
  
Performance Debugging 

Techniques For   
HPC Applications 

 

David Skinner 
deskinner@lbl.gov  
CS267 Feb 17 2015 



Today’s Topics 

•  Principles 
–  Topics in performance scalability 
–  Examples of areas where tools can help 

•  Practice 
–  Where to find tools  
–  Specifics to NERSC’s Hopper/Edison...  

Scope & Audience:  
The budding simulation scientist, I want to compute.  
The compiler/middleware dev, I want to code. 

 

 
2 



Overview of an HPC Facility  

Serving all of DOE 
Office of Science 

domain breadth 
range of scales 
   

Lots of users 
~6K active 
~500 logged in 
~450 projects  

Science driven 
sustained performance 
on real apps  

Architecture aware 
system procurements 
driven by workload 
needs 
  



Big Picture of  
Performance and Scalability 

4 



5 

Formulate 
Research 
Problem  

Algor-
ithms 

Debug Perf 
Debug 

jobs jobs jobs 
jobs  

Queue 
Wait 

Data? 

UQ 
VV 

Understand 
& Publish! 

Performance, more than a single number 

• Plan where to put effort 

• Optimization in one area 
can de-optimize another 

• Timings come from 
timers and also from your 
calendar, time spent 
coding 

• Sometimes a slower 
algorithm is simpler to 
verify correctness 
 
 
 
 
  
 



•  To your goals 
–  Time to solution, Tq+Twall … 

–  Your research agenda 
–  Efficient use of allocation 

  
•  To the  

–  application code 
–  input deck 
–  machine type/state 

Performance is Relative 

Suggestion:  
Focus on specific use cases 

as opposed to making  
everything  

perform well.  
Bottlenecks can shift. 

 



7 

•  Serial 
–  Leverage ILP on the processor 
–  Feed the pipelines 
–  Reuse data in cache 
–  Exploit data locality 

•  Parallel 
–  Exposing task level concurrency  
–  Minimizing latency effects 
–  Maximizing work vs. communication 

Specific Facets of Performance 



Registers 

Caches 

Local Memory 

Remote Memory 

Disk / Filesystem  

8 

Performance is Hierarchical 

instructions  & operands 

lines 

pages 

messages 

blocks, files 



…on to specifics about HPC tools 

Mostly at NERSC but fairly general 

9 



Registers 

Caches 

Local Memory 

Remote Memory 

Disk / Filesystem  

10 

Tools are Hierarchical 

PAPI 

valgrind 
Craypat 

IPM 
Tau 
... 

POSIX 

PMPI 



11 

•  Sampling 
–  Regularly interrupt the program and record 
where it is 
–  Build up a statistical profile 

•  Tracing / Instrumenting 
–  Insert hooks into program to record and time 
events 

•  Use Hardware Event Counters 
–  Special registers count events on processor 
–  E.g. floating point instructions 
–  Many possible events 
–  Only a few (~4 counters) 

HPC Perf Tool Mechanisms (the how part)  



Things HPC tools may ask you to do  

•  Modify your code with macros, API calls, timers 

•  Re-compile your code 

•  Transform your binary for profiling/tracing  

•  Run the transformed binary 
–  A data file is produced 

•  Interpret the results with another tool 

12 



Performance Tools @ NERSC 

•  Vendor Tools: 
–  CrayPat 

•  Community Tools: 
–  TAU (U. Oregon via ACTS) 
–  PAPI (Performance Application 
Programming Interface) 
–  gprof, many more,  

•  Center tools:  
–  Integrated Performance Monitoring 



What can HPC tools tell us? 

•  CPU and memory usage 
–  FLOP rate 
–  Memory high water mark 

•  OpenMP 
–  OMP overhead 
–  OMP scalability (finding right # threads)  

•  MPI 
–  Detecting load imbalance 
–  % wall time in communication 
–  Analyzing message sizes 



Tools can add overhead to code execution 
•  What level can you tolerate? 
 
Tools can add overhead to scientists  
•  What level can you tolerate? 

Scenarios: 
•  Debugging a code that is “slow” 
•  Detailed performance debugging 
•  Performance monitoring in production 

Using the right tool 



One quick tool example: IPM                                   

•  Integrated Performance Monitoring 
•  MPI profiling, hardware counter 

metrics, POSIX IO profiling 
•  IPM requires no code modification & 

no instrumented binary 
–  Only a “module load ipm” before running 

your program on systems that support 
dynamic libraries 

–  Else link with the IPM library 
•  IPM uses hooks already in the MPI 

library to intercept your MPI calls and 
wrap them with timers and counters 



IPM: Let’s See 

1) Do “module load ipm”, link with 
$IPM, then run normally 

2) Upon completion you get  
 
 
 
 
 

Maybe that’s enough. If so you’re done.  
Have a nice day  ☺ 

##IPM2v0.xx################################################## 
# 
# command   : ./fish -n 10000            
# start     : Tue Feb 08 11:05:21 2011   host      : nid06027         
# stop      : Tue Feb 08 11:08:19 2011   wallclock : 177.71 
# mpi_tasks : 25 on 2 nodes              %comm     : 1.62 
# mem [GB]  : 0.24                       gflop/sec : 5.06 
… 
 



IPM : IPM_PROFILE=full 

18 

!
# host   : s05601/006035314C00_AIX        mpi_tasks : 32 on 2 nodes!
# start  : 11/30/04/14:35:34              wallclock : 29.975184 sec!
# stop   : 11/30/04/14:36:00              %comm     : 27.72!
# gbytes : 6.65863e-01 total              gflop/sec : 2.33478e+00 total!
#                         [total]         <avg>           min           max!
# wallclock                  953.272       29.7897       29.6092       29.9752!
# user                        837.25       26.1641         25.71         26.92!
# system                        60.6       1.89375          1.52          2.59!
# mpi                        264.267       8.25834       7.73025       8.70985!
# %comm                                    27.7234       25.8873       29.3705!
# gflop/sec                  2.33478     0.0729619      0.072204     0.0745817!
# gbytes                    0.665863     0.0208082     0.0195503     0.0237541!
# PM_FPU0_CMPL           2.28827e+10   7.15084e+08   7.07373e+08   7.30171e+08!
# PM_FPU1_CMPL           1.70657e+10   5.33304e+08   5.28487e+08   5.42882e+08!
# PM_FPU_FMA             3.00371e+10    9.3866e+08   9.27762e+08   9.62547e+08!
# PM_INST_CMPL           2.78819e+11   8.71309e+09   8.20981e+09   9.21761e+09!
# PM_LD_CMPL             1.25478e+11   3.92118e+09   3.74541e+09   4.11658e+09!
# PM_ST_CMPL             7.45961e+10   2.33113e+09   2.21164e+09   2.46327e+09!
# PM_TLB_MISS            2.45894e+08   7.68418e+06   6.98733e+06   2.05724e+07!
# PM_CYC                  3.0575e+11   9.55467e+09   9.36585e+09   9.62227e+09!
#                           [time]       [calls]        <%mpi>      <%wall>!
# MPI_Send                   188.386        639616         71.29        19.76!
# MPI_Wait                   69.5032        639616         26.30         7.29!
# MPI_Irecv                  6.34936        639616          2.40         0.67!
# MPI_Barrier              0.0177442            32          0.01         0.00!
# MPI_Reduce              0.00540609            32          0.00         0.00!
# MPI_Comm_rank           0.00465156            32          0.00         0.00!
# MPI_Comm_size          0.000145341            32          0.00         0.00!



19 

•  There is a tradeoff between vendor-
specific and vendor neutral tools 

–  Each have their roles, vendor tools can 
often dive deeper 

•  Portable approaches allow apples-to-
apples comparisons 

–  Events, counters, metrics may be 
incomparable across vendors 

•  You can find printf most places 
–  Put a few timers in your code? 

Advice: Develop (some) portable approaches to 
performance  

printf? really? 
 Yes really.  



Performance Principles  
in HPC Tools  

 



Scaling: definitions 

•  Scaling studies involve changing the 
degree of parallelism.  
–  Will we be changing the problem also? 

•  Strong scaling 
–  Fixed problem size 

•  Weak scaling 
–   Problem size grows with additional 

resources 
•  Speed up = Ts/Tp(n) 
•  Efficiency = Ts/(n*Tp(n)) 

Be aware there are 
multiple  
definitions for these 
terms 



22                    
       LLNL-PRES-657110 Lawrence Livermore National Laboratory 

Strong vs. Weak Scalability (applications) 

� Strong Scaling  
• Overall problem size is fixed 
• Goal is to run same size problem 

faster 
• Perfect scaling means problem 

runs in 1/P time (compared to 
serial) 

� Weak Scaling 
• Problem size per processor is 

fixed 
• Goal is to run larger problem in 

same amount of time 
• Perfect scaling means a problem 

Px larger runs in same time as 
single processor run 
 

T   

p 

good 

poor 

poor 

N v p 

log T 

log p 
good 

Slope= 
-1 

Slope= 
0 

from Supercomputing 101, R. Nealy (good read)  



MPI Scalability: Point to Point  

Ferreira, Kurt B., et al, SC14  



MPI Scalability: Disseminate  

Ferreira, Kurt B., et al, SC14  



MPI Scalability: Synchronization  

Ferreira, Kurt B., et al, SC14  



Let’s look at a parallel algorithm.  

With a particular goal in mind, we systematically 
vary concurrency and/or problem size 

Example: 
 

How large a  3D (n^3)  
FFT can I efficiently  
run on 1024 cpus? 

 
Looks good? 

Watch out for variability: cross-job contention, OS jitter, perf weather 



Let’s look a little deeper…. 
 
 



Performance in a 3D box (Navier-Stokes) 

Simple stencil, 
simple grid 
 
Transpose/ FFT 
is key to wallclock 
performance 
 
 What if the 
problem size or 
core count 
change? 

One timestep, one node 
61% time in FFT 



The FFT(W) scalability landscape 

–  Algorithm 
complexity  or 
switching 

–  Communication 
protocol 
switching 

–  Inter-job 
contention 

–  ~bugs in vendor 
software 

 

à
 W

hoa! 

Why so bumpy? 

 

Don’t assume performance is smooth à scaling study 



30 

Scaling is not always so tricky 

Main loop in jacobi_omp.f90; ngrid=6144 and maxiter=20  



31 

Weak Scaling and Communication 



Load Imbalance : Pitfall 101 

MPI ranks sorted by total communication time  

Communication Time: 64 tasks show 200s, 960 tasks show 230s 



Load Balance : cartoon 

 
 
 

 
 

 

 

Universal App    Unbalanced: 

Balanced: 

Time saved by load balance 



Watch out for the little stuff.  

Even “trivial” MPI  
(or any function call) 

can add up 
 

Where does your code  
spend time? 

 
   



Communication Topology 
Where are bottlenecks in the code & machine?  

Node Boundaries, P2P,  Collective 



36                    
       LLNL-PRES-657110 Lawrence Livermore National Laboratory 

Interconnect Networks – Tying it all Together 

Dragonfly 

nD Hypercube 

Fat Tree 

nD Torus 

• Hierarchical design 
• All-to-all connectivity 

between groups 

• Increases available 
bandwidth higher 
levels in the switch 
tree 

• Tries to neutralize 
effect of hop counts 

• Number of outgoing 
ports scales with the 
log of the machine size 

• Difficult to scale out 

• Nearest neighbor 
• Torus == “wrap around” 
• BlueGene/Q is a 5D torus 

Programmer Challenges: 
• Job layout 
• Topology mapping 
• Contention/performance 
• DOE pushes boundaries of 

scaling 
 
Research Approaches: 
• Network simulation 
• Design to match application 

needs 
• DesignForward 
 
Future: 
• Hierarchical combinations of 

 these.  
• Node Network Interface  

(NIC) moving  onto Processor  

 

20 



Communication Topology 
As maps of data movement 

MILC 

PARATEC IMPACT-T CAM 

MAESTRO GTC 

37 



Cactus Communication PDE Solvers on  

Block Structured Grids  



PARATEC Communication 

3D FFT 



Time to solution? 
 

Don’t forget the batch 
queue.  

 
 

40 

not all performance is inside the app.  

Formulate 
Research 
Problem  

Algor-
ithms 

Debug Perf 
Debug 

jobs jobs 
jobs jobs  

Queue 
Wait 

Data? 

UQ 
VV 

Understand 
& Publish! 



Consider your 
schedule 

 
•  Charge factor 

regular vs. low 
•  Scavenger queues 

when you can tolerate 
interruption  

•  Xfer queues 
Downshift concurrency  

 

Consider the queue 
constraints 

•  Run limit : How 
many running at once  

•  Queue limit : How 
many queued  

•  Wall limit  
Soft (can you checkpoint?) 
Hard (game over)   

A few notes on queue optimization 

BTW, jobs can submit other jobs 



Marshalling your own workflow  

•  Lots of choices in general 
–  PBS, Hadoop, CondorG, MySGE 

•  On hopper it’s easy 

42 

#PBS -l mppwidth=4096 
aprun –n 512 ./cmd & 
aprun –n 512 ./cmd & 
… 
aprun –n 512 ./cmd & 
 
wait 
 

#PBS -l mppwidth=4096 
while(work_left) { 
 if(nodes_avail) { 
 aprun –n X next_job & 
 } 
wait 
} 
 



Scientific Workflows More Generally 

•  Tigres: Design templates 
for scientific workflows 

–  Explicitly support 
Sequence, Parallel, Split, 
Merge 

•  Fireworks: High 
Throughput job scheduler 

–  Runs on HPC systems 
 

"LightSrc" 
Domain 
templates

Base Tigres 
templates

Scale up

Application 
"LightSrc-1"

Application 
"LightSrc-2"

Create and
Debug

Share

Create and
Debug

L. Ramakrishnan, V. Hendrix,  D. Gunter, 
G.Pastorello, R. Rodriguez, A. Essari , D. Agarwal 

                      Split 

                   Sequence 
Task2 

Task
1 

Task4
5 ... 

Task3 

Task4
0 

Ask about NERSC DAS 



44 

Mining Databases for Predicting New Materials


/"12"/"

Performance 
is  

Time-to-knowledge  

tstart tstop 



Contacts: 
consult@nersc.gov 
deskinner@lbl.gov  
 
 45 

Thanks! 
 

Formulate 
Research 
Problem  

algor-
ithms 

Debug Perf 
Debug 

jobs jobs 
jobs jobs  

Queue 
Wait 

Data? 

UQ 
VV 

Understand 
& Publish! 


