
#1

Program analysis for security:
Making it scale

David Wagner
U.C. Berkeley

Work by Hao Chen, Karl Chen, Rob Johnson, Ben Schwarz,
and Jeremy Lin, Geoff Morrison, David Schultz, Jacob West

#2

• Wrapping up the MOPS project
• End-of-project experimental evaluation
• Lessons

• Verification of security properties via type inference
• Modular analysis
• Preliminary results: user/kernel, format strings

Outline

#3

• Pushdown model checking of C source code
• Security properties expressed as finite state automata

Refresher on MOPS

strncpy(d,s,n) other

d[n-1] = ’\0’;

Example: A simple FSA to detect misuse of strncpy().
Error state indicates possible failure to null-terminate d.

(Real property is much more complex: many ways to terminate;
pre-termination vs. post-termination; delayed termination.)

#4

• Canonical example of a TOCTTOU vulnerability:
if (access(pathname, R_OK) == 0)

 fd = open(pathname, O_RDONLY);
• Notice: not an atomic operation!

• Bug: Permissions may change between access() & open()
• Attacker can arrange for this to happen in an attack

TOCTTOU (time-of-check to time-of-use)

check(x) use(x)

check = { access, lstat, stat, readlink, statfs }
use = { chmod, open, remove, unlink, mount, link, mkdir, rmdir … }

#5

• Temporary file creation requires special care:
 1) unguessable filename; 2) safe permissions;
 3) file ops should use fd, not filename (TOCTTOU)

Insecure temporary file creation/use

mkstemp(x) fileop(x)

fileop(x) = { open(x), chmod(x), remove(x), unlink(x) … }

{ tmpnam(), tempnam(), mktemp(), tmpfile() }

#6

• Experiment: Analyze an entire Linux distribution
• Redhat 9, all C packages (732 pkgs, ~ 50 MLOC)
• Security analysis at an unprecedented scale

• Team of 4 manually examined 900+ warnings
• 1 grad student; 3 undergrads new to MOPS
• Exhaustive analysis of TOCTTOU, tmpfile, others;
 statistical sampling of strncpy
• Laborious: multiple person-months of effort

• Found 79 new security holes in Linux apps

MOPS in the large

79+1597Total
~ 5-10%(unknown)668strncpy

35%34108temporary files
5%41790TOCTTOU

Bug ratioReal bugsWarningsSecurity Property

#7

• Unexpectedly, most real bugs were local

• False alarm rate high. Doing better requires deeper
 modeling of OS/filesystem semantics.

• Path sensitivity only good for ≤ 2x improvement
• Many non-bugs were still very interesting
 (represented fragile assumptions about environment)

• Engineering for analysis at scale is highly non-trivial
• Good UI, explanation of errors is critical
• Build integration so important — and so hard — that
 we re-implemented it no less than four times

• But worth it: Large-scale experiments incredibly valuable

• Tech. transfer: techniques being adopted in commercial
 security code scanning tools

Lessons & surprises from the MOPS effort

#8

Bug #1: “zip”

d_exists = (lstat(d, &t) == 0);
if (d_exists) {
 /* respect existing soft and hard links! */
 if (t.st_nlink > 1 ||

(t.st_mode & S_IFMT) == S_IFLNK)
 copy = 1;
 else if (unlink(d))
 return ZE_CREAT;
}

... eventually writes new zipfile to d ...

Pathname from cmd line

#9

Bug #2: “ar”

exists = lstat (to, &s) == 0;
if (! exists ||
 (!S_ISLNK (s.st_mode) && s.st_nlink == 1)){
 ret = rename (from, to);
 if (ret == 0) {
 if (exists) {
 chmod (to, s.st_mode & 0777);
 if (chown (to, s.st_uid, s.st_gid) >= 0)
 chmod (to, s.st_mode & 07777);
 }
 }
}

#10

Bug #3
static void open_files() {
 int fd;
 create_file_names();
 if (input_file == 0) {
 input_file = fopen(input_file_name, "r");
 if (input_file == 0)
 open_error(input_file_name);
 fd = mkstemp(action_file_name);
 if (fd < 0 || (action_file =
 fdopen(fd, "w")) == NULL) {
 if (fd >= 0)
 close(fd);
 open_error(action_file_name);
 }
}
void open_error(char *f) {
 perror(f); unlink(action_file_name); exit(1);
}

#11

State of the art

• Research direction: verify absence of data-driven
 attacks, using type inference

Current research

Best-effort
bugfinding

Soundness

manual audits,
grep

Verify absence
of classes of bugs full program

verification

#12

State of the art

• Research direction: verify absence of data-driven
 attacks, using type inference

Best-effort
bugfinding

Soundness

manual audits,
grep

Verify absence
of classes of bugs full program

verification

Current focus

Current research

#13

• Q: Why is writing secure code hard?
 A: Secure programs must handle untrusted data
 securely, and must get it right every single time.

• Focus area: input validation
• Untrusted data should be sanitized before it is used
 at any trusting consumer
• Defends against data-driven attacks

• Strategy: Help programmers get it right “every time”
 with tool support

Input validation

#14

• Previous work has studied best-effort bugfinding
• Useful, but misses many bugs

• Challenge: verifying absence of (certain kinds of) bugs

• Verification has many benefits
• For developers: (1) prevents shipping insecure code;
 (2) integration into build & QA process fixes bugs
 early (like regression testing)
• For users: provides a security metric
• Also, in our experience, verification finds more bugs

Why focus on verification?

#15

• Experiment: Can CQual verify absence of u/k bugs?
• Sound whole-kernel analysis

Refresher: user/kernel security holes

• Found 10 exploitable holes in Linux 2.4.23 core
• Sparse: missed all 10 bugs; 7000 annotations; many FPs
• MECA: missed 6/8 bugs; 75 annotations; very few FPs
• Lesson: Soundness matters!

• Cost: 90 min. CPU time, 10GB RAM on 800MHz Itanium

• Conclusion: Memory usage is a key challenge for scalability

300K LoC
Size

287
Annotations

10
Bugs

532.4.23-default
WarningsLinux kernel

#16

• Reduce space complexity of CQual’s CFL reachability
 analysis, by generating summaries for each module:

for (f in source-files)
 read f; minimize CFL graph by rewrite rules; store graph
read all graphs, & link together; perform CFL reachability

New: Modular type inference

u v w u wu v w
() rewrites toor

u v w u wu v w
) rewrites toor

u v w u wu v w
((rewrites toor (

))

u v w u v w
[v ineligible for deletionor))(

If v has local scope, rewrite & delete v (unless ineligible — see below)

#17

• Experiment: Can CQual verify absence of fmt str bugs?
• Sound whole-program analysis

• Early indications: 1) polymorphic type inf + partial field
 sensitivity help enormously; 2) FPs are very rare.

Preliminary experiments: Format string holes

83k / 163k
33k / 136k
26k / 221k

21k / 73k
2k / 34k

24k / 126k
3k / 103k

LOC
.c / .i

0/0/none 0/0/none(4 others)
0/0/yes (×2) 0/0/noneapache
0/0/yes(×12) 0/0/nonesshd
0/0/yes(×2) 0/0/nonemars_nwe
1/ 2/yes(×1) 1/1/nonebftpd
1/ 5/yes 1/3/nonecfengine
1/12/yes(×6) 1/1/nonemuh

Bugs/Warnings/Manual Annotation?
Monomorphic Poly+field sens.Program

#18

• Goal: Build a Linux kernel verifiably free of u/k bugs
• Whole-kernel analysis (5 MLoC),
 using modular CFL reachability for space efficiency
• Re-write hard-to-verify code using cleaner idioms
• Hypothesis: tools can improve software security by
 gently steering developers toward safer coding styles

Work in progress

• Goal: Verify that Debian is free of format string bugs
• Whole-program analysis (3000 packages, 50+ MLoC),
 using modular analysis and parallelization
• Become part of Debian release/QA process?

#19

• Bugfinding is good. Verification is even better.

• Think big. Experiment bigger.

Concluding thoughts

Questions?

