
Cloud Computing and Midrange

NERSC Policy Board 1

March 2, 2010

Big Data, Big Iron and the

Future of HPC

Kathy Yelick
Associate Laboratory Director of Computing Sciences

Lawrence Berkeley National Laboratory

EECS Professor, UC Berkeley

“Big Data” Changes Everything…What about
Science?

Transforming Science: Finding Data Scientific Workflow Today

Beamline
User

Experiment

Cloud Computing and Midrange

NERSC Policy Board 2

March 2, 2010

Simulation & Analysis Framework

Scientific Workflow envisioned

Beamline
User

Data Pipeline

HPC Storage & Compute

Science
Gateway

N
ew

ex

pe
rim

en
t

sure simulate

P
rom

pt
A

nalysis
P

ipeline

compare

Experiment

KATHY YELICK’S

2031:
a science
odyssey

Life of a Scientist in 2031

•  No personal/departmental computers
•  Users don’t login to HPC Facilities
•  Travel replaced by telepresence
•  Lecturers teach millions of students
•  Theorems proven by online communities
•  Laboratory work is outsourced
•  Experimental facilities are used remotely
•  All scientific data is (eventually) open
•  Big science and team science democratized

Extreme Data Science

The scientific process is poised to undergo
a radical transformation based on the ability

to access, analyze, simulate and combine
large and complex data sets.

Cloud Computing and Midrange

NERSC Policy Board 3

March 2, 2010

Goal: To enable new modes of scientific
discovery

Scientific
Discovery

Growth in
Data

New
Analysis
Methods New

Science
Processes

- 9 -

DOE/SC has a
particular challenge
due to their user
facilities and
technology trends

New math, stat, CS
algorithms are both
necessary and
enabling

Multi-modal
analysis; re-
analysis; pose and
validate models

Data in Astrophysics: The Challenge is Systematics

Example: Astrophysicists
discover early nearby
supernova

23 August 24 August 25 August
GB per night
Manually
analyzed

Graphica
l models

Filtered

Crowd
sourced

Machine
Learning

New simulation models
and AMR code (Nyx)

Energy Genomics Grand Challenge
•  Plant genome: former grand challenge to assemble wheat
•  Next: metagenome assembly, currently limited by memory (and time)

•  SMP algorithms fail at ~100GB
•  Throwing data away to process at all!
•  Distributed memory assembly needed
•  Essential to understanding microbial dark-mater and their impacts

11

•  FPGA refactored code is better
•  Still fails at ~850GB

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 960 1920 3840 7680 15360

Se
co

nd
s

Number of Cores

overall time
kmer analysis

contig generation
scaffolding

ideal overall time

Filter and Pattern Match with Machine Learning

Detected
cyclones

12

TECA Toolkit
-  Automatic detection of

cyclones, atmospheric rivers,
and more

-  Single data set is 100 TB
-  Scalable analysis (80K cores):

9 years ! 1 hour
Ongoing work
-  Pattern detection using

machine learning

Mantissa Project, Prabhat Atmospheri
c Rivers

Cloud Computing and Midrange

NERSC Policy Board 4

March 2, 2010

Filtering, De-Noise and Curating Data

Arno Penzias and Robert Wilson discover
Cosmic Microwave Background in 1965

AmeriFlux & FLUXNET: 750
users access carbon
sensor data from 960
carbon flux data years

Re-Use and Re-Analyze Previously
Collected Data

•  Materials Genome Initiative
–  Materials Project: 4500 users 18

months!
–  “World-Changing Idea of 2013”

!

Today’s batteries

Voltage limit

Interesting
materials

Materials
Data

Brain Imaging: Multi-Modal Analysis and Data
Fusion

Analyze brain using multiple modalities and scales

•  Detection of regions across community
-  100 individuals takes 18 days right now

•  Graph to classify disease
-  Features: biomarkers, image modalities
-  Use hierarchy of regions from Pearson distance

co
gn

iti
ve

 a
bi

lit
y

time

Δt=?

t

Science Data is Big (and Growing)

Cloud Computing and Midrange

NERSC Policy Board 5

March 2, 2010

“Big Data” Challenges in Science
 Volume, velocity, variety, and veracity

Biology
•  Volume: Petabytes now;

computation-limited
•  Variety: multi-modal

analysis on bioimages

High Energy Physics
•  Volume: 3-5x in 5 years
•  Velocity: real-time filtering

adapts to intended
observation

Light Sources
•  Velocity: CCDs outpacing

Moore’s Law
•  Veracity: noisy data for

3D reconstruction

- 17 -

Cosmology / Astronomy:
•  Volume: 1000x increase

every 15 years
•  Variety: combine data

sources for accuracy

Materials:
•  Variety: multiple models and

experimental data
•  Veracity: quality and

resolution of simulations

Climate
•  Volume: Hundreds of

exabytes by 2020
•  Veracity: Reanalysis of 100-

year-old sparse data

Data Growth is Outpacing Computing
Growth

0

2

4

6

8

10

12

14

16

18

2010 2011 2012 2013 2014 2015

Detector
Sequencer
Processor
Memory

Graph based on
average growth

Superfacility Concept

Extreme Data
Science
Facility
(XDSF)

MS-DESI

ALS

LHC

JGI

APS

LCLS

Other
data-

producing
sources

Transform Experimental Science

Data Demos 2014

Create a “superfacility” that
integrates DOE Experimental
facilities with computing centers
and networking

Make science
easier, more
reproducible,
and
democratic

Cosmology Light sources Genomics Energy Technologies

Cloud Computing and Midrange

NERSC Policy Board 6

March 2, 2010

Data collection

Transfer to NERSC

FFT#+#mask#

data#from#experiment#

Analysis and modeling on NERSC supercomputers:

HipGISAXS simulation HipRMC fitting

FFT#

Compare#

start#with#random#system#
move#par8cle#random##

Autotuning

On-the-fly
calibration,
processing

Combining:!
GIXSGUI, dpdak + …!

Real-time
access via web portal

A SuperFacility Demo for Light Sources /
Photovoltaic Printing

Prin8ng#demo#experiments#created##
36,000#frames#in#3#days#(1/2#year#on#TITAN)#

Advanced Computing: Not just for Simulation

Experimenta8on# Theory#

Simula8on#
Data#Analysis#

M#22#M#

Compu8ng#

Comprehensive#
Test#ban#treaty#

Petascale#Compu8ng#for#Small#
Number#of#Hero#Simula8ons#

Science Needs Computing for Both Experiments (Data)
and Theory (Modeling and Simulation)

Experimenta8on# Theory#

Simula8on#Data#Analysis#

Compu8ng#

Commercial#“Big#Data”#
Growth#in#Sequencers,#
CCDs,#etc.##

Future#Performance#from#
Exascale#Technology#

Compu8ng#founda8on#includes#
research#(math/stat#and#CS)#and#
facili8es#(data#and#compute)#

23#

Myth: Supercomputers are Expensive,
Clouds are Cheap

24

Component Annual Cost
(rough estimate)

Cloud cost on apps
(ave 5x slowdown)

~$900M

Cloud cost
(1.38B core hours)

$181M

NERSC Budget $57M

NERSC HPC HW ~$20M

To buy raw NERSC core hours costs more than NERSC budget
•  Even ignoring the measured performance slowdown
•  Doesn’t include consulting staff, account management,

licenses, bandwidth, software support: ~2/3 of NERSC’s Budget
Why?
•  NERSC runs at higher utilization (> 90%) and no profit.
•  NERSC cost/core hours dropped 10x (1000%) from 2007 to 2011,

while Amazon pricing dropped 15% in the same period

0

4

8

12

16

20

GAMESS
GTC

IM
PACT

fvC
AM

MAESTR
MILC

PARATE

BLA
ST Sl

ow
do

w
n

R
el

at
iv

e
to

 H
PC

 S
ys

te
m

 Commercial Cloud
53x

 ~

Cloud Computing and Midrange

NERSC Policy Board 7

March 2, 2010

Data Analytics: Case for PGAS
More Regular

Message Passing Programming
Divide up domain in pieces
Compute one piece
Send/Receive data from others

MPI, and many libraries

25

More Irregular

Global Address Space Programming
Each start computing
Grab whatever / whenever

UPC, CAF, X10, Chapel, GlobalArrays

Programming Challenge? Science Problems
Fit Across the “Irregularity” Spectrum

Massive
Independent

Jobs for
Analysis and
Simulations

Nearest
Neighbor

Simulations

All-to-All
Simulations

Random
access, large
data Analysis

26

… often they fit in multiple categories

What about Exascale?

27

1.E+08

1.E+09

1.E+10

1.E+11

1.E+12

1.E+13

1.E+14

1.E+15

1.E+16

1.E+17

1.E+18

1990 1995 2000 2005 2010 2015 2020

Computational Science has Moved through
Difficult Technology Transitions

Application Performance Growth
(Gordon Bell Prizes)

Attack of the
“killer micros”

Attack of the
“killer cellphones”?

The rest of the
computing world
gets parallelism

28

Exascale?

Cloud Computing and Midrange

NERSC Policy Board 8

March 2, 2010

Energy Efficient Computing is Key
to Performance Growth

goal

usual
scaling

2005 2010 2015 2020

At $1M per MW, energy costs are substantial
•  1 petaflop in 2010 used 3 MW
•  1 exaflop in 2018 would use 100+ MW with “Moore’s Law” scaling

This problem doesn’t change if we were to build 1000 1-Petaflop
machines instead of 1 Exasflop machine. It affects every university
department cluster and cloud data center.

29

“Exascale” Challenges Affect
Performance Growth at all Scales

1)  Power is the primary constraint
2)  Parallelism (1000x today)
3)  Processor architecture will change
4)  Data movement dominates
5)  Memory growth will not keep up
6)  Programming models will change
7)  Algorithms must adapt
8)  I/O performance will not keep up
9)  Resilience will be critical at this

scale
10)  Interconnect bisection must scale

•  These are all at
the node levels

•  Happening NOW!
•  Emerging

Programming
solutions are
–  Hard to use
–  Non-portable
–  Non-durable

30

Challenge: New Processor Designs are
Needed to Save Energy

•  Server processors have been designed for
performance, not energy
–  Graphics processors are 10-100x more efficient
–  Embedded processors are 100-1000x
–  Need manycore chips with thousands of cores

31

Cell phone processor
(0.1 Watt, 4 Gflop/s)

Server processor
(100 Watts, 50 Gflop/s)

Node Programming, Heterogeneity

•  Local store, explicitly managed memory
–  More efficient (get only what you need) and simpler hardware

•  Split memory between CPU and “Accelerators”
–  Driven by market history and simplicity, but may not last
–  Communication: The bus is a significant bottleneck.

•  Co-Processor interface between CPU and Accelerator
–  Default is on CPU, only run “parallel” code in limited regions
–  Why are the minority CPUs in charge?

Is there a programming model that works for everyone?

Cell phone processor
(0.1 Watt, 4 Gflop/s)

Server processor
(100 Watts, 50 Gflop/s)

•  Case for heterogeneity
–  Many small cores and SIMD for

energy efficiency; few CPUs for OS / speed
–  Dark silicon ! too many transistors to power

32

Cloud Computing and Midrange

NERSC Policy Board 9

March 2, 2010

Challenge: Memory is Not Keeping Pace

Technology trends against a constant or increasing memory per core
•  Memory density is doubling every three years; processor logic is every two
•  Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs

Source: David Turek, IBM

Cost of Computation vs. Memory

33

Question: Can you double concurrency without doubling memory?

Source: IBM

33

The Memory Wall Swamp

Multicore didn’t cause this, but kept the bandwidth gap growing.

34

35

Emerging Exascale Node Architecture

Fat Core
Latency
Optimized Memory

DRAM/DIMMS

High Capacity Low
Bandwidth

“NIC” on Board

NVRAM: Burst
Buffers / rack-
local storage

Memory Stacks on Package
Low Capacity, High Bandwidth

Based on slide from J. Shalf

 Node Architecture Problems

•  Problems
– Many slow cores with less memory per core
– Wide SIMD (wide enough you can’t ignore it)
– Locality issues (NUMA)

•  Possible problems
– Limited cache coherence?
– Fat cores (heterogeneity)?
– Fat cores in charge
 (co-processor / accelerator)
– Scratchpad (local store) memory?

36

Non-problem
•  No caching == no

problem (trivially
coherent)

•  PGAS hardware
lesson: don’t cache
remote values

•  MPI or/accelerator
PGAS between
domains will be fine

Cloud Computing and Midrange

NERSC Policy Board 10

March 2, 2010

 Node Programming for Homogenous Cores

Approach Argument against
Flat MPI Need different within/between node algorithms
MPI + MPI Not enough memory per core
MPI + OpenMP NUMA effects too strong, compilation too hard
MPI + PGAS (SPMD, C++) Not tuned and not yet standard
MPI + TiDA (SPMD, F) Not yet standard or tuned
MPI + Dynamic Tasking Runtime overheads and poor locality control

37

Requirements:
•  Hardware exposes fast local accesses (minimize coherence)
•  Low level software to control data layout and work

assignment (pin to core)
•  Algorithms that minimize data movement and overlap

Titanium Arrays in UPC++
Amir Kamil (previously Phil Colella, Paul Hilfinger, Alex Aiken, Susan Graham, Kathy

Yelick and many others)

•  Key features of Titanium arrays
–  Generality: indices may start/end and any point
–  Domain calculus allow for slicing, subarray, transpose

and other operations without data copies
•  Use domain calculus to identify ghosts and

iterate:
 foreach (p in gridA.shrink(1).domain()) ...

•  Array copies automatically work on intersection
 gridB.copy(gridA.shrink(1));

gridA gridB

�restricted� (non-ghost)
cells

ghost cells

intersection (copied area)

Useful in grid
computations
including AMR

Titanium Arrays in UPC++
Amir Kamil (previously Phil Colella, Paul Hilfinger, Alex Aiken, Susan Graham,

Kathy Yelick and many others)

•  In the UPC++ array library, the same concepts are supported
•  The syntax (without compiler support) is not as elegant
•  The performance is close to that of a version that explicitly

packs/unpacks (bulk) and to MPI
•  The flat (no OpenMP) version is faster than hybrid

39

ndarray<double, 3, global> bArray =
 bArrays[PT(level, id, dir, i, j, k)];
bArray.async_copy(aArrays[PT(level, id, dir, i, j, k)]);

0.00#

2.00#

4.00#

6.00#

8.00#

10.00#

12.00#

14.00#

1# 8# 64# 512# 4096#

Ru
nn

in
g&
Ti
m
es
&(s
)&

No.&of&Processes&(x&8&OpenMP)&

Fine/Grained#
Array#
Bulk#
MPI#

0.00#

2.00#

4.00#

6.00#

8.00#

10.00#

12.00#

14.00#

8# 64# 512# 4096# 32768#

Ru
nn

in
g&
Ti
m
es
&(s
)&

No.&of&Processes&(x&1&OpenMP)&

Fine1Grained# Array#
Bulk# MPI#

TiDA: Tiling as a Durable Abstraction
Didem Unat, Cy Chan, Weiqun Zhang, John Bell, John Shalf

•  Tiling: Add loop nests so inner ones fit in cache,
e.g., 3-loop matmul ! 6-loop

•  TiDA: Add tile shape/size information to each array
•  Optionally change the data layout to match
•  Can also add ghost regions as needed

40

!!!!!!!!!!!!!!!!!Logical!)les! !!!!!!!!!Isolated!)les! !!!!!!Con)guous!)les!

Fig. 2: Memory layout options in tilearrays

tile or resides in another tile in the memory. We are still
investigating this memory layout option.

IV. CODE EXAMPLE

The code snippet in Listing 1 shows an example to illustrate
how a tilearray is built in TiDA using the syntax of our
Fortran library. Line 1-2 declares two variables with type
mtilearray and tilearray. lo and hi are integer vectors
defining the low end and high end of the index space.
tilesizes is an integer vector for the tile sizes, which can
be set dynamically. Line 8 initializes the tilearr with the
index space and chops the space defined by lo and hi into
tiles based on the tilesizes and creates an array of mtiles.
Line 9 builds a tilearray, allocates its space based on the
memory layout provided, sets the depth of ghost zone, and
associates the layout of the tiles with the mtilearray. Finally,
destroy in Line 12 and 13 frees the data structures.
1 type(mtilearray) :: tilearr
2 type(tilearray) :: A
3
4 integer :: lo(2)
5 integer :: hi(2)
6 integer :: tilesizes(2)
7 ...
8 call tida_init(tilearr, lo, hi, tilesizes)
9 call tida_build(A, tilearr, numghosts, LOG)

10 ...
11
12 call tida_destroy(tilearr)
13 call tida_destroy(A)

Listing 1: Building a TiDA array using mtilearray and
tilearray

Listing 2 shows an example usage of a TiDA array. In Line
5, ntiles returns the number of tiles in tilearr and the do-
loop iterates over them. In Line 7, dataptr returns the pointer
to the data for a given tile no. Line 9 and 10 get the lower and
upper bounds of the tile tl. Line 12 and 13 are the elements
loops that iterate over the data points within a tab.

TiDA does not modify the original loop bodies but
introduces tiling loops and new bounds for the element
loops. This property brings a great advantage in terms of
programming effort because TiDA extensions can be easily
added to the existing source codes. At the language level, we
would like to decouple the loop traversal mechanism from
the loop body and implement the loop body as a lambda

function, which will not require any modifications in the loop
body. By decoupling, a TiDA compiler can generate different
traversal mechanisms for the loops.

1 type(tile) :: tl
2 integer :: tileno, tlo(2), thi(2), i, j
3 double precision, pointer :: ptrA(:,:)
4
5 do tileno=1, ntiles(tilearr)
6
7 ptrA => dataptr(A, tileno)
8 tl = get_tile(tilearr, tileno)
9 tlo = get_lwb(tl)

10 thi = get_upb(tl)
11
12 do j=tlo(2),thi(2) !element loop 1
13 do i=tlo(1), thi(1) !element loop 2
14 !loop body
15 ptrA(i,j) = do_something(i,j)
16 end do
17 end do
18
19 end do !end of tile loop

Listing 2: Operations on TiDA arrays

V. PRELIMINARY RESULTS

To demonstrate the early performance of TiDA, we used
the CNS code2, developed by the Exascale Combustion Co-
design Center. CNS is a combustion proxy application that
integrates the compressible Navier Stokes equations assuming
constant transport. Figure 3 shows the speedup over the serial
and untiled implementation for the CNS code. The results are
obtained on Intel Westmere3 using a single socket containing
6 cores and running two hardware threads. TiDA-logical
and TiDA-isolated indicate two memory layouts supported in
TiDA. Using 12 threads on a 1923 problem, both the logical
and isolated tiles outperform the OpenMP implementation
by 20% and 32% perspectively. While OpenMP parallelizes
only the outmost loop, TiDA divides the domain into smaller
subdomains, each of which fits into cache, thus reduces data
movement. Even though the current performance improve-
ments are modest, the results are encouraging.

2CNS is available for download at the ExaCT co-design center’s website.
3Intel Xeon X5680, 12MB cache/socket

!!!!!!!!!!!!!!!!!Logical!)les! !!!!!!!!!Isolated!)les! !!!!!!Con)guous!)les!

Fig. 2: Memory layout options in tilearrays

tile or resides in another tile in the memory. We are still
investigating this memory layout option.

IV. CODE EXAMPLE

The code snippet in Listing 1 shows an example to illustrate
how a tilearray is built in TiDA using the syntax of our
Fortran library. Line 1-2 declares two variables with type
mtilearray and tilearray. lo and hi are integer vectors
defining the low end and high end of the index space.
tilesizes is an integer vector for the tile sizes, which can
be set dynamically. Line 8 initializes the tilearr with the
index space and chops the space defined by lo and hi into
tiles based on the tilesizes and creates an array of mtiles.
Line 9 builds a tilearray, allocates its space based on the
memory layout provided, sets the depth of ghost zone, and
associates the layout of the tiles with the mtilearray. Finally,
destroy in Line 12 and 13 frees the data structures.
1 type(mtilearray) :: tilearr
2 type(tilearray) :: A
3
4 integer :: lo(2)
5 integer :: hi(2)
6 integer :: tilesizes(2)
7 ...
8 call tida_init(tilearr, lo, hi, tilesizes)
9 call tida_build(A, tilearr, numghosts, LOG)

10 ...
11
12 call tida_destroy(tilearr)
13 call tida_destroy(A)

Listing 1: Building a TiDA array using mtilearray and
tilearray

Listing 2 shows an example usage of a TiDA array. In Line
5, ntiles returns the number of tiles in tilearr and the do-
loop iterates over them. In Line 7, dataptr returns the pointer
to the data for a given tile no. Line 9 and 10 get the lower and
upper bounds of the tile tl. Line 12 and 13 are the elements
loops that iterate over the data points within a tab.

TiDA does not modify the original loop bodies but
introduces tiling loops and new bounds for the element
loops. This property brings a great advantage in terms of
programming effort because TiDA extensions can be easily
added to the existing source codes. At the language level, we
would like to decouple the loop traversal mechanism from
the loop body and implement the loop body as a lambda

function, which will not require any modifications in the loop
body. By decoupling, a TiDA compiler can generate different
traversal mechanisms for the loops.

1 type(tile) :: tl
2 integer :: tileno, tlo(2), thi(2), i, j
3 double precision, pointer :: ptrA(:,:)
4
5 do tileno=1, ntiles(tilearr)
6
7 ptrA => dataptr(A, tileno)
8 tl = get_tile(tilearr, tileno)
9 tlo = get_lwb(tl)

10 thi = get_upb(tl)
11
12 do j=tlo(2),thi(2) !element loop 1
13 do i=tlo(1), thi(1) !element loop 2
14 !loop body
15 ptrA(i,j) = do_something(i,j)
16 end do
17 end do
18
19 end do !end of tile loop

Listing 2: Operations on TiDA arrays

V. PRELIMINARY RESULTS

To demonstrate the early performance of TiDA, we used
the CNS code2, developed by the Exascale Combustion Co-
design Center. CNS is a combustion proxy application that
integrates the compressible Navier Stokes equations assuming
constant transport. Figure 3 shows the speedup over the serial
and untiled implementation for the CNS code. The results are
obtained on Intel Westmere3 using a single socket containing
6 cores and running two hardware threads. TiDA-logical
and TiDA-isolated indicate two memory layouts supported in
TiDA. Using 12 threads on a 1923 problem, both the logical
and isolated tiles outperform the OpenMP implementation
by 20% and 32% perspectively. While OpenMP parallelizes
only the outmost loop, TiDA divides the domain into smaller
subdomains, each of which fits into cache, thus reduces data
movement. Even though the current performance improve-
ments are modest, the results are encouraging.

2CNS is available for download at the ExaCT co-design center’s website.
3Intel Xeon X5680, 12MB cache/socket

Cloud Computing and Midrange

NERSC Policy Board 11

March 2, 2010

Memory Technology (Sandia, Micron, Columbia LBNL)
Understand the Potential of Intelligent, Stacked DRAM Technology

•  Data movement are projected to account for
over 75% of power on an exascale platform

•  Work to reduce that via
–  Optical interconnect(s)
–  3D stacking (logic + memory + optics)
–  New memory protocols

–  Research Questions
–  What is the performance of

stacked memory (power & speed)
–  How much intelligence to put into logic layer

•  Atomics, gather/scatter, checksums, full-processor-in-
memory

–  What is the memory consistency model
–  How to program it ?

DRAM Layers

Modulators Receivers

Laser Source

Waveguide

Logic Layer

Photonic Layer

Co-Design architectures for Science

Keeping in mind market pressures

Co-Design in the Green Flash Project

•  Demonstrated during SC �09
•  CSU atmospheric model ported to

low-power core design
–  Dual Core Tensilica processors running

atmospheric model at 25MHz
–  MPI Routines ported to custom Tensilica

Interconnect
•  Memory and processor Stats

available for performance analysis
•  Emulation performance advantage

–  250x Speedup over merely function
software simulator

•  Actual code running - not
representative benchmark

Icosahedral mesh
for algorithm scaling

John Shalf, Dave Donofrio, Lenny Oliker, Michael
Wehner, Marghoob Mohiyuddin, Shoaib Kamil

43

Enabling Manycore Architecture Research

44

Chisel Design Description

C++ code FPGA Verilog ASIC Verilog

C++ Simulator

C++ Compiler

Chisel Compiler

FPGA
Emulation

FPGA Tools

GDS Layout

ASIC Tools

•  ISIS: rapid, accurate FPGA emulation of manycore chips
•  Spans VLSI design and simulation and includes chip fab

–  Trains students in real design trade-offs, power and area costs
•  Mapping RTL to FPGAs for algorithm/software co-design

–  100x faster than software simulators and more accurate

ISIS Hardware description language based on Scala,
modern OO/Functional language that compiles to JVM. !
!

ISIS builds on Berkeley RAMP project. Ramp
Gold shown here which models 64 cores of
SPARC v8 with shared memory on $750
board. Has hardware FPU, MMU; boots OS.

PIs: John Wawrzynek and Krste Asanovic, UC Berkeley

Cloud Computing and Midrange

NERSC Policy Board 12

March 2, 2010

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

9 21 53 71 107

Te
ra

flo
ps

Number of Species

Estimated Performance Improvements

+Fast NIC (400 GB/s)

+Fast-exp

+Fast-div

+Fast memory (4 TB/s)

+Loop fusion

+Cache blocking

Baseline

Co-Design Analysis for Combustion

•  Hardware and software need to change together

Let computers, not humans, tune for
modern architectures code

But beware of trusting compilers

Autotuning: Write Code Generators

•  Autotuners are code generators plus search
•  Avoids two unsolved compiler problems: dependence

analysis and accurate performance models
•  Popular in libraries: Atlas, FFTW, OSKI,…

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,…

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

512

256

128

64

32

16

8

4

2

1024

1/16 1 2 4 8 16 32 1/8
1/4

1/2
1/32

single-precision peak

double-precision peak

single-precision peak

double-precision peak

STREAM ba
nd

widt
h

Dev
ice

 ba
nd

widt
h

RTM/wave eqn.

RTM/wave eqn.

7pt Stencil
27pt Stencil

Xeon X5550 (Nehalem) NVIDIA C2050 (Fermi)

DP add-only

DP add-only

SpMV
SpMV

7pt Stencil

27pt Stencil
DGEMM

DGEMM

GTC/chargei

GTC/pushi

GTC/chargei

GTC/pushi

Algorithmic intensity: Flops/Word Algorithmic intensity: Flops/Word

Peak compute

47

Approaches to Autotuning

How do we produce all of these (correct) versions?
•  Using scripts (Python, perl, C,..)
•  Transform high level representation (FFTW, Spiral)
•  Compiling a domain-specific language (D-TEC)
•  Compiling a general-purpose language (X-Tune)
•  Dynamic compilation of a domain-specific (SEJITS)

48

Matrix Vector
Mul

specialized to
n,m

Triangular
Solve

specialized to
n,m

Matrix
Multiply

specialized to
n,m

BLAS Library Atlas
Autotuner:
code generator
+search

Cloud Computing and Midrange

NERSC Policy Board 13

March 2, 2010

Target Higher Level Loops

Harder than inner loops....

Iterative Solves are Dominated by Sparse
Matrix-Vector Multiply (nearest neighbor on graph)

•  Can do better: 1 matrix read, multiple multiplies
•  Serial: O(1) moves of data moves vs. O(k)
•  Parallel: O(log p) messages vs. O(k log p)

Joint work with Jim Demmel, Mark
Hoemman, Marghoob Mohiyuddin

For implicit memory
management (caches)
uses a TSP algorithm
for layout

50

Bigger Kernel (Akx) Runs at Faster
Speed than Simpler (Ax)

Speedups on Intel Clovertown (8 core)

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick 51

Avoid Synchronization

The end of bulk-synchronous
programming?

Cloud Computing and Midrange

NERSC Policy Board 14

March 2, 2010

Reasons to avoid synchronization

•  Processors do not run at the same speed
–  Never did, due to caches
–  Power / temperature management makes this worse

60
%

53

 DAG Scheduling Outperforms Bulk-
Synchronous Style

UPC vs.
ScaLAPACK

0

20

40

60

80

2x 4$pr oc $g r i d 4x 4$pr oc $g r i d

GF
lo

ps

ScaLAPACK

UPC

UPC LU factorization code adds cooperative (non-
preemptive) threads for latency hiding
–  New problem in partitioned memory: allocator deadlock
–  Can run on of memory locally due tounlucky execution order

PLASMA on shared memory UPC on partitioned memory

PLASMA by Dongarra et al; UPC LU joint with
Parray Husbands! 54

Event Driven LU in UPC

•  Assignment of work is static; schedule is dynamic
•  Ordering needs to be imposed on the schedule

–  Critical path operation: Panel Factorization
•  General issue: dynamic scheduling in partitioned memory

–  Can deadlock in memory allocation
–  “memory constrained” lookahead

some edges omitted

55

One-sided communication is a
mechanism that works everywhere

This Direct Memory Access (DMA) also appears in:
•  Fast one-sided network communication (RDMA, Remote DMA)
•  Move data to/from accelerators
•  Move data to/from I/O system (Flash, disks,..)
•  Movement of data in/out of local-store (scratchpad) memory

PGAS is a programming model

 *p1 = *p2 + 1;
 A[i] = B[i];

 upc_memput(A,B,64);

Uses 1-sided communication: put/get

56

Cloud Computing and Midrange

NERSC Policy Board 15

March 2, 2010

Resilience

Is the sky really falling?

Technology Challenges for the Next
Decade

Reliability going down for
large-scale systems, but
also to get more energy

efficiency for small
systems

Resilience Approaches

•  Containment Domains (CDs) for trees
–  Flexible resilience techniques (mechanism not policy)
–  Each CD provides own recovery mechanism
–  Analytical model: 90%+ efficiency at 2 EF
 vs. 0% for conventional checkpointing

•  Berkeley Lab Checkpoint Restart
–  BLCR is a system-level Checkpoint/Restart

•  Job state written to filesystem or memory;
works on most HPC apps

–  Checkpoint/Restart can be used for roll-
back recovery

•  a course-grained approach to resilience
•  BLCR also enables use for job migration

among compute nodes
–  Requires support from the MPI

implementation

•  Impact: part of standard Linux
release

Root CD

Child CD

CD PIs: Mattan Erez (+Eric Roman for PGAS); GVR PI: Andrew Chien

•  Preserve data on domain start
•  Compute (domain body)
•  Detect faults before commit
•  Recover from detected errors

59

What is Wrong with Current Operating
Systems?

Device
Drivers

Video &
Window
Drivers

Firewall
Virus
Intrusion

Monitor
And
Adapt

Persistent
Storage &
File System

HCI/
Voice
Rec

Large Compute-Bound
Application

Real-Time
Application

Identity

Assumes&limited&number&of&CPUs&that&must&be&shared&
•  Old$CW:"#me&mul#plexing"
•  Tessela+on:$spa#al"par##oning"
Greedy&alloca8on&of&finite&I/O&device&interfaces&
•  Old$CW:$First"process"to"acquire"lock"gets"device"
•  Tessela+on:$QoS"management"for"symmetric"device"access"
Fault&Isola8on&
•  Old$CW:$CPU"failure"!"Kernel"Panic"(increasingly"frequent)"
•  Tessela+on:$CPU"failure"!"Par##on"Restart"(w/"drivers)"
Inter?Processor&Communica8on&
•  Old$CW:$invoked"for"ANY"interprocessor"communica#on"
•  Tessela+on:$direct"HW"access"mediated"by"hypervisor"

Tesselation: Joint UCB/LBNL to rethink Manycore OSs

Impact:&
•  Convex#op8miza8on#major#thrust#for#MicrosoY#Research#
•  Launching#into#new#OS/R#CFP#with#Sandia#Na8onal#Lab

Cloud Computing and Midrange

NERSC Policy Board 16

March 2, 2010

What does this mean for NERSC?

Keeping up with user needs will be a challenge

- 62 -

Essentially, all models are wrong, but
some are useful.

-- George E. Box, Statistician

•  > 5000 users
•  > 700 projects
•  > 2000 publications per year

•  2 Petascale systems today
–  NERSC-7: Hopper
–  NERSC-8: Edison

•  Moving data workload

- 64 -

NERSC Workload
2013 Breakdown of

Allocations by Science Area

The workload is diverse and
increasingly complex due to
science workflows, integration of
data, and demand for higher
resolution and scale

Cloud Computing and Midrange

NERSC Policy Board 17

March 2, 2010

Edison, a Cray XC-30 plays a key role in
NERSC’s strategy

- 65 -

• NERSC assessed that our broad workload was not ready for GPUs
and procured Edison, with Ivy Bridge Intel CPUs

• Workloads that have difficulty moving to NERSC-8 can still work
productively on Edison while the code is adapted

• In 2016 Edison will likely provide ~20% of NERSC’s cycles

The Cori System Scheduled for 2016

•  Cori will support the broad
Office of Science research
community transition to
energy efficient architectures

- 66 -

System named after Gerty
Cori, Biochemist and first
American woman to receive
the Nobel prize in science.

Image source: Wikipedia

•  Cray XC system with > 9300 Intel KNL nodes
–  Self-hosted (not an accelerator) manycore processor

with over 60 cores per node
–  32 Flops / cycle (AVX 512 SIMD)
–  On-package high-bandwidth memory (scratchpad)
–  Scheduled for 2016 installation

•  “Data Partition” with ~2000 Haswell nodes (2015)
–  NVRAM Burst Buffer for data intensive applications
–  28 PB of disk, 432 GB/sec I/O bandwidth
–  Scheduling for complex workflows

NERSC System Roadmap

•  NERSC Exascale Strategy is designed to balance the
needs of current science with future science

- 67 -

2014 2015 2016 2017 2018 2019 2020 2021 2022

Hopper decommissioned

NERSC begins
transition to
CRT

NERSC-7
Edison in
production

NERSC-8 Cori Data
Partition (Haswell)
installed

NERSC-8 Cori (KNL
System) installed

?
NERSC-9 pre-
exascale
system installed

Edison moves to CRT

NERSC
Exascale
2024

Advanced Scientific Computing
Research
Almgren (LBNL) BoxLib AMR

 Framework

Trebotich (LBNL) Chombo-

 crunch

High Energy Physics
Vay (LBNL)

 WARP &
 IMPACT

Toussaint(Arizona) MILC
Habib (ANL)

 HACC

Nuclear Physics
Maris (Iowa St.) MFDn
Joo (JLAB)

 Chroma
Christ/Karsch
(Columbia/BNL) DWF/HISQ

Basic Energy Sciences
Kent (ORNL)

 Quantum
 Espresso

Deslippe (NERSC) BerkeleyGW
Chelikowsky (UT) PARSEC
Bylaska (PNNL) NWChem
Newman (LBNL) EMGeo

Biological and Environmental
Research

Smith (ORNL)
 Gromacs

Yelick (LBNL)
 Meraculous

Ringler (LANL)
 MPAS-O

Johansen (LBNL) ACME
Dennis (NCAR) CESM

Fusion Energy Sciences

Jardin (PPPL) M3D
Chang (PPPL) XGC1

NESAP Codes

Cloud Computing and Midrange

NERSC Policy Board 18

March 2, 2010

Numerical Methods at NERSC"
"

69

0%
5%

10%
15%
20%
25%
30%
35%
40%
45%
50%

str
uc

tur
ed

 fft

sp
ars

e

pa
rtic

le

de
ns

e

mon
te

ca
rlo

mult
igr

id

ad
ap

tiv
e

un
str

uc
tur

ed

no
 m

es
h

ite
rat

ive

dir
ec

t

%Projects

• Quantitative (but not so deep) measure of algorithms classes
• Based on hours allocated to a project that the PI claims uses the method

Algorithm Diversity

Science areas
Dense
linear

algebra

Sparse
linear

algebra

Spectral
Methods

(FFT)s

Particle
Methods

Structured
Grids

Unstructured or
AMR Grids

Accelerator
Science X X X X X

Astrophysics X X X X X X

Chemistry X X X X

Climate X X X

Combustion X X

Fusion X X X X X

Lattice Gauge X X X X

Material Science X X X X

NERSC Qualitative In-Depth Analysis of Methods by Science Area

Previous Procurement Strategy: Publish
Representative Benchmarks

Science
areas

Dense
linear

algebra

Sparse
linear

algebra

Spectral
Methods

(FFT)s

Particle
Methods

Structured
Grids

Unstructured
or AMR Grids

Accelerator
Science X X

IMPACT-T
X

IMPACT-T
X

IMPACT-T X

Astrophysics X X
MAESTRO X X X

MAESTRO
X

MAESTRO

Chemistry X
GAMESS X X X

Climate X
CAM

X
CAM X

Fusion X X
X

GTC
X

GTC
X

Lattice
Gauge

X
MILC

X
MILC

X
MILC

X
MILC

Material
Science

X
PARATEC

X
PARATEC

X
X

PARATEC

71

Co-design for Data: Finding Middle Ground

•  Mount BB as a disk: /fast – then user has to do all the work/juggling
•  Have software that automatically determines best way to use BB - $�s

I/O
Nodes

Burst buffer
NVRAM

Disk Metadata
NVRAM

Storage
Servers

Site
Storage
Network

HPC Machine Shared Storage

HPC#
Network#Compute

Nodes

Cloud Computing and Midrange

NERSC Policy Board 19

March 2, 2010

Computational Research and Theory (CRT):
A Building Designed for Exascale Systems

73

