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“Big Data” Changes Everything…What about 
Science? 

Transforming Science: Finding Data Scientific Workflow Today 
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KATHY YELICK’S

2031: 
a science 
odyssey 

Life of a Scientist in 2031 

•  No personal/departmental computers 
•  Users don’t login to HPC Facilities  
•  Travel replaced by telepresence 
•  Lecturers teach millions of students 
•  Theorems proven by online communities  
•  Laboratory work is outsourced 
•  Experimental facilities are used remotely 
•  All scientific data is (eventually) open 
•  Big science and team science democratized 

Extreme Data Science 

The scientific process is poised to undergo 
a radical transformation based on the ability 

to access, analyze, simulate and combine 
large and complex data sets.     
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Goal: To enable new modes of scientific 
discovery  

Scientific 
Discovery 

Growth in 
Data 

New 
Analysis 
Methods New 

Science 
Processes 
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DOE/SC has a 
particular challenge 
due to their user 
facilities and 
technology trends 

New math, stat, CS 
algorithms are both 
necessary and 
enabling 

Multi-modal 
analysis; re-
analysis; pose and 
validate models 

Data in Astrophysics: The Challenge is Systematics

Example: Astrophysicists 
discover early nearby 
supernova   

23 August 24 August 25 August 
GB per night 
Manually 
analyzed 

Graphica
l models 

Filtered 

Crowd 
sourced 

Machine 
Learning 

New simulation models 
and AMR code (Nyx) 

Energy Genomics Grand Challenge 
•  Plant genome: former grand challenge to assemble wheat 
•  Next: metagenome assembly, currently limited by memory (and time) 

 
 
 
 
•  SMP algorithms fail at ~100GB     
•  Throwing data away to process at all! 
•  Distributed memory assembly needed 
•  Essential to understanding microbial dark-mater and their impacts 
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•  FPGA refactored code is better 
•  Still fails at ~850GB 
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Filter and Pattern Match with Machine Learning 

Detected 
cyclones 
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TECA Toolkit  
-  Automatic detection of 

cyclones, atmospheric rivers, 
and more 

-  Single data set is 100 TB  
-  Scalable analysis (80K cores): 

9 years ! 1 hour 
Ongoing work 
-  Pattern detection using 

machine learning 

Mantissa Project, Prabhat Atmospheri
c Rivers 
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Filtering, De-Noise and Curating Data 

Arno Penzias and Robert Wilson discover 
Cosmic Microwave Background in 1965 

AmeriFlux & FLUXNET: 750 
users access carbon 
sensor data from 960 
carbon flux data years 

Re-Use and Re-Analyze Previously 
Collected Data 

•  Materials Genome Initiative 
–  Materials Project: 4500 users 18 

months! 
–  “World-Changing Idea of 2013” 

!

Today’s batteries 

Voltage limit 

Interesting 
materials 

Materials 
Data 

Brain Imaging: Multi-Modal Analysis and Data 
Fusion 

Analyze brain using multiple modalities and scales 
 
 
 
 
 
 
 
•  Detection of regions across community  
-  100 individuals takes 18 days right now 

•  Graph to classify disease 
-  Features: biomarkers, image modalities  
-  Use hierarchy of regions from Pearson distance 
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Science Data is Big (and Growing) 
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“Big Data” Challenges in Science  
 Volume, velocity, variety, and veracity 

Biology 
•  Volume: Petabytes now; 

computation-limited 
•  Variety: multi-modal 

analysis on bioimages 

High Energy Physics 
•  Volume: 3-5x in 5 years 
•  Velocity: real-time filtering 

adapts to intended 
observation 

Light Sources 
•  Velocity: CCDs outpacing 

Moore’s Law 
•  Veracity: noisy data for 

3D reconstruction 
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Cosmology / Astronomy:  
•  Volume: 1000x increase 

every 15 years 
•  Variety: combine data 

sources for accuracy 

Materials: 
•  Variety: multiple models and 

experimental data 
•  Veracity: quality and 

resolution of simulations 

Climate 
•  Volume: Hundreds of 

exabytes by 2020 
•  Veracity: Reanalysis of 100-

year-old sparse data 

Data Growth is Outpacing Computing 
Growth 
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Superfacility Concept 

Extreme Data 
Science 
Facility 
(XDSF) 

 
 

MS-DESI 
 
 

ALS 

 
 

LHC 

 
 

JGI 

 
 
 

APS 

 
 
 

LCLS 

Other 
data-

producing 
sources 

Transform Experimental Science  

Data Demos 2014 

Create a “superfacility” that 
integrates DOE Experimental 
facilities with computing centers 
and networking 

Make science 
easier, more 
reproducible, 
and 
democratic 

Cosmology                  Light sources            Genomics            Energy Technologies 
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Data collection 

Transfer to NERSC 

FFT#+#mask#

data#from#experiment#

Analysis and modeling on NERSC supercomputers: 
 
HipGISAXS simulation                  HipRMC fitting 

FFT#

Compare#

start#with#random#system#
move#par8cle#random##

Autotuning  

On-the-fly 
calibration, 
processing 

Combining:!
GIXSGUI, dpdak + …!

Real-time  
access via web portal 

A SuperFacility Demo for Light Sources / 
Photovoltaic Printing 

Prin8ng#demo#experiments#created##
36,000#frames#in#3#days#(1/2#year#on#TITAN)#

Advanced Computing: Not just for Simulation

Experimenta8on# Theory#

Simula8on#
Data#Analysis#

M#22#M#

Compu8ng#

Comprehensive#
Test#ban#treaty#

Petascale#Compu8ng#for#Small#
Number#of#Hero#Simula8ons#

Science Needs Computing for Both Experiments (Data) 
and Theory (Modeling and Simulation)

Experimenta8on# Theory#

Simula8on#Data#Analysis#

Compu8ng#

Commercial#“Big#Data”#
Growth#in#Sequencers,#
CCDs,#etc.##

Future#Performance#from#
Exascale#Technology#

Compu8ng#founda8on#includes#
research#(math/stat#and#CS)#and#
facili8es#(data#and#compute)#

23#

Myth: Supercomputers are Expensive, 
Clouds are Cheap 
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Component Annual Cost 
(rough estimate) 

Cloud cost on apps 
(ave 5x slowdown) 

~$900M 

Cloud cost 
(1.38B core hours) 

$181M 
 

NERSC Budget $57M 

NERSC HPC HW ~$20M 

To buy raw NERSC core hours costs more than NERSC budget 
•  Even ignoring the measured performance slowdown 
•  Doesn’t include consulting staff, account management, 

licenses, bandwidth, software support: ~2/3 of NERSC’s Budget 
Why?    
•  NERSC runs at higher utilization ( > 90%) and no profit. 
•  NERSC cost/core hours dropped 10x (1000%) from 2007 to 2011, 

while Amazon pricing dropped 15% in the same period  
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Data Analytics: Case for PGAS 
More Regular 

 
 
 
 
 
 
 
Message Passing Programming  
Divide up domain in pieces 
Compute one piece  
Send/Receive data from others 
 
MPI, and many libraries 
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More Irregular 
 
 
 
 
 
 
 
Global Address Space Programming 
Each start computing 
Grab whatever / whenever 
 
 
UPC, CAF, X10, Chapel, GlobalArrays  
 

Programming Challenge? Science Problems 
Fit Across the “Irregularity” Spectrum 

Massive 
Independent 

Jobs for 
Analysis and 
Simulations 

Nearest 
Neighbor 

Simulations 

All-to-All 
Simulations 

Random 
access, large 
data Analysis 
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… often they fit in multiple categories 

What about Exascale? 
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Computational Science has Moved through 
Difficult Technology Transitions 

Application Performance Growth 
(Gordon Bell Prizes) 

Attack of the 
“killer micros” 

Attack of the 
“killer cellphones”? 

The rest of the 
computing world 
gets parallelism 

28 

Exascale? 
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Energy Efficient Computing is Key 
to Performance Growth 

goal 

usual 
scaling 

2005                                      2010                                     2015                                      2020 

At $1M per MW, energy costs are substantial 
•  1 petaflop in 2010 used 3 MW 
•  1 exaflop in 2018 would use 100+ MW with “Moore’s Law” scaling 

This problem doesn’t change if we were to build 1000 1-Petaflop 
machines instead of 1 Exasflop machine.  It affects every university 
department cluster and cloud data center. 
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“Exascale” Challenges Affect 
Performance Growth at all Scales 

1)  Power is the primary constraint 
2)  Parallelism (1000x today) 
3)  Processor architecture will change 
4)  Data movement dominates  
5)  Memory growth will not keep up 
6)  Programming models will change 
7)  Algorithms must adapt 
8)  I/O performance will not keep up 
9)  Resilience will be critical at this 

scale 
10)  Interconnect bisection must scale 
 

•  These are all at 
the node levels 

•  Happening NOW! 
•  Emerging 

Programming 
solutions are 
–  Hard to use 
–  Non-portable 
–  Non-durable 
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Challenge: New Processor Designs are 
Needed to Save Energy 

•  Server processors have been designed for 
performance, not energy 
–  Graphics processors are 10-100x more efficient 
–  Embedded processors are 100-1000x 
–  Need manycore chips with thousands of cores 
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Cell phone processor 
(0.1 Watt, 4 Gflop/s) 

Server processor  
(100 Watts, 50 Gflop/s) 

Node Programming, Heterogeneity 

•  Local store, explicitly managed memory 
–  More efficient (get only what you need) and simpler hardware 

•  Split memory between CPU and “Accelerators” 
–  Driven by market history and simplicity, but may not last 
–  Communication: The bus is a significant bottleneck. 

•  Co-Processor interface between CPU and Accelerator 
–  Default is on CPU, only run “parallel” code in limited regions 
–  Why are the minority CPUs in charge?   

Is there a programming model that works for everyone? 

Cell phone processor 
(0.1 Watt, 4 Gflop/s) 

Server processor  
(100 Watts, 50 Gflop/s) 

•  Case for heterogeneity 
–  Many small cores and SIMD for                

energy efficiency; few CPUs for OS / speed 
–  Dark silicon ! too many transistors to power 

32 
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Challenge: Memory is Not Keeping Pace

Technology trends against a constant or increasing memory per core 
•  Memory density is doubling every three years; processor logic is every two 
•  Storage costs (dollars/Mbyte) are dropping gradually compared to logic costs 

Source: David Turek, IBM 

Cost of Computation vs. Memory 
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Question: Can you double concurrency without doubling memory? 

Source: IBM 
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The Memory Wall Swamp 

Multicore didn’t cause this, but kept the bandwidth gap growing. 
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Emerging Exascale Node Architecture 

Fat Core 
Latency 
Optimized Memory 

DRAM/DIMMS 

High Capacity Low 
Bandwidth 

“NIC” on Board 

NVRAM: Burst 
Buffers / rack-
local storage 

Memory Stacks on Package 
Low Capacity, High Bandwidth 

Based on slide from J. Shalf 

 Node Architecture Problems 

•  Problems 
– Many slow cores with less memory per core 
– Wide SIMD (wide enough you can’t ignore it)  
– Locality issues (NUMA) 

•  Possible problems 
– Limited cache coherence? 
– Fat cores (heterogeneity)? 
– Fat cores in charge 
   (co-processor / accelerator) 
– Scratchpad (local store) memory?   

36 

Non-problem 
•  No caching == no 

problem (trivially 
coherent) 

•  PGAS hardware 
lesson: don’t cache 
remote values 

•  MPI or/accelerator 
PGAS between 
domains will be fine 
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 Node Programming for Homogenous Cores 

Approach Argument against 
Flat MPI Need different within/between node algorithms 
MPI + MPI Not enough memory per core 
MPI + OpenMP NUMA effects too strong, compilation too hard 
MPI + PGAS (SPMD, C++) Not tuned and not yet standard 
MPI + TiDA (SPMD, F) Not yet standard or tuned 
MPI + Dynamic Tasking Runtime overheads and poor locality control 
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Requirements: 
•  Hardware exposes fast local accesses (minimize coherence) 
•  Low level software to control data layout and work 

assignment (pin to core) 
•  Algorithms that minimize data movement and overlap  

Titanium Arrays in UPC++ 
Amir Kamil (previously Phil Colella, Paul Hilfinger, Alex Aiken, Susan Graham, Kathy 

Yelick and many others) 

•  Key features of Titanium arrays 
–  Generality: indices may start/end and any point 
–  Domain calculus allow for slicing, subarray, transpose 

and other operations without data copies 
•  Use domain calculus to identify ghosts and 

iterate: 
   foreach (p in gridA.shrink(1).domain()) ... 

•  Array copies automatically work on intersection 
   gridB.copy(gridA.shrink(1)); 

gridA gridB 

�restricted� (non-ghost) 
cells  

ghost cells  

intersection (copied area) 

Useful in grid 
computations 
including AMR 

Titanium Arrays in UPC++ 
Amir Kamil (previously Phil Colella, Paul Hilfinger, Alex Aiken, Susan Graham, 

Kathy Yelick and many others) 

•  In the UPC++ array library, the same concepts are supported 
•  The syntax (without compiler support) is not as elegant 
•  The performance is close to that of a version that explicitly 

packs/unpacks (bulk) and to MPI 
•  The flat (no OpenMP) version is faster than hybrid 
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ndarray<double, 3, global> bArray = 
  bArrays[PT(level, id, dir, i, j, k)]; 
bArray.async_copy(aArrays[PT(level, id, dir, i, j, k)]); 
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TiDA: Tiling as a Durable Abstraction 
Didem Unat, Cy Chan, Weiqun Zhang, John Bell, John Shalf 

•  Tiling: Add loop nests so inner ones fit in cache, 
e.g., 3-loop matmul ! 6-loop 

•  TiDA: Add tile shape/size information to each array 
•  Optionally change the data layout to match 
•  Can also add ghost regions as needed 
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!!!!!!!!!!!!!!!!!Logical!)les! !!!!!!!!!Isolated!)les! !!!!!!Con)guous!)les!

Fig. 2: Memory layout options in tilearrays

tile or resides in another tile in the memory. We are still
investigating this memory layout option.

IV. CODE EXAMPLE

The code snippet in Listing 1 shows an example to illustrate
how a tilearray is built in TiDA using the syntax of our
Fortran library. Line 1-2 declares two variables with type
mtilearray and tilearray. lo and hi are integer vectors
defining the low end and high end of the index space.
tilesizes is an integer vector for the tile sizes, which can
be set dynamically. Line 8 initializes the tilearr with the
index space and chops the space defined by lo and hi into
tiles based on the tilesizes and creates an array of mtiles.
Line 9 builds a tilearray, allocates its space based on the
memory layout provided, sets the depth of ghost zone, and
associates the layout of the tiles with the mtilearray. Finally,
destroy in Line 12 and 13 frees the data structures.
1 type(mtilearray) :: tilearr
2 type(tilearray) :: A
3
4 integer :: lo(2)
5 integer :: hi(2)
6 integer :: tilesizes(2)
7 ...
8 call tida_init(tilearr, lo, hi, tilesizes)
9 call tida_build(A, tilearr, numghosts, LOG)

10 ...
11
12 call tida_destroy(tilearr)
13 call tida_destroy(A)

Listing 1: Building a TiDA array using mtilearray and
tilearray

Listing 2 shows an example usage of a TiDA array. In Line
5, ntiles returns the number of tiles in tilearr and the do-
loop iterates over them. In Line 7, dataptr returns the pointer
to the data for a given tile no. Line 9 and 10 get the lower and
upper bounds of the tile tl. Line 12 and 13 are the elements
loops that iterate over the data points within a tab.

TiDA does not modify the original loop bodies but
introduces tiling loops and new bounds for the element
loops. This property brings a great advantage in terms of
programming effort because TiDA extensions can be easily
added to the existing source codes. At the language level, we
would like to decouple the loop traversal mechanism from
the loop body and implement the loop body as a lambda

function, which will not require any modifications in the loop
body. By decoupling, a TiDA compiler can generate different
traversal mechanisms for the loops.

1 type(tile) :: tl
2 integer :: tileno, tlo(2), thi(2), i, j
3 double precision, pointer :: ptrA(:,:)
4
5 do tileno=1, ntiles(tilearr)
6
7 ptrA => dataptr(A, tileno)
8 tl = get_tile(tilearr, tileno)
9 tlo = get_lwb(tl)

10 thi = get_upb(tl)
11
12 do j=tlo(2),thi(2) !element loop 1
13 do i=tlo(1), thi(1) !element loop 2
14 !loop body
15 ptrA(i,j) = do_something(i,j)
16 end do
17 end do
18
19 end do !end of tile loop

Listing 2: Operations on TiDA arrays

V. PRELIMINARY RESULTS

To demonstrate the early performance of TiDA, we used
the CNS code2, developed by the Exascale Combustion Co-
design Center. CNS is a combustion proxy application that
integrates the compressible Navier Stokes equations assuming
constant transport. Figure 3 shows the speedup over the serial
and untiled implementation for the CNS code. The results are
obtained on Intel Westmere3 using a single socket containing
6 cores and running two hardware threads. TiDA-logical
and TiDA-isolated indicate two memory layouts supported in
TiDA. Using 12 threads on a 1923 problem, both the logical
and isolated tiles outperform the OpenMP implementation
by 20% and 32% perspectively. While OpenMP parallelizes
only the outmost loop, TiDA divides the domain into smaller
subdomains, each of which fits into cache, thus reduces data
movement. Even though the current performance improve-
ments are modest, the results are encouraging.

2CNS is available for download at the ExaCT co-design center’s website.
3Intel Xeon X5680, 12MB cache/socket
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Fig. 2: Memory layout options in tilearrays

tile or resides in another tile in the memory. We are still
investigating this memory layout option.

IV. CODE EXAMPLE

The code snippet in Listing 1 shows an example to illustrate
how a tilearray is built in TiDA using the syntax of our
Fortran library. Line 1-2 declares two variables with type
mtilearray and tilearray. lo and hi are integer vectors
defining the low end and high end of the index space.
tilesizes is an integer vector for the tile sizes, which can
be set dynamically. Line 8 initializes the tilearr with the
index space and chops the space defined by lo and hi into
tiles based on the tilesizes and creates an array of mtiles.
Line 9 builds a tilearray, allocates its space based on the
memory layout provided, sets the depth of ghost zone, and
associates the layout of the tiles with the mtilearray. Finally,
destroy in Line 12 and 13 frees the data structures.
1 type(mtilearray) :: tilearr
2 type(tilearray) :: A
3
4 integer :: lo(2)
5 integer :: hi(2)
6 integer :: tilesizes(2)
7 ...
8 call tida_init(tilearr, lo, hi, tilesizes)
9 call tida_build(A, tilearr, numghosts, LOG)

10 ...
11
12 call tida_destroy(tilearr)
13 call tida_destroy(A)

Listing 1: Building a TiDA array using mtilearray and
tilearray

Listing 2 shows an example usage of a TiDA array. In Line
5, ntiles returns the number of tiles in tilearr and the do-
loop iterates over them. In Line 7, dataptr returns the pointer
to the data for a given tile no. Line 9 and 10 get the lower and
upper bounds of the tile tl. Line 12 and 13 are the elements
loops that iterate over the data points within a tab.

TiDA does not modify the original loop bodies but
introduces tiling loops and new bounds for the element
loops. This property brings a great advantage in terms of
programming effort because TiDA extensions can be easily
added to the existing source codes. At the language level, we
would like to decouple the loop traversal mechanism from
the loop body and implement the loop body as a lambda

function, which will not require any modifications in the loop
body. By decoupling, a TiDA compiler can generate different
traversal mechanisms for the loops.

1 type(tile) :: tl
2 integer :: tileno, tlo(2), thi(2), i, j
3 double precision, pointer :: ptrA(:,:)
4
5 do tileno=1, ntiles(tilearr)
6
7 ptrA => dataptr(A, tileno)
8 tl = get_tile(tilearr, tileno)
9 tlo = get_lwb(tl)

10 thi = get_upb(tl)
11
12 do j=tlo(2),thi(2) !element loop 1
13 do i=tlo(1), thi(1) !element loop 2
14 !loop body
15 ptrA(i,j) = do_something(i,j)
16 end do
17 end do
18
19 end do !end of tile loop

Listing 2: Operations on TiDA arrays

V. PRELIMINARY RESULTS

To demonstrate the early performance of TiDA, we used
the CNS code2, developed by the Exascale Combustion Co-
design Center. CNS is a combustion proxy application that
integrates the compressible Navier Stokes equations assuming
constant transport. Figure 3 shows the speedup over the serial
and untiled implementation for the CNS code. The results are
obtained on Intel Westmere3 using a single socket containing
6 cores and running two hardware threads. TiDA-logical
and TiDA-isolated indicate two memory layouts supported in
TiDA. Using 12 threads on a 1923 problem, both the logical
and isolated tiles outperform the OpenMP implementation
by 20% and 32% perspectively. While OpenMP parallelizes
only the outmost loop, TiDA divides the domain into smaller
subdomains, each of which fits into cache, thus reduces data
movement. Even though the current performance improve-
ments are modest, the results are encouraging.

2CNS is available for download at the ExaCT co-design center’s website.
3Intel Xeon X5680, 12MB cache/socket
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Memory Technology (Sandia, Micron, Columbia LBNL) 
Understand the Potential of Intelligent, Stacked DRAM Technology 

•  Data movement are projected to account for 
over 75% of power on an exascale platform 

•  Work to reduce that via 
–  Optical interconnect(s) 
–  3D stacking (logic + memory + optics) 
–  New memory protocols 

–  Research Questions 
–  What is the performance of                                                   

stacked memory (power & speed) 
–  How much intelligence to put into logic layer  

•  Atomics, gather/scatter, checksums, full-processor-in-
memory 

–  What is the memory consistency model  
–  How to program it ? 

DRAM Layers 

Modulators Receivers 

Laser Source 

Waveguide 

Logic Layer 

Photonic Layer 

Co-Design architectures for Science 

Keeping in mind market pressures 

Co-Design in the Green Flash Project 

•  Demonstrated during SC �09 
•  CSU atmospheric model ported to 

low-power core design 
–  Dual Core Tensilica processors running 

atmospheric model at 25MHz 
–  MPI Routines ported to custom Tensilica 

Interconnect 
•  Memory and processor Stats 

available for performance analysis 
•  Emulation performance advantage 

–  250x Speedup over merely function 
software simulator 

•  Actual code running - not 
representative benchmark 

Icosahedral mesh 
for algorithm scaling 

John Shalf, Dave Donofrio, Lenny Oliker, Michael 
Wehner, Marghoob Mohiyuddin, Shoaib Kamil 
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Enabling Manycore Architecture Research 
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Chisel Design Description 

C++ code FPGA Verilog ASIC Verilog 

C++ Simulator 

C++ Compiler 

Chisel Compiler 

FPGA 
Emulation 

FPGA Tools 

GDS Layout 

ASIC Tools 

•  ISIS: rapid, accurate FPGA emulation of manycore chips 
•  Spans VLSI design and simulation and includes chip fab 

–  Trains students in real design trade-offs, power and area costs 
•  Mapping RTL to FPGAs for algorithm/software co-design 

–  100x faster than software simulators and more accurate 

ISIS Hardware description language based on Scala, 
modern OO/Functional language that compiles to JVM. !
!

ISIS builds on Berkeley RAMP project. Ramp 
Gold shown here which models 64 cores of 
SPARC v8 with shared memory on $750 
board.  Has hardware FPU, MMU; boots OS. 
 

PIs: John Wawrzynek and Krste Asanovic, UC Berkeley 
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+Fast NIC (400 GB/s) 

+Fast-exp 

+Fast-div 

+Fast memory (4 TB/s) 

+Loop fusion 

+Cache blocking 

Baseline 

Co-Design Analysis for Combustion 

•  Hardware and software need to change together 

Let computers, not humans, tune for 
modern architectures code 

But beware of trusting compilers 

Autotuning: Write Code Generators 

•  Autotuners are code generators plus search  
•  Avoids two unsolved compiler problems: dependence 

analysis and accurate performance models 
•  Popular in libraries: Atlas, FFTW, OSKI,… 
 

Work by Williams, Oliker, Shalf, Madduri, Kamil, Im, Ethier,…  
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Peak compute 
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Approaches to Autotuning 

How do we produce all of these (correct) versions? 
•  Using scripts (Python, perl, C,..) 
•  Transform high level representation (FFTW, Spiral) 
•  Compiling a domain-specific language (D-TEC) 
•  Compiling a general-purpose language (X-Tune) 
•  Dynamic compilation of a domain-specific (SEJITS) 
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Matrix Vector 
Mul 

specialized to 
n,m 

Triangular 
Solve 

specialized to 
n,m 

Matrix 
Multiply 

specialized to 
n,m 

BLAS Library Atlas 
Autotuner: 
code generator 
+search 
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Target Higher Level Loops 

Harder than inner loops.... 

Iterative Solves are Dominated by Sparse 
Matrix-Vector Multiply (nearest neighbor on graph) 

•  Can do better: 1 matrix read, multiple multiplies 
•  Serial: O(1) moves of data  moves vs. O(k) 
•  Parallel: O(log p) messages vs.  O(k log p)  

Joint work with Jim Demmel, Mark 
Hoemman, Marghoob Mohiyuddin 

For implicit memory 
management (caches) 
uses a TSP algorithm 
for layout 
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Bigger Kernel (Akx) Runs at Faster 
Speed than Simpler (Ax)    

Speedups on Intel Clovertown (8 core) 

Jim Demmel, Mark Hoemmen, Marghoob Mohiyuddin, Kathy Yelick  51 

Avoid Synchronization 

The end of bulk-synchronous 
programming?    



Cloud Computing and Midrange 

NERSC Policy Board 14 

March 2, 2010 

Reasons to avoid synchronization 

•  Processors do not run at the same speed 
–  Never did, due to caches 
–  Power / temperature management makes this worse 

60
%
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        DAG Scheduling Outperforms Bulk-
Synchronous Style 

UPC vs. 
ScaLAPACK

0

20

40

60
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2x 4$pr oc $g r i d 4x 4$pr oc $g r i d

GF
lo

ps

ScaLAPACK

UPC

UPC LU factorization code adds cooperative (non-
preemptive) threads for latency hiding 
–  New problem in partitioned memory: allocator deadlock 
–  Can run on of memory locally due tounlucky execution order 

PLASMA on shared memory UPC on partitioned memory 

PLASMA by Dongarra et al; UPC LU joint with 
Parray Husbands! 54 

Event Driven LU in UPC 

•  Assignment of work is static; schedule is dynamic 
•  Ordering needs to be imposed on the schedule 

–  Critical path operation: Panel Factorization 
•  General issue: dynamic scheduling in partitioned memory 

–  Can deadlock in memory allocation 
–  “memory constrained” lookahead 
 

some edges omitted 
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One-sided communication is a 
mechanism that works everywhere 

This Direct Memory Access (DMA) also appears in: 
•  Fast one-sided network communication (RDMA, Remote DMA) 
•  Move data to/from accelerators 
•  Move data to/from I/O system (Flash, disks,..) 
•  Movement of data in/out of local-store (scratchpad) memory 

PGAS is a programming model 
 
   *p1 = *p2 + 1; 
   A[i] = B[i]; 
 
   upc_memput(A,B,64); 
 
Uses 1-sided communication: put/get 

56 
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Resilience 

Is the sky really falling? 

Technology Challenges for the Next 
Decade 

Reliability going down for 
large-scale systems, but 
also to get more energy 

efficiency for small 
systems 

Resilience Approaches 

•  Containment Domains (CDs) for trees 
–  Flexible resilience techniques (mechanism not policy) 
–  Each CD provides own recovery mechanism  
–  Analytical model: 90%+ efficiency at 2 EF 
           vs. 0% for conventional checkpointing 

•  Berkeley Lab Checkpoint Restart 
–  BLCR is a system-level Checkpoint/Restart 

•  Job state written to filesystem or memory; 
works on most HPC apps 

–  Checkpoint/Restart can be used for roll-
back recovery 

•  a course-grained approach to resilience 
•  BLCR also enables use for job migration 

among compute nodes 
–  Requires support from the MPI 

implementation 

•  Impact: part of standard Linux 
release 

Root CD 

Child CD 

CD PIs: Mattan Erez (+Eric Roman for PGAS); GVR PI: Andrew Chien 
 

•  Preserve data on domain start 
•  Compute (domain body) 
•  Detect faults before commit 
•  Recover from detected errors 
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What is Wrong with Current Operating 
Systems? 

Device 
Drivers 

Video & 
Window 
Drivers 

Firewall 
Virus 
Intrusion 

Monitor 
And 
Adapt 

Persistent 
Storage & 
File System 

HCI/ 
Voice 
Rec 

Large Compute-Bound 
Application 

Real-Time 
Application 

Identity 

Assumes&limited&number&of&CPUs&that&must&be&shared&
•  Old$CW:"#me&mul#plexing"
•  Tessela+on:$spa#al"par##oning"
Greedy&alloca8on&of&finite&I/O&device&interfaces&
•  Old$CW:$First"process"to"acquire"lock"gets"device"
•  Tessela+on:$QoS"management"for"symmetric"device"access"
Fault&Isola8on&
•  Old$CW:$CPU"failure"!"Kernel"Panic"(increasingly"frequent)"
•  Tessela+on:$CPU"failure"!"Par##on"Restart"(w/"drivers)"
Inter?Processor&Communica8on&
•  Old$CW:$invoked"for"ANY"interprocessor"communica#on"
•  Tessela+on:$direct"HW"access"mediated"by"hypervisor"

Tesselation: Joint UCB/LBNL to rethink Manycore OSs 

Impact:&
•  Convex#op8miza8on#major#thrust#for#MicrosoY#Research#
•  Launching#into#new#OS/R#CFP#with#Sandia#Na8onal#Lab 
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What does this mean for NERSC? 

Keeping up with user needs will be a challenge 

- 62 - 

Essentially, all models are wrong, but 
some are useful. 

-- George E. Box, Statistician 

•  > 5000 users 
•  > 700 projects  
•  > 2000 publications per year 

•  2 Petascale systems today 
–  NERSC-7: Hopper  
–  NERSC-8: Edison 

•  Moving data workload 

- 64 - 

NERSC Workload 
2013 Breakdown of 

Allocations by Science Area  

The workload is diverse and 
increasingly complex due to 
science workflows, integration of 
data, and demand for higher  
resolution and scale 
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Edison, a Cray XC-30 plays a key role in 
NERSC’s strategy 

- 65 - 

• NERSC assessed that our broad workload was not ready for GPUs 
and procured Edison, with Ivy Bridge Intel CPUs 

• Workloads that have difficulty moving to NERSC-8 can still work 
productively on Edison while the code is adapted 

• In 2016 Edison will likely provide ~20% of NERSC’s cycles 

The Cori System Scheduled for 2016 

•  Cori will support the broad 
Office of Science research 
community  transition to 
energy efficient architectures 

- 66 - 

System named after Gerty 
Cori, Biochemist and first 
American woman to receive 
the Nobel prize in science. 

Image source: Wikipedia 

•  Cray XC system with > 9300 Intel KNL nodes 
–  Self-hosted (not an accelerator) manycore processor 

with over 60 cores per node  
–  32 Flops / cycle (AVX 512 SIMD) 
–  On-package high-bandwidth memory (scratchpad) 
–  Scheduled for 2016 installation 

•  “Data Partition” with ~2000 Haswell nodes (2015) 
–  NVRAM Burst Buffer for data intensive applications 
–  28 PB of disk, 432 GB/sec I/O bandwidth 
–  Scheduling for complex workflows 
 
 

NERSC System Roadmap 

•  NERSC Exascale Strategy is designed to balance the 
needs of current science with future science 

- 67 - 

2014         2015         2016          2017        2018         2019        2020        2021        2022 

Hopper decommissioned 

NERSC begins 
transition to 
CRT 

NERSC-7 
Edison in 
production 

NERSC-8 Cori Data 
Partition (Haswell) 
installed 

NERSC-8 Cori (KNL 
System) installed 

? 
NERSC-9 pre-
exascale 
system installed 

Edison moves to CRT 

NERSC 
Exascale 
2024 

Advanced Scientific Computing 
Research  
Almgren (LBNL)  BoxLib AMR 

   
 Framework  

Trebotich (LBNL)  Chombo-  
  
 crunch 

 
High Energy Physics  
Vay (LBNL)   

 WARP &   
  IMPACT 

Toussaint(Arizona)  MILC 
Habib (ANL)  

 HACC 
 
 
Nuclear Physics  
Maris (Iowa St.)  MFDn 
Joo (JLAB)  

 Chroma 
Christ/Karsch  
(Columbia/BNL)  DWF/HISQ  
 

 

Basic Energy Sciences  
Kent (ORNL)   

 Quantum   
  Espresso 

Deslippe (NERSC)  BerkeleyGW 
Chelikowsky (UT)  PARSEC   
Bylaska (PNNL)  NWChem 
Newman (LBNL)  EMGeo 
 

Biological and Environmental 
Research  

Smith (ORNL)  
 Gromacs  

Yelick (LBNL)  
 Meraculous 

Ringler (LANL)  
 MPAS-O  

Johansen (LBNL)  ACME  
Dennis (NCAR)  CESM 

 
Fusion Energy Sciences  

Jardin (PPPL)   M3D  
Chang (PPPL)    XGC1 

 

NESAP Codes 
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Numerical Methods at NERSC"
"
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• Quantitative (but not so deep) measure of algorithms classes 
• Based on hours allocated to a project that the PI claims uses the method 

Algorithm Diversity

Science areas 
Dense 
linear 

algebra 

Sparse 
linear 

algebra 

Spectral 
Methods 

(FFT)s 

Particle 
Methods 

Structured 
Grids 

Unstructured or 
AMR Grids 

Accelerator 
Science X X X X X 

Astrophysics X X X X X X 

Chemistry X X X X 

Climate X X X 

Combustion X X 

Fusion X X X X X 

Lattice Gauge X X X X 

Material Science X X X X 

NERSC Qualitative In-Depth Analysis of Methods by Science Area 

Previous Procurement Strategy: Publish 
Representative Benchmarks 

Science 
areas 

Dense 
linear 

algebra 

Sparse 
linear 

algebra 

Spectral 
Methods 

(FFT)s 

Particle 
Methods 

Structured 
Grids 

Unstructured 
or AMR Grids 

Accelerator 
Science X X 

IMPACT-T 
X 

IMPACT-T 
X 

IMPACT-T X 

Astrophysics X X 
MAESTRO X X X 

MAESTRO 
X 

MAESTRO 

Chemistry X 
GAMESS X X X 

Climate X 
CAM 

X 
CAM X 

Fusion X X 
X 

GTC 
X 

GTC 
X 

Lattice 
Gauge 

X 
MILC 

X 
MILC 

X 
MILC 

X 
MILC 

Material 
Science 

X 
PARATEC 

X 
PARATEC 

X 
X 

PARATEC 
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Co-design for Data: Finding Middle Ground 

•  Mount BB as a disk: /fast – then user has to do all the work/juggling 
•  Have software that automatically determines best way to use BB - $�s 

I/O 
Nodes 

Burst buffer 
NVRAM 

Disk Metadata 
NVRAM 

Storage  
Servers 

Site 
Storage  
Network 

HPC Machine Shared Storage 

HPC#
Network#Compute  

Nodes 
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Computational Research and Theory (CRT): 
A Building Designed for Exascale Systems 
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