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“Big Data” Changes Everything...What about
Science?
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Scientific Workflow envisioned KATHY YELICK'S

a science
odyssey

Science

o5 ge & Compute

Gateway =

Life of a Scientist in 2031 : ; it ) | ARKE
* No personal/departmental computers r‘m w »Wm
+ Users don’t login to HPC Facilities
* Travel replaced by telepresence
* Lecturers teach millions of students

Extreme Data Science

* Theorems proven by online communities The scientific process is poised to undergo
* Laboratory work is outsourced a radical transformation based on the ability
- Experimental facilities are used remotely to access, analyze, simulate and combine
+ All scientific data is (eventually) open large and complex data sets.

* Big science and team science democratized

NERSC Policy Board 2




Cloud Computing and Midrange March 2, 2010

Goal: To enable new modes of scientific

discovery

Growth in
Data

DOE/SC has a
particular challenge
due to their user
facilities and
technology trends

New
Analysis

Methods

Scientific
Discovery

New math, stat, CS
algorithms are both
necessary and
enabling

New
Science
Processes

Multi-modal
analysis; re-
analysis; pose and
validate models

Data in Astrophysics: The Challenge is Systematics

Graphica
I models

Machine - = q [
Learning | 3| % | ¢

" New simulation models
and AMR code (Nyx)

Crowd

Example: Astrophysicists
g sourced

discover early nearby

Filtered

GB per night
- Manually
analyzed

Energy Genomics Grand Challenge

Seconds

Plant genome: former grand challenge to assemble wheat
Next: metagenome assembly, currently limited by memory (and time)

All metagenomes
16384 [ overall time 100
kmer analysis - LJ
8192 contig 25;‘53?&:23 e 90 o ® # Soil
4006 |- ideal overall time s 80 W Marine
2048 P 270 - Groundwater
o2s e £ 60 ® Bioreactor
----------- .
512 [ — & 40 .
o @ 30
128 e =20 - ¢
----------- 10 EYNIT 34
64 Lad
""""""""""" T 0 .“"" ! “ '
32960 1920 3840 7680 15360 0 10 20 30
Number of Cores
Gbp sequenced
SMP algorithms fail at ~100GB + FPGA refactored code is better

Throwing data away to process atalll * Still fails at ~850GB
Distributed memory assembly needed
Essential to understanding microbial dark-mater and their impacts

Filter and Pattern Match with Machine Learning

NERSC Policy Board

TECA Toolkit

- Automatic detection of

cyclones, atmospheric rivers,
and more

- Single data setis 100 TB

- Scalable analysis (80K cores)
9 years > 1 hour

Ongoing work

- Pattern detection using
machine learning

Mantissa Project, Prabhat
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Re-Use and Re-Analyze Previously

Filtering, De-Noise and Curating Data Collected Data

* Materials Genome Initiative

— Materials Project: 4500 users 18
months!

— “World-Changing Idea of 2013”

AmeriFlux & FLUXNET: 750
users access carbon Materials
sensor data from 960 A ) ) . Data
carbon flux data years rno I:-’enz_las and Robert Wllson_dlscover :

Cosmic Microwave Background in 19

Today's batteries

Interesting
materials

Brain Imaging: Multi-Modal Analysis and Data
Fusion

Analyze brain using multiple modalities and scales

cognitive ability
B
I
>
_—

Science Data is Big (and Growing)

t time

« Detection of regions across community
- 100 individuals takes 18 days right now
* Graph to classify disease
- Features: biomarkers, image modalities
- Use hierarchy of regions from Pearson distance

NERSC Policy Board 4
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“Big Data” Challenges in Science
Volume, velocity, variety, and veracity

March 2, 2010

Biology

Volume: Petabytes now;
computation-limited

Variety: multi-modal
analysis on bioimages

High Energy Physics
« Volume: 3-5x in 5 years

adapts to intended
observation

Light Sources

A Moore’s Law
.¥ - Veracity: noisy data for
3D reconstruction

« Velocity: real-time filtering

A . Velocity: CCDs outpacing

Cosmology / Astronomy:

* Volume: 1000x increase
every 15 years

'+ Variety: combine data
sources for accuracy

Materials:

Variety: multiple models and
experimental data

Veracity: quality and
resolution of simulations

Climate
» Volume: Hundreds of

4

exabytes by 2020
« Veracity: Reanalysis of 100-
year-old sparse data

Data Growth is Outpacing Computing
Growth
2 1
: e S
16
% 14 ] —Detector /
-.2_. Sequencer /
< 2 —Processor /
©
ﬁ 10 ~——Memory
2 /
5 e
. /.
© L
(=]
3 ———
g 2 - —_—
g
o 2010 2011 2012 2013 2014 2015

data-
producing
sources
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Cosmology Light sources Genomics Energy Technologies

Create a “superfacility” that
integrates DOE Experimental

Make science facilities with computing centers

easler, more and networking
reproducible,

and

democratic

ESnet

ENERGY SCIENCES NETWORK

Data Demos 2014
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A SuperFacility Demo for Light Sources /
Photovoltaic Printing

March 2, 2010

On-the-fly X
Transfer to NERSC calibration, Real-time l
. orocessing - access via web portal .

."I SD- 6"*.

Combining: -
GIXSGUI, dpdak + ... A

-
Analysis and modeling on NERSC supercomputers:

HipGISAXS simulation HipRMC fitting

Printing demo experiments created
36,000 frames in 3 days (1/2 year on TITAN)

Autotuning

Advanced Computing: Not just for Simulation

; ; Comprehensive

Test ban treaty

y Petascale Computing for Small
Computing Number of Hero Simulations

S22-

Science Needs Computing for Both Experiments (Data)
and Theory (Modeling and Simulation)

Commercial “Big Data”
Growth in Sequencers,
CCDs, etc.

Data Analysis Simulation
Computing foundation includes

research (math/stat and CS) and . Future Performance from
facilities (data and compute) Computlng Exascale Technology

23

Myth: Supercomputers are Expensive,
Clouds are Cheap

NERSC Policy Board

20
Component Annual Cost 1 ® Commercial Cloud
(rough estimate) I
Cloud cost on apps ~$900M @& 2 12
n
(ave 5x slowdown) § o 8
Cloud cost $181M S & 4]
(1.38B core hours) HE
NERSC Budget g57m @ 0
&
NERSC HPC HW ~$20M <

To buy raw NERSC core hours costs more than NERSC budget

« Even ignoring the measured performance slowdown

* Doesn’t include consulting staff, account management,
licenses, bandwidth, software support: ~2/3 of NERSC’s Budget

Why?

* NERSC runs at higher utilization ( > 90%) and no profit.

« NERSC cost/core hours dropped 10x (1000%) from 2007 to 2011,

while Amazon pricing dropped 15% in the same period
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. Programming Challenge? Science Problems
Data Analytics: Case for PGAS Fit Across the “Irregularity” Spectrum

More Irregular

Massive Nearest All-to-All Random
Independent Neighbor Simulations access, large
Jobs for Simulations data Analysis
: : : Analysis and
Message Passing Programming | Global Address Space Programming Simulations
Divide up domain in pieces Each start computing
Compute one piece Grab whatever / whenever

Send/Receive data from others
... often they fit in multiple categories

MPI, and many libraries UPC, CAF, X10, Chapel, GlobalArrays

25 26

Computational Science has Moved through
Difficult Technology Transitions
1.E+18 — e
Application Performance Growth ¢ _ | .,
1.E+17 (Gordon Bell Prizes) '
1.E+16
1.E+15
n 1.E+14
(\01 1.E+13 ettt @7
What about Exascale? T s - s PO
1.E+11 i_uamgl “killer cellphones™?
1.E+10 ” The rest of the
1.E+09 | Attack of the =~ computing w_orld
1.E+0g LI “killer micros” gets parallelism 4
1990 1995 2000 2005 2010 2015 2020
© .

NERSC Policy Board
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Energy Efficient Computing is Key “Exascale” Challenges Affect
to Performance Growth Performance Growth at all Scales
At $1M per _MW’ energy costs are substantial 1) Power is the primary constraint |+ These are all at
* 1petaflop in 2010 used 3 MW _ _ 2) Parallelism (1000x today) the node levels
« 1 (:;Daflop in 2018 would use 100+ MW with “Moore’s Law” scaling 3) Processor architecture will change * Happening NOW!
4) Data movement dominates .+ Emerging
- ; Programming
s usual 5) Memory growth will not keep up .
g 100 scaling . ) solutions are
g 6) Progr.ammlng models will change _ Hard to use
- N N R goal 7) Algorithms must adapt — Non-portable
A il I R 8) 1/0 performance will not keep up - — Non-durable
/é"" 9) Resilience will be critical at this
. scale
2005 2010 2015 2020 10) Interconnect bisection must scale

This problem doesn’t change if we were to build 1000 1-Petaflop
machines instead of 1 Exasflop machine. It affects every university
~department cluster and cloud data center.
29

30

Challenge: New Processor Designs are

Node Programming, Heterogeneity
Needed to Save Energy

» Case for heterogeneity . ' EIIIIIE
ell phone processor
— Many small cores and SIMD for (0.1 Watt, 4 Gfiop/s) E E

energy efficiency; few CPUs for OS / speed

_ . H Server processor
Dark silicon = too many transistors to power (100 Watts, 50 Giopra)

=

Cell phone processor
(0.1 Watt, 4 Gflop/s)

* Local store, explicitly managed memory
— More efficient (get only what you need) and simpler hardware
» Split memory between CPU and “Accelerators”
B - — Driven by market history and simplicity, but may not last
« Server processors have been designed for — Communication: The bus is a significant bottleneck.

Server processor .
(100 Watts, 50 Gflop/s)

- g mel

performance, not energy » Co-Processor interface between CPU and Accelerator
— Graphics processors are 10-100x more efficient — Default is on CPU, only run “parallel” code in limited regions
— Embedded processors are 100-1000x ~ Why are the minority CPUs in charge?

i ?
_ Need manycore chips with thousands of cores Is there a programming model that works for everyone?

31

32
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Challenge: Memory is Not Keeping Pace

Technology trends against a constant or increasing memory per core
* Memory density is doubling every three years; processor logic is every two
« Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

. § 100 Cost of Computation vs. Memory
Evolution of memory density
B 10 . Source: David Turek, IBM
o ]
s
2 1000 o 2X3yrs
S o
3 —
2 = —a—
=z 100 0.1 —
4 10 IEVIERER \
= & Source: IBM 001 ~
1
0.001
1985 1990 1985 2000 2005 2010 2015 |, % % 2 2
Year mass production starts ®  Dollars/Mbyte A DollarsMFLOP

The cost to sense, collect, generate and calculate data is declining
much faster than the cost to access, manage and store it

Question: Can you double concurrency without doubling memory?

33

Emerging Exascale Node Architecture

Memory Stacks on Package

Low Capacity, High Bandwidth

Fat Core
Latency
Optimized = 5

. Memorv
Thin Cores DRAM/DIMMS

(tiny, simple, massively parallel)
Throughput-Optimized High Capacity Low
Bandwidth

- & NVRAM: Burst

Buffers / rack-
local storage

Based on slide from J. Shalf

“NIC” on Board 35
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The Memory Wall Swamp

Multicore didn’t cause this, but ke

-

34

p the bandwidth gap growing.

Node Architecture Problems

* Problems
— Many slow cores with less memory per core

— Wide SIMD (wide enough you can’t ignore it)

Non-problem

— Locality issues (NUMA) No caching == o
problem (trivially

* Possible problems
coherent)
=Limitedcache cohereiice? |+ PGAS hardware
— Fat cores (heterogeneity)? | =200 dontcache

remote values
— Fat cores in charge « MPI or/accelerator

PGAS between

(co-processor [ accelerator)| domains will be fine

— Scratchpad (local store) memory?

36
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: Titanium Arrays in UPC++
Node Pro gramming for Hom ogenous Cores Amir Kamil (previously Phil Colella, Paul Hilf¥ger, Alex Aiken, Susan Graham, Kathy

Yelick and many others)
Requirements: o + Key features of Titanium arrays :
» Hardware exposes fast local accesses (minimize coherence) — Generality: indices may start/end and any point
. LOV\( level SOﬂV_Vare to control data layout and work — Domain calculus allow for slicing, subarray, transpose
assignment (pin to core) and other operations without data copies
+ Algorithms that minimize data movement and overlap « Use domain calculus to identify ghosts and

Approach Argument against iterate:

foreach (p in gridA.shrink(1l) .domain()) ...
Flat MPI Need different within/between node algorithms . . . .
+ Array copies automatically work on intersection

gridB.copy (gridA.shrink (1)) ;

intersection (copied area)
“restricted” (non-ghost) //
cells D N 4 Useful in grid
computations
e including AMR
ghost cells grida  grids 9 h

37

i i i ++ . J—— .
~ Titanium Arrays in UPC TiDA: Tiling as a Durable Abstraction
Amir Kamil (previously Phil Colella, Paul Hilfinger, Alex Aiken, Susan Graham, Didem Unat, Gy Chan, Weiqun Zhang, John Bell, John Shalf
Kathy. Yelick and many others) ' : : '
14.00 14.00
= 1200 g — ‘_1200 . - ; ;x::;:—le} Sleno, tlo(2), thi(2), i, j
E 1000 = ) . - ~:——won |__~#=Fine-Grained =*Array i I ﬁl i double precision, pointer :: ptrA(:,:)
E so0 —f _x_:r:;Gramed — & s | =Bulk ~=MPI B ] ] wv/ H 5 [do tileno=1, ntiles(tilearr)
= 6
R Y A S Ty ! o e
2 il — i TR
0.00 = 12 do j=tlo(2),thi(2] TeTement Toop 1
No. of Processes (x 8 OpenMP) No. of Processes (x 1 OpenMP) ogical tiles solated tiles ontiguous tiles :2 endp;;A(x,n = do_something(i,j)
17 end do
ndarray<double, 3, global> bArray = 15 end do rend of tite loop
bArrays[PT (level, id, dir, i, j, k)1; - R .
bArray.async_copy (aArrays[PT (level, id, dir, i, j, k)1); » Tiling: Add loop nests so inner ones fit in cache,
+ In the UPC++ array library, the same concepts are supported e.g., 3-loop matmul - 6-loop
+ The syntax (without compiler support) is not as elegant + TiDA: Add tile shape/size information to each array
. Thekpcirformall(nc(ebislkc)loszio tl\l"ll:tl of a version that explicitly + Optionally change the data layout to match
packs/unpacks (bulk) and to .
Lo . Can also add ghost regions as needed
The flat (no OpenMP) version is faster than hybrid 9 9
39 40

NERSC Policy Board 10




Cloud Computing and Midrange

Memory Technology (Sandia, Micron, Columbia LBNL)
Understand the Potential of Intelligent, Stacked DRAM Technology

+ Data movement are projected to account for
over 75% of power on an exascale platform
Work to reduce that via

— Optical interconnect(s)
— 3D stacking (logic + memory + optics)
— New memory protocols "3

— Research Questions
— What is the performance of
stacked memory (power & speed
— How much intelligence to put into logic layer
< Atomics, gather/scatter, checksums, full-processor-in-
memory
— What is the memory consistency model

How to program it ?

Co-Design in the Green Flash Project

+ Demonstrated during SC ‘09 EAEHTOm)
* CSU atmospheric model ported to ENIEN .
low-power core design =, E
— Dual Core Tensilica processors running [

atmospheric model at 25MHz
— MPI Routines ported to custom Tensilica
Interconnect Icosahedral mesh

+ Memory and processor Stats for algorithm scaling
available for performance analysis1

* Emulation performance advantage

— 250x Speedup over merely function
software simulator

» Actual code running - not
representative benchmark

John Shalf, Dave Donofrio, Lenny Oliker, Michael
ner, Marghoob Mohiyuddin, Shoaib Kamil

43
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Co-Design architectures for Science

Keeping in mind market pressures

Enabling Manycore Architecture Research

Chisel Design Description |

=

C++ code | FPGA Verilog | ASIC Verllog |

e

¢ ¥ i - J FPGA |
ISIS builds on Berkeley RAMP project. Ramp C++ Simulator | Emulation GDS Layout |

Gold shown here which models 64 cores of
SPARC v8 with shared memory on $750 ISIS Hardware description language based on Scala,
board. Has hardware FPU, MMU; boots OS. modern OO/Functional language that compiles to JVM.

« ISIS: rapid, accurate FPGA emulation of manycore chips
* Spans VLSI design and simulation and includes chip fab

— Trains students in real design trade-offs, power and area costs
* Mapping RTL to FPGAs for algorithm/software co-design

— 100x faster than software simulators and more accurate
Pls: John Wawrzynek and Krste Asanovic, UC Berkeley
44
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Co-Design Analysis for Combustion

Estimated Performance Improvements

5
4.5

4 N

sl o +Fast NIC (400 GB/s)

& 3+ —1 — —— —— ——t+Fastexp

°

I EBEE S B S B _di

-E +Fast-div
o B s = o

e

+Fast memory (4 TB/s)
51 . - || - . +Loop fusion

1+ —

+Cache blocking
0.5 |

o LB B B B B “Baseline
9 21 53 71 107
Number of Species

+ Hardware and software need to change together,

Let computers, not humans, tune for

modern architectures code

But beware of trusting compilers

March 2, 2010

Autotuning: Write Code Generators

Approaches to Autotuning

* Autotuners are code generators plus search

» Avoids two unsolved compiler problems: dependence
analysis and accurate performance models

* Popular in libraries: Atlas, FFTW, OSKI,...

[ Xeon X5550 (Nehalem) | [_NVIDIA C2050 (Fermi) |
10241 1024 ] =
5121 Peak compute o Q
2561 56 i -t

D128 ©128 ‘
g 5

S 64 Ses )

O 324 o

16 16

&

44 4

— T
Uy Ui Us Uy Yy 12 4 8 16 32 Ygp i Uy Yy N, 1 2 4 8 16 32
Algorithmic intensity: Flops/Word Algorithmic intensity: Flops/Word

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,... 47

.:> = ’

How do we produce all of these (correct) versions?

» Using scripts (Python, perl, C,..)

» Transform high level representation (FFTW, Spiral)
+ Compiling a domain-specific language (D-TEC)

» Compiling a general-purpose language (X-Tune)

* Dynamic compilation of a domain-specific (SEJITS)

48

NERSC Policy Board
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Target Higher Level Loops

Harder than inner loops....

March 2, 2010

Iterative Solves are Dominated by Sparse
Matrix-Vector Multlply (nearest neighbor on graph)

g
’

For implicit memory
..... = management (caches)
uses a TSP algorithm
for layout

Joint work with Jim Demmel, Mark
Hoemman, Marghoob Mohiyuddin

* Can do better: 1 matrix read, multiple multiplies
« Serial: O(1) moves of data moves vs. O(k)
« Parallel: O(log p) messages vs. O(k log p)

Bigger Kernel (Akx) Runs at Faster
Speed than Simpler (Ax)

. Ak
|- Speedups on Intel Clovertown (8 core)| gy Sp)liAV
4%

o o N

w

Performance (GFlops/s)

o

cant.rsa
cfd2.rsa
pwtk.rsa

shipsec1.rsa
gearbox.psa
mc2depi.rua

xenon2.rua

bmw7st_1.rsa

5 T
[=4 c
2 ]
7] [7]
2 2
a B
n [}
o el
- o

marca_tcomm.rua

Hlim Demmel, Mark Hoemmen, Margh@ob Mohiyuddin, Ka-;‘hy Yelick

Avoid Synchronization

The end of bulk-synchronous
programming?

NERSC Policy Board
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Reasons to avoid synchronization

* Processors do not run at the same speed
— Never did, due to caches
— Power / temperature management makes this worse

3 B Patch Hyperbolic Integration Time
TurboBoost in Core i7-920XM Cray XT4

L L L s s
3000 5000 6000 7000 5000

T006 3000 3000
Processor

53

DAG Scheduling Outperforms Bulk-
Synchronous Style

PLASMA on shared memory  UPC on partitioned memory

Cholesky -~ octa-socket, dual-core Opteron

7O insMa & ACWL BLAS UPC vs.
TZACML Cholesky

60/{ — MKL Cholesky ScalLAPACK
—UAPACK & ACML BLAS

50 B ScalLAPACK

80

2 40
£ 60 4
3 30

2 /—/\/—/\ 409

m UPC

GFlops

20 +

100 2000 3000 4000 5000 6000 7000 8000 9000 10000, o4
problem size

UPC LU factorization code adds cooperative (non-
preemptive) threads for latency hiding
— New problem in partitioned memory: allocator deadlock
— Can run on of memory locally due tounlucky execution order

PLASMA by Dongarra et al; UPC LU joint with
Parray Husbands 54

Event Driven LU in UPC

» Assignment of work is static; schedule is dynamic

* Ordering needs to be imposed on the schedule
— Critical path operation: Panel Factorization

* General issue: dynamic scheduling in partitioned memory
— Can deadlock in memory allocation
— “memory constrained” lookahead

IOl |||
0 oo O
L some edges omitted

55
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One-sided communication is a

PGAS is a programming model

*pl = *p2 + 1;
A[i] = B[i];

upc_memput (A,B, 64) ;

This Direct Memory Access (DMA) also appears in:
» Fast one-sided network communication (RDMA, Remote DMA)
* Move data to/from accelerators

* Move data to/from I/O system (Flash, disks,..)

» Movement of data in/out of local-store (scratchpad) memory

56

mechanism that works everywhere

14
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Resilience

Is the sky really falling?

Resilience Approaches

« Containment Domains (CDs) for trees Root CD
— Flexible resilience techniques (mechanism not policy)
— Each CD provides own recovery mechanism
— Analytical model: 90%+ efficiency at 2 EF
vs. 0% for conventional checkpointing

« Berkeley Lab Checkpoint Restart
— BLCR s a system-level Checkpoint/Restart

Preserve

« Job state written to filesystem or Y; Domain
works on most HPC apps | Sy}
— Checkpoint/Restart can be used for roll- :::, .
back recovery ’
Child CD

« acourse-grained approach to resilience
« BLCR also enables use for job migration
among compute nodes
— Requires support from the MPI
implementation

_* Impact: part of standard Linux

CD PIs: Mattan Erez (+Eric Roman for PGAS); GVR PI: Andrew Chien
59

Preserve data on domain start
Compute (domain body)
Detect faults before commit
Recover from detected errors

NERSC Policy Board
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A fatal exception BE has occurred at 8828:CBB11E36 in UXD UMM(B1) +
BBB1BE36. The current application will be terminated.

* Press any key to termiwate the curpent apf cation.
* Press CTRL+ALT+DEL again cxesta 10U anuta You will
lose any unsaved informaticy Reliability going down for
large-scale systems, but
Pres® also to get more energy
efficiency for small
systems

What is Wrong with Current Operating
Systems?

Tesselation: Joint UCB/LBNL to rethink Manycore OSs

Assumes limited number of CPUs that must be shared
* Old CW: time-multiplexing

« Tesselation: spatial partitioning

Greedy allocation of finite 1/0 device interfaces
« Old CW: First process to acquire lock gets device

« Tesselation: QoS management for symmetric device access| @ BtsmiEsAn

ti

Fault Isolation 000
* Old CW: CPU failure = Kernel Panic (increasingly frequent
* Tesselation: CPU failure = Partition Restart (w/ drivers)
Inter-Processor Communication
* 0ld CW: invoked for ANY interprocessor communication
« Tesselation: direct HW access mediated by hypervisor
Impact:

« Convex optimization major thrust for Microsoft Research
Launching into new OS/R CFP with Sandia National Lab

15
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What does this mean for NERSC?

March 2, 2010

Keeping up with user needs will be a challenge

Computing at NERSC

10000

1000

Essentially, all models are wrong, but

some are useful.

-- George E. Box, Statistician

= RS
© Needs from <
g 100 Requirements
E. Reviews } Nersc Rarge,
g X g
z
E 1 e \\ie‘e‘; NERSC 6+7
=] P
WO
g 0.1
o
==
0.01
0.001
2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022
Year
-62-
NERSC Workload
> 5000 2013 Breakdown of
L] . .
users Allocations by Science Area
« >700 projects Nuclear Physics.
. taati Math cs
> 2000 publications per year - |

Combustion
2 Petascale systems today / Lifesciences
— NERSC-7: Hopper
— NERSC-8: Edison
Moving data workload

The workload is diverse and Climate
increasingly complex due to
science workflows, integration of
data, and demand for higher
resolution and scale Chemistry

-64-

NERSC Policy Board
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Edison, a Cray XC-30 plays a key role in

The Cori System Scheduled for 2016

NERSC’s strategy

*NERSC assessed that our broad workload was not ready for GPUs
and procured Edison, with Ivy Bridge Intel CPUs

*Workloads that have difficulty moving to NERSC-8 can still work
productively on Edison while the code is adapted

+In 2016 Edison will likely provide ~20% of NERSC’s cycles

-65-

Cori will support the broad [ L
Office of Science research EREr
community transition to
energy efficient architectures

Cray XC system with > 9300 Intel KNL nodes

— Self-hosted (not an accelerator) manycore processor
with over 60 cores per node

— 32 Flops / cycle (AVX 512 SIMD)
— On-package high-bandwidth memory (scratchpad)
— Scheduled for 2016 installation
“Data Partition” with ~2000 Haswell nodes (2015)
— NVRAM Burst Buffer for data intensive applications
— 28 PB of disk, 432 GB/sec I/0 bandwidth
— Scheduling for complex workflows
-66 -

"" s

Image source: Wikipedia
System named after Gerty
Cori, Biochemist and first
American woman to receive
the Nobel prize in science.

NERSC System Roadmap

NESAP Codes

NERSC-8 Cori (KNL
System) installed
NERSC

£l Exascale
NERSC beg 2024
transition to
CRT
INERSC-8 Cori Data
Partition (Haswell)

installed

Edison moves to CRT
NERSC-7

Edison in m NERSC-9 pre-
production exascale
i system installed
Hopper decommissioned
— T T T T T T T T
2014 2015 2016 2017 2018 2019 2020 2021 2022
+ NERSC Exascale Strategy is designed to balance the
needs of current science with future science

-67-

Advan ientific mputin,
Research
Almgren (LBNL) BoxLib AMR

Kent (ORNL)
Qu:

Framework
Trebotich (LBNL) Chombo-

crunch Newman (LBN

High Energy Physics

Basic Energy Sciences

Deslippe (NERSC) BerkeleyGW
Chelikowsky (UT)  PARSEC
" Bylaska (PNNL) NWChem

Biological and Environmental

Vay (LBNL) . Research
WARP & Smith (ORNL)
IMPACT Gromacs
Toussaint(Arizona) ~ MILC Yelick (LBNL)
Habib (ANL) Meraculous
HACC Ringler (LANL)
MPAS-O
Johansen (LBNL) ACME
| Nuclear Physics Dennis (NCAR) CESM
Maris (lowa St.) MFDn
Joo (JLAB) Fusion Energy Sciences
Chroma _ Jardin (PPPL) M3D
22 Christ/Karsch Chang (PPPL) XGC1
(Columbia/BNL) DWF/HISQ

antum
Espresso

L) EMGeo

NERSC Policy Board
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Numerical Methods at NERSC

Algorithm Diversity

* Quantitative (but not so deep) measure of algorithms classes
» Based on hours allocated to a project that the PI claims uses the method

50%
45% |
40%
35% 1|
30% |
25% |
20%
15%
10% |
5% 1
0% -

B %Projects

69

scionceaross | inear | Uneer | Methogs | Farile | Structured | Unstructured or
algebra algebra (FFT)s
Mcience. X X X X X
Astrophysics X X X
Chemistry X X X X

Climate X X
Combustion X
Fusion X X
Lattice Gauge X X
Material Science X X X X

Previous Procurement Strategy: Publish
Representative Benchmarks

Science Dlense Sparse Spectral Particle | Structured | Unstructured
areas linear linear Methods Methods Grids or AMR Grids
algebra algebra (FFT)s
Accelerator X X X X X
Science IMPACT-T | IMPACT-T | IMPACT-T
. X X X
Astrophysics X maEsTRO| % X MAESTRO | MAESTRO
. X
Chemistry GAMESS X X X
. X X
Climate CAM CAM X
Fusi X X X X X
uston GTC GTC
Lattice X X X X
Gauge MILC MILC MILC MILC
Material X X X X
Science PARATEC PARATEC PARATEC

7

NERSC Policy Board

NERSC Qualitative In-Depth Analysis of Methods by Science Area ]

Compute

Nodes

Network

Nodes

Burst buffer

NVRAM
* Mount BB as a disk: /fast — then user has to do all the work/juggling
+ Have software that automatically determines best way to use BB -$’s

Storage
Network

Storage
Servers

Metadata

NVRAM

Disk
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