Everything You Always Wanted To Know about Game Theory* *but were afraid to ask

Dan Garcia, UC Berkeley
David Ginat, Tel-Aviv University
Peter Henderson, Butler University

Know Your Audience...

- How many have used games pedagogically?
- What is your own comfort level with GT? (hands down = none, one hand = ok; two hands = you could be teaching this session)
\diamond Combinatorial (Berlekamp-ish)
\diamond Computational (AI, Brute-force solving)
\diamond Economic (Prisoner's dilemma, matrix games)

Why are games useful pedagogical tools?

- Vast resource of problems
\checkmark Easy to state
\checkmark Colorful, rich
\diamond Use in lecture or for projects
\diamond They can USE their projects when they're done
- Project Reuse -- just change
the games every year!
\checkmark Algorithms, User Interfaces Artificial Intelligence, Software Engineering
"Every game ever invented by mankind, is a way of making things hard for the fun of it!"
- John Ciardi

What is a combinatorial game?

- Two players (Left \& Right) alternating turns
- No chance, such as dice or shuffled cards
- Both players have perfect information
\checkmark No hidden information, as in Stratego \& Magic
- The game is finite - it must eventually end
- There are no draws or ties
- Normal Play: Last to move wins!

Combinatorial Game Theory The Big Picture

- Whose turn is not part of the game
- SUMS of games
\diamond You play games $\mathrm{G}_{1}+\mathrm{G}_{2}+\mathrm{G}_{3}+$
\diamond You decide which game is most important
\diamond You want the last move (in normal play)
\diamond Analogy: Eating with a friend, want the last bite

Classification of Games

Nim : The Impartial Game pt. I

- Rules:
\diamond Several heaps of beans
\checkmark On your turn, select a heap, and remove any positive number of $3 \mid 1$ beans from it, maybe all
- Goal

ㄱIIIII|
Δ Take the last bean
Nim: The Impartial Game pt. II

- Dan plays room in $(2,3,5,7)$ Nim
- Ask yourselves:
\diamond Query:
$3|\mid$
- First player win or lose?
sIIIII
\checkmark Feedback, theories?
ㄱIIIIII
- Every impartial game is equivalent to a (bogus) Nim heap

Nim: The Impartial Game pt. III

- Winning or losing?
\diamond Binary rep. of heaps
\diamond Nim Sum $==$ XOR \oplus
\checkmark Zero $==$ Losing, 2nd P win
- Winning move?
\diamond Find MSB in Nim Sum
\diamond Find heap w/1 in that place
\diamond Invert all heap's bits from sum to make sum zero

Domineering: A partisan game

- Rules (on your turn)
\diamond Place a domino on the board
$\boxminus \diamond$ Left places them North-South
\square - Right places them East-West
- Goal

■ Left (bLue)
\diamond Place the last domino

- Example game
- Query: Who wins here?

Domineering: A partisan game

What do we want to know about a particular game?

- What is the value of the game?
\diamond Who is ahead and by how much?
\diamond How big is the next move?
\diamond Does it matter who goes first?
- What is a winning / drawing strategy?
\diamond To know a game's value and winning strategy is to have solved the game
\diamond Can we easily summarize strategy?

Combinatorial Game Theory The Basics I-Game definition

- A game, G, between two players, Left and

Right, is defined as a pair of sets of games:
$\diamond \mathrm{G}=\left\{\mathrm{G}^{\mathrm{L}} \mid \mathrm{G}^{\mathrm{R}}\right\}$
$\diamond \mathrm{G}^{\mathrm{L}}$ is the typical Left option (i.e., a position Left can move to), similarly for Right.
$\diamond \mathrm{G}^{\mathrm{L}}$ need not have a unique value
\diamond Thus if $\mathrm{G}=\{a, b, c, \ldots \mid d, e, f, \ldots\}, \mathrm{G}^{\mathrm{L}}$ means a or b or c or \ldots and G^{R} means d or e or f or ...

Combinatorial Game Theory The Basics II - Examples: *

- The next simplest game, * ("Star"), born day 1
\diamond First player to move wins
$\diamond\{0 \mid 0\}=*$, this game is not a number, it's fuzzy!
\diamond Example of N, a next/first-player win, winning
\diamond Examples from games we've seen:

Combinatorial Game Theory The Basics II - Examples: 1

- Another simple game, 1, born day 1 \diamond Left wins no matter who starts
$\diamond\{0 \mid\}=1$, this game is a number
\diamond Called a Left win. Partisan games only.
\diamond Examples from games we've seen:

Combinatorial Game Theory The Basics II - Examples: -1

- Similarly, a game, -1 , born day 1
\diamond Right wins no matter who starts
$\diamond\{\mid 0\}=-1$, this game is a number.
\diamond Called a Right win. Partisan games only.
\diamond Examples from games we've seen:

Combinatorial Game Theory The Basics II - Examples

$\begin{aligned} & \text { - Calculate value for } \\ & \text { Domineering game G: } \\ & \mathrm{G}=\square=\{\square \mid \square\} \end{aligned}$	- Calculate value for Domineering game G: $\mathrm{G}=\square=\{\square, \square \mid \square, \square\}$
$=\{11-1\}$	$=\left\{\begin{array}{lll\|l} -1, & 0 & \mid & 1 \end{array}\right\}$
$= \pm 1$	$=\left\{\begin{array}{llll} 0 & 1 & 1 \end{array}\right\}$
confused with 0. 1st player wins.	$=\{.5\}$ (simplest \#)
\square Left \square Right	...this is a cold fractional value. Left wins regardless who starts.
SIGCSE SIGCSE 2003	EYAWTKACt"bwata

Combinatorial Game Theory The Basics III - Outcome classes

Combinatorial Game Theory The Basics V - Final thoughts

And now over to David for more Combinatorial examples...

Computational Game Theory (for non-normal play games)

- Large games
\diamond Can theorize strategies, build AI systems to play
\diamond Can study endgames, smaller version of original
- Examples: Quick Chess, 9x9 Go, 6×6 Checkers, etc.
- Small-to-medium games
\diamond Can have computer solve and teach us strategy
\diamond I wrote a system called GAMESMAN which I use in CSO (a SIGCSE 2002 Nifty Assignment)
SIGCSE SIGCSE 2003 EYAWTKAGT*bwata 25/39

Computational Game Theory

Computational Game Theory Tic-Tac-Toe Visualization

- Visualization of values
- Example with Misére
\diamond Outer rim is position
\diamond Next levels are values of moves to that position
\diamond Recursive image
\diamond Legend: \quad Lose
\square Tie

SIGCSE SIGCSE 2003 EYAWTKAGT*bwata 29/39

How do you build an Al opponent for large games?

- For each position, create Static Evaluator
- It returns a number: How much is a position better for Left?
\diamond (+ = good, $-=$ bad
- Run MINIMAX (or alpha-beta, or A*, or ...) to find best move

Computational Game Theory Tic-Tac-Toe

- Rules (on your turn):
\checkmark Place your X or O in an empty slot
- Goal
\checkmark Get 3-in-a-row first in any row/column/diag.
- Misére is tricky

Use of games in projects (CSO) Language: Scheme \& C

- Every semester.
\diamond New games chosen
\checkmark Students choose their own graphics \& rules (I.e., open-ended)

Final Presentation, bes project chosen, prizes

- Demonstrated at SIGCSE 2002 Nifty Assignments

And now over to Peter...

- Two player games
- More motivation
- Prisoner's Dilemma

Summary

- Games are wonderful pedagogic tools \diamond Rich, colorful, easy to state problems
\diamond Useful in lecture or for homework / projects
\diamond Can demonstrate so many CS concepts
- We've tried to give broad theoretical foundations \& provided some nuggets..

Resources

- www.cs.berkeley.edu/~ddgarcia/eyawtkagtbwata/
- www.cut-the-knot.org
- E. Berlekamp, J. Conway \& R. Guy: Winning Ways I \& II [1982]
- R. Bell and M. Cornelius:

Board Games around the World [1988]

- K. Binmore:

A Text on Game Theory [1992]

