Obernatives Aquilary 2 St. goris. Marlitin 0 ** 30. mone **0 × 2 7000: Q** * 3.mor O * * 3. 16. 5. *0 * of mone? *0 ** 6 mand * * O 8. mand H. 13. *** 0 Lo. mane. ¥ * * 0 ¥ 11. # * 0 .* 12. H. quera: 0 ٠ * 23. matu' *.0 * * 14 dane. *

January 7 - March 2, 1610

Real-Time Knowledge Extraction from Massive Time-Series Datastreams

> Josh Bloom Astronomy Department

jbloom@astro.berkeley.edu

CS267: Feb 16, 2010

Extragalactic Transient Universe: Explosive Systems

"Bad" News: Discoveries Swamp Followup Resources

Large Synoptic Survey Telescope (LSST): 1 Gb every 2 seconds

10⁶ supernovae/yr
10⁵ eclipsing systems
10⁷ asteroids...

light curves of 800 million sources every 3 days

Transients Classification Project

Berkeley Astronomy:

Dan Starr, Dovi Poznanski, Maxime Rischard, Nat Butler, Chris Klein, Rachel Kennedy, Justin Huggins, Adam Morgan, Adam Miller, JSB <u>San Francisco State University:</u>

John M. Brewer

Berkeley Statistics:

Noureddine El Karoui, John Rice

Berkeley CS:

Martin Wainwright, Masoud Nikravesh Lawrence Berkeley Lab:

Peter Nugent, Horst Simon Los Alamos Nat. Lab. / UC Santa Cruz:

Damian Eads

SCIDAC Scientific Discovery through Advanced Computing

Goal: Autonomous creation of new knowledge, that itself spurs further resource allocation & inquiry

- Generate **probabilistic statements** about the nature of events (ie. classification)
- Provide push/pull **access** to current & past events
- (bootstrap) Learning from feedback
- Operate at sufficient & scalable rates

Cataclysmic Variables

Considerable Complications with Time Series Data

• noisy, irregularly sampled

- spurious data
- telltale signature event may not have happened yet

class: microlensing

http://group-think.appspot.com

Buy a Group-Think Mug

Group-Think

Open Crowd Sourcing Platform for Research

10M PTF subtractions (1 month of data)

Major Challenge:

how do we use *domain knowledge* & *known ("labelled") instances* to create a classifier?

traditional fitting, machine learning, ...

Machine-Learning Approach to Classification

Data	Utility for Classification	
Time Series (e.g. color, brightness change, etc.)	 comparison to previously observed sources, & theoretical/ numerical models historical images: extend time baseline 	
Context (e.g. sky location, nearest galaxy type)	situational awareness: expectations of different classes	
less data regime context	time-series more data regime	

Feature Extraction: Homogenizing Heterogenous Data

"Features": real-number metrics that describe the time-domain characteristics & context of a source.

Deb & Singh+09

1. Parallelize the Learning Phase of Machine Learning

Problem:

frameworks like Weka (http://www.cs.waikato.ac.nz/ ml/weka/) are not natively parallel. We will need to burst out training requests on specific time/ observation vectors & classify quickly with the results

Solution:

build a parallel platform for weka (GridWeka, Weka-parallel etc. are out of date & probably not elegant)

- develop/adapt Mahout (<u>http://lucene.apache.org/</u> <u>mahout/</u>), ML for Hadoop

http://userweb.port.ac.uk/~khusainr/weka

1. Parallelize the Learning Phase of Machine Learning

Problem:

we have errors on our data (both training sets and instances) & we dont know how to deal with them

Sledgehammer Solution:

use a parallel platform to generate distribution of trained models & apply to distribution of instance-based sets

2. Build a General Crowdsourcing Platform (GroupThink2.0) - production scale site (GoogleAppEngine or elsewhere), allowing interconnection of projects

2. Build a General Crowdsourcing Platform (GroupThink2.0) - build innovative analytics plugins for projects; - could require grid/cloud-based analysis for on-the-fly results

Resources for CS 26	7, Spring 2010	Top Sites	Group Think: Group/Think	+
- <u>X</u> -	Group- Open Cro	-Think wd Sourcing Platform for Res	Buy a Group-Thi	nk Mug about home
Group-Think	sharp	re	lative impor image featu realbog	tance of res in us
	ellipt expert realbo	random newbie	show onlyshow only	newbies SuperThinkers
				© 2009 Group-Think

3. Parallelized Genetic Programming for Feature Discovery

Instead of handcoding "features" for ML, using GP (in parallelized environment) to **discover features** which give the best classification

4. Parallelized Visual Exploration Tool

allow the armchair astronomer to ask complex questions of the databases & visualize and interact with the results (100M+ rows)

sdss + simbad positions	Select query from history	•	•
select jsb_source.ptfname, oon.val, oan.node_name,sdss.be	stz,sdss.bestz_err,sdss.dered_r,jsb_cand.mag_r	ref, oar_ann.val <mark>as</mark> cat_	_offset,oa.val as
sass_offset from oar_node	source id		
join jsb_source on jsb_source.jsb_source_id = oar_node.jsb_	source_id		
join oar_ann on oar_ann.oar_noue_id = oar_noue.oar_noue_i			
Join Jsb_cand on Jsb_cand.ibi_id = Jsb_source.initiai_ibi_cand	1_10		
join sdss on sdss.jsb_source_id = jsb_source.jsb_source_id	and a second		
<pre>left join oar_ann as oa on ((oa.jsb_source_id = oar_node.jsb</pre>	_source_id) and oa.key = 'host_distance_arcsec	c_sdss')	
left join oar_node as oan on ((oan.jsb_source_id = oar_node	e.jsb_source_id) and oan.class_type = 'simbad')		
left join oar_ann as oon on oon.oar_node_id = oan.oar_node	e_id		
where oar_node.class_type = "sdss"			
and oar ann.key = "host distance arcsec cat"			

						Run	
PTFname	val	node_name	bestz	bestz_err	dered_r	mag_ref	
10bgh	NUL	NUL	0.1771	0.0108	17.3009	17.263	
10bgb	NUL	NUL	0.6984	0.1571	21.7929	18.156	
10bfg	NUL	NUI	0.075	0.0294	17.9426	18.076	
10bea	QSO	extragalactic	1.2264	0.0018	17.736	17.684	
10bea	NUI	qso	1.2264	0.0018	17.736	17.684	
10bdv	050	extragalactic	0.5409	0.0011	18,2925	18.302	

4. Parallelized Visual Exploration Tool

allow the armchair astronomer to ask complex questions of the databases & visualize and interact with the results

parallel database calls with embedded custom code
 (e.g. Hadoop SQL "hive")

Markets	Stock screener					
News	Exchange All exchanges	Sector All Sec				
Portfolios	Excitative An excitatives	Sector Ansec	iors ·			
Stock screener	Criteria Mi	Compan	Distribution	Max		
Google Domestic Trends	Market cap (?)	85M		2.06B	×	
Recent guotes	P/E ratio (?)	s	Internet and a second	44.98	×	
chg 3.18 -0.	5. Div yield (%) 🔊 5.	33	İ	99.89	×	
RS 45.99 +0. 25.07 -0.	7 52w price change (%) () -9	9.43 ÜMMMuhun	antilline	7657	×	
Z 28.93 -0.	Add criteria Reset to	default criteria				
<u>SL</u> 5.38 +0.	Companies: 1 - 20 out of 125	0				
CSN 0.350 -0.0 DY 37.48 +0.	7 Company name	Symbol	Market cap	P/E ratio	Div yield (%)	52w price change (%)
GQ 46.55 -0.	5 012 Smile Communications L	td. SMLC	645.43M	21.15	0.00	325.22
reate portfolio from ouol	1st Constitution Bancorp	FCCY	32.26M	17.39	0.00	17.23
	Ant Commention	SDOF	204 2014	10.14	4.40	22.40

Resources

1. dotastro.org

2. Harvard TimeSeries Center: <u>http://timemachine.iic.harvard.edu/</u>

3. "The Fourth Paradigm: Data-Intensive Scientific Discovery" <u>http://research.microsoft.com/en-us/collaboration/</u> <u>fourthparadigm/</u>

