-MAC [11]. The sender can compute
either a 4, 8, or 16 byte MAC using the CBC-MAC
algorithm, leading to three different AES-CBC-MAC
variants. The MAC can only be computed by parties
with the symmetric key. The MAC protects packet

Flags

1 byte

Source address

8 bytes

Frame Ctr

4 bytes

Key
Ctr

1 byte

Block Ctr

2 bytes

Figure 4: The format of the input (xi) to the block cipher for the AES-CTR and AES-CCM suites. The flags
field is a constant for AES-CTR mode; its value is prescribed by the CCM specification for AES-CCM.

headers as well as the data payload. The sender ap-
pends the plaintext data with the MAC, as in Fig-
ure 2(b). The recipient verifies the MAC by comput-
ing the MAC and comparing it with the value included
in the packet.

• AES-CCM: This security suite uses CCM mode for
encryption and authentication [19]. Broadly, it first
applies integrity protection over the header and data
payload using CBC-MAC and then encrypts the data
payload and MAC using AES-CTR mode. As such,
AES-CCM includes the fields from both the authen-
tication and encryption operations: a MAC, and the
frame and key counters. These fields serve the same
function as above. Just as AES-CBC-MAC has three
variants depending on the MAC size, AES-CCM also
has three variants. We show its packet format in Fig-
ure 2(c).

A receiver can optionally enable replay protection when
using a security suite that provides confidentiality protec-
tion. This includes AES-CTR and all of the AES-CCM
variants. The recipients use the frame and key counter as a
5 byte value, the replay counter, with the key counter occu-
pying the most significant byte of this value. The recipient
compares the replay counter from the incoming packet to the
highest value seen, as stored in the ACL entry. If the incom-
ing packet has a larger replay counter than the stored one,
then the packet is accepted and the new replay counter is
saved. If, however, the incoming packet has a smaller value,
the packet is rejected and the application is notified of the
rejection. We refer to this counter as the replay counter,
even though it is the same counter as the nonce. It serves
a logically different purpose from the nonce, which is used
for confidentiality. The replay counter is not exposed to the
application to use.

2.2 Keying Models
Symmetric cryptography relies on both endpoints using

the same key when communicating securely. In a group of
nodes, the keying model governs what key a node uses to
communicate with another node. The keying model that is
most appropriate for an application depends on the threat
model that an application faces and what types of resources
it is willing to expend for key management. For example, in
the network shared key model, every node uses the same key
for communicating with every other node. Each node only
needs to keep track of a single key, which eases the manage-
ment problems. In this section, we define a set of common
keying models. In Section 3, we discuss the problems with
the 802.15.4 architecture in supporting these different key-
ing models.

We present a few of the more common keying models that
are appropriate for sensor networks:

• Network shared keying: With a single network-
wide shared key, each node in the system possesses the
same key and uses it to communicate with all other
nodes. Key management becomes trivial with this
approach since all communication uses the same key.
Additionally, the memory requirements are minimal.
Applications can therefore use the network shared key
with little effort.

However, the management simplicity comes at the cost
of a vulnerability to insider attacks. It is more vulner-
able than other keying models to a single key compro-
mise, as happens when an adversary compromises a
single node. An adversary can use the compromised
node to undermine the security guarantees of the en-
tire network. The single node can break the confiden-
tiality of any message sent in the system and forge
messages claiming to originate from any node. If we
expect nodes to be occasionally compromised or cap-
tured, network shared keying will be less attractive.

• Pairwise keying: Pairwise keying tolerates node com-
promise by limiting the scope of every key. With pair-
wise keying, each pair of nodes share a different key.
Thus, a node compromise only affects past and future
messages sent to or from that node; other traffic is un-
affected. This provides better security than network
shared keying.

The greater robustness against node compromise does
come at a cost, particularly in the overhead for key
management. If a node communicates with many other
nodes, it must store many keys and select the appro-
priate one when communicating. On devices with min-
imal resources, the storage costs can be prohibitive.

• Group keying: Group keys are a compromise be-
tween network shared keys and pairwise keys. A sin-
gle key is shared among a set of nodes and is used on
all links between any two nodes in that group. The
partition into groups may be made based on location,
network topology, or similarity of function. The ad-
vantage of group keying is that it provides an inter-
mediate tradeoff between network shared keying and
pairwise keying, with partial resistance to node com-
promise at a lower cost than pairwise keying.

• Hybrid approaches: Some systems may use a com-
bination of the above keying models simultaneously
in the same application. For example, we might use
pairwise keying for all links between a node and a base
station and use a network shared key for all other links.

2.3 Implementations
We are not aware of any wireless chip that fully supports

the security operations detailed in the 802.15.4 standard in
hardware. The Atmel Z-Link transceiver [7] and Motorola

MC13192 [9] support the 802.15.4 PHY standard that gov-
erns radio packet formats and frequencies, but not the entire
media access control portion of the standard. One would
have to implement the security operations on the microcon-
troller in order to interact with 802.15.4 devices that use
security. The Chipcon CC2420 does have hardware support
for the cryptographic primitives that allows for seamless op-
eration with 802.15.4 devices that follow the specification.
However, as we detail in Section 3.2.3, they do not adhere to
the interface outlined in the 802.15.4 specification, so they
do not support multiple keys well.

We believe that hardware implementations of the stan-
dard are valuable in order to simplify the application writer’s
job. Handling the cryptographic operations in hardware
frees the microcontroller from the real time demands re-
quired to decrypt and encrypt the packets.

3. PROBLEMS
We have found several vulnerabilities and pitfalls in 802.15.4.

They fall into three categories: IV management, key man-
agement, and integrity protection. Each represents danger
zones for application developers, where it is easy to use
802.15.4 in a way that provides less security than one might
expect. In some cases, there are easy workarounds that de-
velopers can employ today; others can only be fixed with
substantial changes to the specification.

3.1 IV Management Problems

3.1.1 Same Key in Multiple ACL Entries
As noted, there are up to 255 ACL entries used to store

different keys and their associated nonce. The sender chooses
the appropriate ACL entry based on the destination address.

However, there is a vulnerability if the same key is used
in two different ACL entries. In that case, it is highly likely
that the sender will accidentally reuse the nonce. For exam-
ple, suppose a sender uses the AES-CCM-64 security suite
with the same key k for recipient r1 and recipient r2 and
initializes the frame and key counters to 0x0 for both recip-
ients. If the sender transmits message m1 with data 0xAA00

to r1 and then message m2 with data 0x00BB to r2, the
sender will end up reusing the same nonce (frame counter
of 0x0 and key counter of 0x0). This is because each re-
cipient has their own ACL entry with independent nonce
state. Because AES-CCM uses CTR mode, which acts like
a stream cipher, an adversary can easily recover the xor of
the plaintexts by computing the xor of the two ciphertexts,
in this case 0xAABB, completely breaking the confidentiality
property2.

There are a number of ways that two separate recipients
might end up with the same key in two separate ACL entries:

• Coarse grained ACL control. As we note in Section 3.2.1,
group keys are not well supported. An application de-
signer may be tempted to implement group keying by
creating two separate ACL entries sharing the same
key. This will appear to work but it will not be secure.

• Race conditions in routing change protocols. Suppose
that a node uses key k1 to secure communications to

2Recall that the ciphertext for a message is m⊕Ek(x1). So
when the same counter is used for both messages, the xor
of the ciphertexts will be [m1 ⊕ Ek(x1)] ⊕ [m2 ⊕ Ek(x1)] =
m1 ⊕ m2, where x1 is the nonce.

any parent node in the routing tree and key k2 to se-
cure all other communications. Key k2 will be listed
as the default ACL entry, with a separate ACL entry
specifying address p and key k1. If the application de-
cides to switch parents from p to p′ by adding an ACL
entry for p′ before removing p’s entry, there is a race
condition where the same key is active in the ACL list
at the same time.

We believe nonce reuse will likely occur if an application
ever sets up the same key in two different ACL entries. In
such cases, confidentiality will be violated, though integrity
is unaffected. The problem is that this error can occur all
too easily if application programmers are not vigilant.

We should point out that a sender can safely send two
messages to two different recipients using the same key as
long as it carefully manages the nonce state. The easiest
method is to use a single ACL entry. The sender can then
send the first message, change the destination in the ACL
entry, and then send the second message. The general prin-
ciple to prevent nonce reuse is that the nonce state should
never be separated from the key.

3.1.2 Loss of ACL State Due to Power Interruptions
We expect that many 802.15.4 devices will be battery or

solar powered. Radio chip designers must ensure that the
ACL state is properly maintained even during power inter-
ruptions and low-power operation.

Power Failure. Consider what happens if the ACL state is
lost when the node encounters a power failure. If no special
precautions are taken, the node will emerge with a cleared
ACL table when power is restored. Presumably, the node’s
software can then repopulate the ACL table with the appro-
priate keys. However, it is not clear what to do about the
nonce states. If all nonces are reset to a known value, such
as 0, nonces will be reused, compromising security.

Application designers can avoid nonce reuse in a number
of ways if they can detect the power disruption. Firstly,
nodes can establish new keys after a power disruption, so
that they don’t reuse the same nonce twice with the same
key. Alternatively, they can always store the key counter in
indelible flash memory, incrementing it after sending each
packet. However, since storing values in flash memory is slow
and energy inefficient, application designers can amortize
the cost of writing to the flash by “leasing” a block of counter
values and storing the lease in flash memory. They can
acquire a new block of counter values when they run out of
values and store the lease information in the flash memory.
After a reboot, they can invalidate all counter values up to
or including the lease currently in flash and acquire the next
block of values.

This is a dangerous pitfall: applications not designed with
power failures in mind can easily end up with a product that
appears to work but actually fails to secure communications
against eavesdroppers. Application designers must take this
into account in order to design nodes that are secure across
power interruptions.

Low Powered Operation. A related problem to power fail-
ure is how to preserve the nonce state if the node goes into
low powered operation. In order to extend the battery’s life-
time, the devices must engage in some kind of duty cycling

whereby parts of the device are on for only a small fraction
of the time. Since an 802.15.4 radio can consume 19.7 mA at
1.8V [8] just to receive an incoming packet, keeping the radio
chip in a lower power mode can greatly increase the device’s
power consumption efficiency. If it emerges from its low-
powered state with a cleared ACL, it will again reuse nonce
values and break confidentiality. Maintaining the nonce
through low powered operation is easier to solve since the
radio chip knows when it will enter and leave low-powered
mode; since this can occur frequently, the radio chip must
use efficient mechanisms. Unfortunately, the specification
does not address the issue of what happens to the wireless
chip in a low-power state.

Saving and restoring nonce state in software is a reason-
able fix. However, this solution is not cheap: each ACL
entry has at least 10 bytes of state that needs to be stored
(5 bytes for the inbound replay counter and 5 bytes for the
outbound nonce that it uses for that key). With 255 ACL
entries, this is more than 2 kilobytes of state, imposing sig-
nificant memory and computational overheads. Another al-
ternative, maintaining power to the ACL’s RAM so that the
the ACL contents is not lost during low-powered operation is
workable; the downside is an increased power consumption
in low powered operation.

3.2 Key Management Problems
The second class of problems results from inadequate sup-

port in the ACL table for many keying models.

3.2.1 No Support for Group Keying
Supporting group keying under 802.15.4 is unwieldy. For

example, suppose that nodes n1, . . . , n5 wish to communi-
cate amongst themselves using key k1, while nodes n6, . . . n9

use key k2. Because each ACL entry can only be associated
to a single destination address (§7.5.8.1), there is no good
way to support this desired model.

One tempting approach is to create five ACL entries, one
for each of nodes n1, . . . , n5, all mentioning the same key k1.
This requires that the 802.15.4 radio’s ACL table be large
enough to hold all these entries. More seriously, as we saw
in Section 3.1.1, this approach poses unacceptable security
risks: because each entry stores a nonce separately, we are
likely to encounter nonce reuse, exposing plaintext. Conse-
quently, we discard this approach as simply too dangerous.

Another tempting approach is to create a single ACL en-
try for key k1. Before sending to node n1, the destination
address associated with that ACL entry could be changed
to mention n1. If the application later wants to send a mes-
sage to n2 using the same key, it must switch the destination
address associated with that the ACL entry. In general, the
destination address must be modified every time a packet
is sent. This makes packet transmission cumbersome. The
real problem, though, is on the receiving side. If the receiver
performs the same address switching trick, the receiver will
need to ensure it has an ACL entry for the sender before the
message from that sender ever arrives. The receiver there-
fore must always be able to predict which node from the
group will next send it a message, so that the ACL entry
can be set up appropriately. Except in special cases (such
as restricted communication patterns), this is likely to pose
too many constraints to be workable.

In short, there appears to be no simple way to use group
keying securely in 802.15.4 networks. We hypothesize that

many, if not all, of those who naively attempt to use group
keying in 802.15.4 will end up with configurations that ap-
pear to be functional but actually compromise security. This
is a shame, for group keying is very natural for many prob-
lems.

3.2.2 Network Shared Keying Incompatible with Re-
play Protection

When using a single network-wide shared key, there is no
way to protect against replay attacks. To use the network
shared key model, an application must use the default ACL
entry, since as we saw in Section 3.2.1, the other ACL entries
are not useful for group communication. Recall that the
default ACL entry will be used when there is no matching
ACL entry.

Now, suppose that the network shared key is loaded into
the default ACL and node s1 sends 100 messages using re-
play counters 0 . . . 99. The recipient gets these packets and
would like to perform replay protection. It must keep a high
water mark of the largest replay counters it has seen so far.
According to the specification (§7.6.2.3.2 and §7.6.3.3.2), the
receiver updates the replay counter associated with the de-
fault ACL as each packet arrives. Now, if sender s2 sends a
message with its replay counter starting at 0, the recipient
will reject the message since it will only accept messages with
replay counters greater than 99. Therefore, for the recipi-
ent to use replay protection with the shared key model, the
senders must coordinate their use of replay counter space.
This is not feasible when there are more than a handful of
members in a group, precluding the use of replay protection
with the shared network key.

3.2.3 Pairwise Keying Inadequately Supported
We also note that the specification could include stronger

support for pairwise communication. The specification al-
lows a 802.15.4 radio to have up to 255 ACL entries, but
it does not specify a required minimum number of ACL en-
tries. In particular, compliant radio chips need not have
more than one or two ACL entries. As an example, the
Chipcon CC2420, has support for only two keys3 [8]. As
detailed in Section 3.2.1, an ACL entry cannot be safely
shared among a group of multiple nodes. This means that
in a pairwise keying model, a radio chip with support for
n ACL entries will limit us to networks containing at most
about n nodes. This poses a significant limit to scalability,
and it means that pairwise keying will only be feasible on
radio chips with support for a large number of ACL entries.
To support pairwise keying, we submit that it may make
sense to revise the specification to mandate a reasonable
minimum number of ACL entries.

3.2.4 Discussion
The source of these difficulties is partly a result of confus-

ing the role of a nonce and a replay counter. The nonce sent
in outgoing packets serves two purposes: it provides a non-
repeating value that protects confidentiality; and, it provides

3Instead of a default ACL entry and ACL list, the CC2420
actually has two ACL entries, named key 0 and key 1. The
ACL entries do not have an address associated with them,
as the specification requires. Instead, there are two regis-
ters specifying which key is to be used for transmission and
reception, respectively. They have similar properties to the
default ACL, so the CC2420 can only effectively support one
group at a time. It does not support pairwise keying well.

a monotonically increasing counter that prevents replay at-
tacks. To protect confidentiality, the sender must ensure
that it never uses the same nonce twice for the same key.
To protect against replay attacks, the recipient needs to en-
sure that every sender uses a larger nonce value than found
in previous messages sharing the same key. The first require-
ment suggests that the nonce should be strongly bound to
the key: anytime the key is used for encryption, it must use
a different nonce value. Therefore, any uses of the key, even
in different ACL entries, should share a single nonce register.
Conversely, the second requirement suggests that the replay
counter should be strongly bound to the sender’s address.
If the same key appears in multiple ACL entries, we should
maintain a separate high-water mark for each sender.

The current ACL structure does not support these two re-
quirements, leading to the problems in properly supporting
replay when used with a group keying model. The problem
stems from overloading the nonce to serve both as an IV and
as a replay counter with the ACL structure they mandate.
The opposing requirements for sending to ensure confiden-
tiality and receiving to guarantee replay protection place
different demands on the ACL structure. The specification
implicitly assumes that a key does not appear in more than
one ACL entry at a time, otherwise it will encounter prob-
lems sending as described in Section 3.1.1. Furthermore, the
specification indicates that the recipient maintains a single
nonce for each key value used for outbound communication.
It also only has a single inbound slot to store the replay
counter, shared among all senders using that key. Hence,
when the recipient receives packets from different senders,
as occurs with group keying or a network keying, the recip-
ient cannot update the replay counter properly, making re-
play protection incompatible with network shared and group
keying.

We conclude that none of the three most important key-
ing models are well supported by 802.15.4. Each has some
shortcoming:

• Network shared keying is incompatible with replay
protection.

• Pairwise keying is only useful if the radio chip de-
signer includes a sufficient number of ACL entries.
This is not required by the specification, and one exist-
ing 802.15.4 radio is poorly suited for pairwise keying.

• Group keying is not workable, as described in Sec-
tion 3.2.1.

These problems will not affect every application, but they
do restrict an application’s choice of keying models and
may force undesirable compromises. Pairwise keying may
be workable if the radio provides enough ACL entries, but
otherwise it cannot be used. Network shared keying can only
be used if the application does not require replay protection.

3.3 Insufficient Integrity Protection

3.3.1 Unauthenticated Encryption Modes
As detailed in Table 1, the AES-CTR suite uses counter

mode without a MAC (see §7.6.2). The standard does not
mandate that radio designers support the CTR mode suite;
only AES-CCM-64 is mandatory. However, we believe that
AES-CTR is so dangerous that it should never be enabled

or implemented. Unauthenticated encryption introduces a
significant risk of protocol level vulnerabilities.

Researchers have found a number of vulnerabilities in pro-
tocols that use encryption protected only by a CRC and not
a cryptographically strong message authentication code. All
of the attacks center on the fact that in the course of modify-
ing the ciphertext, the adversary can construct appropriate
modifications to the CRC so that the receiver accepts the
packet. Researchers have discovered unauthenticated en-
cryption vulnerabilities in IPSec [12], 802.11 [13],and SSH
version 1 [2, 4, 5] that compromise not only integrity but also
confidentiality. Any application that uses AES-CTR secu-
rity suite becomes vulnerable to similar attacks. As Bellovin
noted, developers have a tendency to assume that “since de-
crypting with the wrong key will yield garbage, additional
integrity checking is not needed” [12], but this assumption
is simply inaccurate.

What is perhaps surprising to those not trained in cryp-
tography is that failures of integrity can affect confidentiality
as well. The root of the problem is that, in many systems,
the ability to forge unauthentic messages often allows an
attacker to trick an endpoint into disclosing secrets. The
severity of this problem depends on the details of the specific
application protocol, so it is impossible to make any defini-
tive statements that will apply to all deployments. Nonethe-
less, time has proven again and again that use of encryption
without a MAC poses a significant risk of security breaches.
Therefore, we recommend that AES-CTR should never be
used by application designers, should not be supported by
802.15.4 devices, and should be stricken from the standard.

3.3.2 Denial-of-service Attacks on AES-CTR
Next, we show a simple, single-packet denial-of-service at-

tack that is applicable when a 802.15.4 network uses the
AES-CTR suite with replay protection enabled. Suppose
a sender s and recipient communicate with the AES-CTR
suite using key k, and the recipient has enabled replay pro-
tection. Recall that the recipient maintains a high wa-
ter mark composed of the key and frame counter, reject-
ing packets whose counter is smaller than the high water
mark. Consider what happens when an adversary sends
a forged packet with source address s, key counter 0xFF,
frame counter 0xFFFFFFFF, and any payload whatsoever (not
necessarily a valid ciphertext under key k). The recipient
will decrypt the packet under key k, resulting in random
garbage. Since there is no access control or message authen-
tication, the recipient will accept the packet even though it
contains garbage. However, before passing the garbled pay-
load to the application, the media access control layer will
update the high water mark to 0xFFFFFFFFFF. The next time
the real sender s tries to send a legitimate packet, the recip-
ient will reject it no matter what s does, because the high
water mark has reached its maximum value and any subse-
quent packet will appear to be replayed. Similar attacks can
also be used to prevent delivery of the next n packets to be
sent on some link, where the number n can be selected by
the attacker.

This shows that an attacker can permanently disrupt a
802.15.4 link, if that link uses AES-CTR with replay pro-
tection enabled. The attack is easy to mount, because it
only requires sending a single forged packet; the attacker
needs no special access or equipment.

3.3.3 No Integrity on Acknowledgment Packets
The 802.15.4 specification does not include any integrity

or confidentiality protection for acknowledgment packets.
When sending a packet, the sender has the option of re-
questing an acknowledgment from the recipient by setting
a bit in the flags field. If the acknowledgment request flag
is set, the recipient returns an acknowledgment packet that
contains the packet’s sequence number. The sender’s media
access control layer resends the packet a finite number of
times if it doesn’t receive the acknowledgment in time. The
sending application is notified when the acknowledgment ar-
rives.

However, the lack of a MAC covering acknowledgments
allows an adversary to forge an acknowledgment for any
packet. An adversary need only create the forged acknowl-
edgment with the appropriate sequence number from the
original packet; this is not hard, since this sequence number
is sent in the clear.

This weakness can be combined with targeted jamming
to prevent delivery of selected packets. Suppose an attacker
identifies a packet that he wishes to ensure is not received
by the intended recipient. The attacker can transmit a short
burst of interference while the packet is being sent, causing
the CRC to be invalid at the recipient and the packet to
be dropped by the recipient. Then, the attacker can forge a
valid-looking acknowledgment, fooling the sender into think-
ing that the packet has been received.

This vulnerability renders acknowledgments untrustwor-
thy when adversaries are present. For example, suppose that
an application uses the acknowledgment as a part of a reli-
able send interface. The application keeps trying to send the
packet as long as it remains unacknowledged. If the send-
ing application receives an acknowledgment, it can never be
sure whether the data actually arrived at the destination.
The acknowledgment might be legitimate, or it might be
forged. Consequently, acknowledgments can be used as a
hint for performance improvement, but they should not be
relied upon.

4. RECOMMENDATIONS
In Section 3, we outlined a number of deficiencies in the

802.15.4 specification. These problems have a number of
solutions. Some can easily be avoided by an application
programmer if they are aware of the problem. Others may
require the radio designer to adjust their designs. Alterna-
tively, the 802.15.4 standards committee could solve these
problems in the next revision of the 802.15.4 specification.
In fact, fixing some of the problems may require coopera-
tion from more than one party. In this section, we suggest
workarounds that can be used to defend against the weak-
nesses described earlier.

4.1 Application Designers

Don’t Use AES-CTR Security Suite. As we noted, the
AES-CTR can lead to problems in protocols. The inability
to properly support replay detection (despite the specifica-
tion’s claims to the contrary) is just one example. We do not
recommend that any application use the AES-CTR security
suite.

Don’t Rely on Acknowledgments. Application designers
should not rely on the acknowledgments as they stand since
they don’t provide any guarantees. Receiving an acknowl-
edgment doesn’t mean the recipient actually received the
packet.

If an application needs the functionality of acknowledg-
ments, they should use application level acknowledgments
by sending data packets with integrity control and not use
the acknowledgments that 802.15.4 provides. Application
level acknowledgments duplicate much functionality that the
media access control layer provides. For example, an appli-
cation would need to use its own mechanism to retry a send
until an application level acknowledgment arrives. There is
certainly added complexity in this workaround, but barring
integrity protection for acknowledgments we believe it is the
only safe alternative.

4.2 Hardware Designers

Include Support for 255 ACL Entries. To properly sup-
port pairwise keying, hardware designers should include sup-
port for many ACL entries. Proper support for individual
keying in large networks demands many ACL entries.

Retain ACL List in Low Power Mode. As noted in Sec-
tion 3.1.2, some hardware implementations may reset the
contents of the ACL list when entering low power mode.
We advocate that the radio should retain the contents of
the ACL and its associated security material even when in
low power mode.

Reserving a block of nonce values can help when power is
removed completely. The radio chip can reserve, for exam-
ple, 256 nonce values at a time by writing the largest value
to the flash. After recovering from power loss, the radio
chip uses the next larger block of nonce values than what is
stored in the flash.

Expose Nonce for each Received Packet. The replay de-
tection mechanism is not workable when a cryptographic
key is between more than two nodes. The default ACL en-
try poses problems for replay detection, because it is used
for incoming packets from many sources but only has state
for a single counter in the ACL entry. This means that hard-
ware replay detection, as specified, cannot be meaningfully
be applied to the default ACL entry. The radio chip should
offer support for applications to implement their own replay
detection when they need the functionality of the default
ACL entry with replay detection.

To support application level replay detection when using
group keys, the radio should expose the replay counter value
when signaling a packet’s arrival to higher layers. Currently,
the incoming frame and key counter (recall their concate-
nation is the replay counter) are stripped from incoming
messages so that higher layer applications are not aware of
them. By exposing the replay counter value, applications
could manage their own counter high water marks per each
sender. This allows the recipient to implement replay pro-
tection when a key is shared among a group of nodes.

Eliminate Support for the AES-CTR Security Suite.
Since AES-CTR is an unauthenticated suite, and since unau-
thenticated suites have major weaknesses, we urge radio de-
signers to leave this suite unimplemented. Fortunately the

802.15.4 standard specifies that AES-CTR support is op-
tional, so leaving it unimplemented will not endanger stan-
dards compliance. Additionally, AES-CTR does not provide
sequential freshness, as the specification claims.

Removing support for the AES-CTR will prevent receiv-
ing any messages sent with the AES-CTR security suite,
which is perhaps undesirable when different vendors’ radios
need to communicate. As a compromise, we suggest that ra-
dio designers remove the capability for sending in the AES-
CTR suite and advise users not to use the suite.

Leaving this unimplemented will help prevent misuse and
attacks in the future.

4.3 Specification Writers

Warn against Dangerous ACL Configurations. The spec-
ification should require radios to warn applications when
they attempt to set up a dangerous ACL configuration. This
includes using two ACL entries with the same address, or
more worryingly two different addresses with the same key.
It is a policy decision whether to even allow the latter case
since it leads to confidentiality violations so easily.

Better Support for Keying Models. As noted in Sections 3.1.1
and 3.2.1, 802.15.4 is most suited to the pairwise key model.
We advocate changes in the specification to more easily
support different keying models. For example, decoupling
nonce storage (used for sending packets) from replay coun-
ters (used to receive packets) can better support the other
keying models we mentioned.

Remove support for the AES-CTR Suite. We recommend
that the specification writers eliminate the possibility of us-
ing the AES-CTR security suite. It is the only unauthen-
ticated mode of operation, leading to application protocol
level vulnerabilities. Additionally, replay protection is not
secure with this suite. We do not think that it should be a
part of the specification.

Support Authenticated Acknowledgments. We recommend
that specification writers add the option of authenticated
acknowledgments. These acknowledgments would only be
possible to generate by a node that shares a cryptographic
key with the sender.

For example, instead of including the 1 byte sequence
number from the original packet, the recipient can use a 4 or
8 byte MAC over a buffer comprised of the received packet
and its own address. The sender computes this MAC value
before sending the packet and saves it. The sender then
compares the stored value with the value in the acknowledg-
ment packet. It only accepts the acknowledgment as valid
if it receives the expected MAC value; an adversary cannot
compute the MAC value since it does not have access to
the data packet and the private cryptographic key that the
sender shared with the recipient.

Eliminate difference between Key and Frame Counter.
Finally, as a nomenclature suggestion, we would advocate
removing the distinction between the key and frame counter
and let the hardware manage the entire counter. If the user
wants to continue using the key after losing the nonce state,
they will need to store at least the key counter. However, to

effectively use the nonce space, the application should also
store the frame counter as well. Not saving the nonce state,
then, only permits 255 losses of power.

By eliminating the distinction between the key and frame
counter, no functionality is lost, while simplifying the speci-
fication and use of the security package: the application does
not need to include special logic to periodically increment
the key counter.

5. CONCLUSION
We have outlined a number of problems and pitfalls when

using the 802.15.4 specification. These problems can lead to
undetected security vulnerabilities in deployed applications.

Despite the presence of these defects, the 802.15.4 security
architecture is sound. It includes many well designed secu-
rity features and presents a step forward for embedded de-
vice wireless security. Proper use of the security API, with
an awareness of its subtleties, can lead to secure applica-
tions. We have suggested ways that application developers,
radio designers, and specification writers can work around
or remedy the problems we have described.

6. ACKNOWLEDGMENTS
Rob Johnson, Chris Karlof, and Joe Polastre provided

invaluable feedback on earlier drafts of this work.

7. REFERENCES
[1] Zigbee alliance. http://www.zigbee.org.

[2] Weak crc allows packet injection into ssh sessions
encrypted with block ciphers. Computer Emergency
Response Team (CERT), June 1998. VU 13877.

[3] Smart buildings admit their faults. Lab Notes:
Research from the College of Engineering, UC
Berkeley, http://www.coe.berkeley.edu/labnotes/
1101smartbuildings.html, November 2001.

[4] Weak crc allows last block of idea-encrypted ssh
packet to be changed without notice. Computer
Emergency Response Team (CERT), January 2001.
VU 315308.

[5] Weak crc allows rc4 encrypted ssh1 packets to be
modified without notice. Computer Emergency
Response Team (CERT), January 2001. VU 25309.

[6] Wireless medium access control and physical layer
specifications for low-rate wireless personal area
networks. IEEE Standard, 802.15.4-2003, May 2003.
ISBN 0-7381-3677-5.

[7] Atmel at86rf210 z-link transceiver data sheet.
http://www.atmel.com/dyn/resources/prod_

documents/doc5033.pdf, 2004.

[8] Chipcon cc2420 data sheet. http://www.chipcon.
com/files/CC2420_Data_Sheet_1_1.pdf, 2004.

[9] Motorola mc13192 datasheet.
http://e-www.motorola.com/files/rf_if/doc/

data_sheet/MC13192DS.pdf, 2004.

[10] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A
concrete security treatment of symmetric encryption:
Analysis of the DES modes of operation. In
Proceedings of 38th Annual Symposium on
Foundations of Computer Science (FOCS 97), 1997.

[11] Mihir Bellare, Joe Kilian, and Phillip Rogaway. The
Security of the Cipher Block Chaining Message

Authentication Code. Journal of Computer and
System Sciences, 61(3):362–399, December 2000.

[12] Steven M. Bellovin. Problem areas for the IP security
protocols. In Proceedings of the Sixth Usenix UNIX
Security Symposium, 1996.

[13] Nikita Borisov, Ian Goldberg, and David Wagner.
Intercepting mobile communications: The insecurity
of 802.11. In MOBICOM, 2001.

[14] G.L. Duckworth, D.C. Gilbert, and J.E. Barger.
Acoustic counter-sniper system. In SPIE International
Symposium on Enabling Technologies for Law
Enforcement and Security.

[15] V. Rijmen J. Daemen. The Block Cipher Rijndael. In
J.-J. Quisquater and B. Schneier, editors, Smart Card
Research and Applications, LNCS 1820, pages
288–296. Springer-Verlag, 2000.

[16] Alan Mainwaring, Joseph Polastre, Robert Szewczyk,
and David Culler. Wireless sensor networks for habitat
monitoring. In First ACM International Workshop on
Wireless Sensor Networks and Applications, 2002.

[17] Robert Szewczyk, Joseph Polastre, Alan Mainwaring,
and David Culler. Lessons from a sensor network
expedition. In First European Workshop on Wireless
Sensor Networks (EWSN ’04), January 2004.

[18] Matt Welsh, Dan Myung, Mark Gaynor, and Steve
Moulton. Resuscitation monitoring with a wireless
sensor network. Supplement to Circulation: Journal of
the American Heart Association, October 2003.

[19] D. Whiting, R. Housley, and N. Ferguson. Counter
with cbc-mac (ccm). RFC 3610, September 2003.

