
Architecting Paralle Software	

Keutzer and Mattson	

1	

Architecting Parallel Software
with

Patterns

Kurt Keutzer, EECS, Berkeley

with thanks to Tim Mattson, Intel
and the PALLAS team:

The Challenge of Parallelism
Programming parallel processors is one of the challenges of our era

© Kurt Keutzer 2

NVIDIA Tegra 2 system on a chip (SoC)
•  Dual-core ARM Cortex A9.
•  Integrated GPU. Lots of DSP.
•  1 GHz.
•  2 single-precision GFLOPs peak (CPUs

only)

Tilera Tile64
•  64 processors
•  Each tile has L1, L2, can run OS
•  443 billion operations/sec.
•  500-833 MHz
•  50 Gbytes/sec memory

bandwidth

Nvidia Fermi
•  16 cores, 48-way multithreaded,
•  4-wide Superscalar, dual-issue, 3
•  2-wide SIMD (half-pumped)
•  2 MB (16 x 128 KB) Registers, 1
•  MB (16 x 64 KB) L1 cache, 0.75 MB L2 Cache

3

Outline
n  What doesn’t work
n  Pieces of the problem … and solution
n  General approach to architecting parallel sw
n  Detail on Structural Patterns
n  Detail on Computational Patterns
n  High-level examples of architecting applications

4
4

Assumption #1:
How not to develop parallel code

Initial Code

Profiler	

Performance
profile

Re-code with
more threads

Not fast
enough

Fast enough

Ship it	

Lots of failures

N PE’s slower than 1

Architecting Paralle Software	

Keutzer and Mattson	

2	

5

Steiner Tree Construction Time By
Routing Each Net in Parallel

Benchmark Serial 2 Threads 3 Threads 4 Threads 5 Threads 6 Threads

adaptec1 1.68 1.68 1.70 1.69 1.69 1.69

newblue1 1.80 1.80 1.81 1.81 1.81 1.82

newblue2 2.60 2.60 2.62 2.62 2.62 2.61

adaptec2 1.87 1.86 1.87 1.88 1.88 1.88

adaptec3 3.32 3.33 3.34 3.34 3.34 3.34

adaptec4 3.20 3.20 3.21 3.21 3.21 3.21

adaptec5 4.91 4.90 4.92 4.92 4.92 4.92

newblue3 2.54 2.55 2.55 2.55 2.55 2.55

average 1.00 1.0011 1.0044 1.0049 1.0046 1.0046
6

Hint: What is this person thinking of?

Re-code with
more threads

Edward Lee,
“The Problem
with Threads”	

Threads, locks, semaphores, data races

So What’s the Alternative?

8

Outline
n  What doesn’t work
n  Pieces of the problem … and solution
n  General approach to architecting parallel sw
n  Detail on Structural Patterns
n  Detail on Computational Patterns
n  High-level examples of architecting applications

Architecting Paralle Software	

Keutzer and Mattson	

3	

Principles of SW Design
After 15 years in industry, at one time overseeing the technology of 25

software products, my best principle to facilitate good software design
is modularity:

Modularity helps:
¨  Architect: Makes overall design sound and comprehensible
¨  Project manager:

n  As a manager I am able to comfortably assign different
modules to different developers

n  I am also able to use module definitions to track development
¨  Build a PERT chart for development progress
¨  Build a “control panel” for current software quality

¨  Module implementors: As a module implementor I am able to
focus on the implementation, optimization, and verification of my
module with a minimum of concern about the rest of the design

¨  Modularity helps to identify key computations

What’s life like without modularity?
¨  Spaghetti code
¨  Wars over the interpretation of the specification
¨  Waiting on other coders
¨  Wondering why you didn’t touch anything and now your code

broke
¨  Hard to verify your code in isolation, and therefore hard to

optimize
¨  Hard to parallelize without identifying key computations

¨  Modularity will help us obviate all these
n  Parnas, “On the criteria to be used on composing systems into

modules,” CACM, December 1972.

Big Step:
Architectural Styles (Garland and Shaw, 1996)

¨ Pipe and filter

¨ Object oriented

¨ Event based

¨ Layered

¨ Agent and repository

¨ Process control

Object-Oriented Programming
Focused on:
•  Program modularity
•  Data locality
•  Architectural styles
•  Design patterns

Neglected:
•  Application

concurrency
•  Computational details
•  Parallel

implementations

12

Architecting Paralle Software	

Keutzer and Mattson	

4	

What’s missing?: Is an executing
software program more like?
a) A building b) A factory

We need to consider the machinery – but what is the machinery?

Computations are the Machinery

14

HPC knows a lot about computations, application concurrency,
efficient programming, and parallel implementation	

COMPUTATIONAL RESEARCH DIVISION!

!‹#›!

Defining Software Requirements for
Scientific Computing

Phillip Colella
Applied Numerical Algorithms Group

Lawrence Berkeley National Laboratory

COMPUTATIONAL RESEARCH DIVISION!

!‹#›!

High-end simulation in the physical sciences consists of seven
algorithms:

•  Structured Grids (including locally structured grids, e.g. AMR)
•  Unstructured Grids
•  Fast Fourier Transform
•  Dense Linear Algebra
•  Sparse Linear Algebra
•  Particles
•  Monte Carlo

Well-defined targets from algorithmic and software standpoint.

Remainder of this talk will consider one of them (structured
grids) in detail.

Architecting Paralle Software	

Keutzer and Mattson	

5	

Par Lab’s contribution: from 7 to
13 families of computations

Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)
Monte Carlo
N-Body

Dynamic Prog.
Unstructured Grid

Finite State Mach.
Circuits

Apps

Dwarves E
m
be
d

S
P
E
C

D
B
G
am
es

M
L

H
P
C

C
A
D

Health Image Speech Music Browser
Graph Algorithms
Graphical Models
Backtrack / B&B

Unfortunately … HPC approach to
software architecture architecture

18

Technically this is known as a monolithic architecture

How can we integrate these
insights?
•  We wish to find an approach to building software that gives

equal support for two key problems of software design –
how to structure the software and how to efficiently
implement the computations

© Kurt Keutzer 19 20

Outline
n  What doesn’t work
n  Pieces of the problem … and solution
n  General approach to architecting parallel sw
n  Detail on Structural Patterns
n  Detail on Computational Patterns
n  High-level examples of architecting applications

Architecting Paralle Software	

Keutzer and Mattson	

6	

21

Alexander’s Pattern Language
Christopher Alexander’s approach to

(civil) architecture:
¨  "Each pattern describes a problem

which occurs over and over again
in our environment, and then
describes the core of the solution
to that problem, in such a way that
you can use this solution a million
times over, without ever doing it
the same way twice.“ Page x, A
Pattern Language, Christopher
Alexander

Alexander’s 253 (civil) architectural
patterns range from the creation of
cities (2. distribution of towns) to
particular building problems (232. roof
cap)

A pattern language is an organized way
of tackling an architectural problem
using patterns

Main limitation:
¨  It’s about civil not software

architecture!!!

Uses of Patterns
Patterns give names and definitions to key elements of design
This enables us to better:

¨  Teach design – a palette of defined design principals
n  Gives ideas to new programmers – approaches you may

not have considered
n  Gives a set of finiteness to experienced programmers – if

you’ve considered all the patterns then you can rest
assured you’ve considered the key approaches

¨  Guide design – articulate design decisions succinctly
¨  Communicate design – improve documentation, facilitate

maintenance of software

Uses of Patterns
Patterns capture and preserve bodies of knowledge about key

design decisions
¨  Useful implementation techniques
¨  Likely challenges/bottlenecks that will come with the use of

this pattern (e.g. repository bottleneck in agent and
repository)

24

• Pipe-and-Filter
• Agent-and-Repository
• Event-based
• Process Control
• Layered Systems
•  Model-view controller
• Iterator
• MapReduce
• Arbitrary Task Graphs
• Puppeteer

•  Graph Algorithms
•  Dynamic programming
•  Dense/Spare Linear Algebra
•  (Un)Structured Grids
•  Graphical Models
•  Finite State Machines
•  Backtrack Branch-and-Bound
•  N-Body Methods
•  Circuits
•  Spectral Methods

Architecting Parallel Software with Patterns

Identify the Software
Structure

Identify the Key
Computations

Architecting Paralle Software	

Keutzer and Mattson	

7	

25

Decompose Tasks
• Group tasks
• Order Tasks

Architecting Parallel Software

Identify the Software
Structure

Identify the Key
Computations

Decompose Data
• Identify data sharing
• Identify data access

26

• Pipe-and-Filter
• Agent-and-Repository
• Event-based coordination
• Iterator
• MapReduce
• Process Control
• Layered Systems

Identify the SW Structure

Structural Patterns

These define the structure of our software but they do not
describe what is computed

27

Analogy: Layout of Factory Plant
Identify key computations ….

Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)
Monte Carlo
N-Body

Dynamic Prog.
Unstructured Grid

Finite State Mach.
Circuits

Apps

Dwarves E
m
be
d

S
P
E
C

D
B
G
am
es

M
L

H
P
C

C
A
D

Health Image Speech Music Browser
Graph Algorithms
Graphical Models
Backtrack / B&B

Computational patterns describe the key computations but not how
they are implemented

Architecting Paralle Software	

Keutzer and Mattson	

8	

29

Analogy: Machinery of the Factory

30

Analogy: Architected Factory

Raises appropriate issues like scheduling, latency, throughput,
workflow, resource management, capacity etc.

• Pipe-and-Filter
• Agent-and-Repository
• Event-based
• Layered Systems
• Model-view-controller
• Arbitrary Task Graphs
• Puppeteer
• Iterator/BSP
• MapReduce

Architecting Parallel Software
Structural Patterns Computational Patterns

• Graph-Algorithms
• Dynamic-Programming
• Dense-Linear-Algebra
• Sparse-Linear-Algebra
• Unstructured-Grids
• Structured-Grids
• Graphical-Models
• Finite-State-Machines
• Backtrack-Branch-and-Bound
• N-Body-Methods
• Circuits
• Spectral-Methods
• Monte-Carlo 32

Remember this Poor Guy …

Re-code with
more threads

Edward Lee,
“The Problem
with Threads”	

Threads, locks, semaphores, data races

Architecting Paralle Software	

Keutzer and Mattson	

9	

33

What’s this person thinking of …?
v  Need to integrate the insights into computation provided

by HPC with the insights into program structure provided
by software architectural styles"

structural patterns computational patterns

Software
architecture

34

Outline
n  What doesn’t work
n  Pieces of the problem … and solution
n  General approach to architecting parallel sw
n  Detail on Structural Patterns
n  Detail on Computational Patterns
n  High-level examples of architecting applications

Inventory of Structural Patterns
1.  pipe and filter
2.  iterator
3.  MapReduce
4.  blackboard/agent and repository
5.  process control
6.  Model View Controller
7.  layered
8.  event-based coordination
9.  puppeteer
10.  static task graph

35 36

Elements of a structural pattern

n  Components are where the computation
happens

Connectors are where the communication happens

n  A configuration is
a graph of
components
(vertices) and
connectors
(edges)

n  A structural
patterns may be
described as a
familiy of graphs.

Architecting Paralle Software	

Keutzer and Mattson	

10	

37

Filter 6

Filter 5

Filter 4

Filter 2

Filter 7

Filter 3

Filter 1

Pattern 1: Pipe and Filter
• Filters embody computation	

• Only see inputs and produce
outputs	

• Pipes embody
communication 	

May have feedback	

Examples?	

38

Examples of pipe and filter
n  Almost every large software program has a pipe and filter structure at

the highest level

Logic optimizer	
Image Retrieval System	
Compiler	

39

Pattern 2: Iterator Pattern

iterate

Exit condition met?

Initialization condition

Synchronize
results of iteration

Variety of
functions
performed
asynchronously

Yes

No

Examples?	

40 40

Example of Iterator Pattern:
Training a Classifier: SVM Training

40

Update
surface

Identify
Outlier

iterate

Iterator Structural Pattern

All points within
acceptable error? Yes

No

Architecting Paralle Software	

Keutzer and Mattson	

11	

41

Pattern 3: MapReduce
To us, it means

¨  A map stage, where data is mapped onto independent
computations

¨  A reduce stage, where the results of the map stage are
summarized (i.e. reduced)

Map	

Reduce	

Map	

Reduce	

Examples?	

42

Examples of Map Reduce
n  General structure:
n  Map a computation across distributed data sets
n  Reduce the results to find the best/(worst), maxima/

(minima)

Speech recognition
•  Map HMM computation
to evaluate word match
•  Reduce to find the most-
likely word sequences

Support-vector machines (ML)
•  Map to evaluate distance from
the frontier
•  Reduce to find the greatest
outlier from the frontier

43

Pattern 4: Agent and Repository

Repository/
Blackboard

(i.e. database)

Agent 2 Agent 1

Agent 4

Agent and repository : Blackboard structural pattern
Agents cooperate on a shared medium to produce a result
Key elements:
¨  Blackboard: repository of the resulting creation that is

shared by all agents (circuit database)
¨  Agents: intelligent agents that will act on blackboard

(optimizations)
¨  Manager: orchestrates agents access to the blackboard and

creation of the aggregate results (scheduler)

Agent 3

Examples?	

44

Example: Compiler Optimization

Constant
folding

loop
fusion

Software
pipelining

Common-sub-expression
elimination

Strength-reduction

Dead-code elimination

Optimization of a software program
n  Intermediate representation of program is stored in the

repository
n  Individual agents have heuristics to optimize the program
n  Manager orchestrates the access of the optimization agents to

the program in the repository
n  Resulting program is left in the repository

Internal
Program

representation

Architecting Paralle Software	

Keutzer and Mattson	

12	

45

Example: Logic Optimization

n  Optimization of integrated circuits
n  Integrated circuit is stored in the repository
n  Individual agents have heuristics to optimize the circuitry of an

integrated circuit
n  Manager orchestrates the access of the optimization agents to the

circuit repository
n  Resulting optimized circuit is left in the repository

timing
opt agent 1

timing
opt agent 2

timing
opt agent 3

timing
opt agent N ……..	

Circuit
Database

46

Pattern 5: Process Control

n  Process control:
¨ Process: underlying phenomena to be controlled/computed
¨ Actuator: task(s) affecting the process
¨ Sensor: task(s) which analyze the state of the process
¨ Controller: task which determines what actuators should be

effected

process controller

input variables

controlled
variables

control
parameters

manipulated
variables

se
nso

rs

actuators

Source: Adapted from Shaw & Garlan 1996, p27-31.

Examples?	

47

Examples of Process Control

Circuit controller

user
timing

constraints

Spee
d?

Launching
transformations

Timing
constraints

Power?

Process control
structural pattern

Pattern 9: Puppeteer
•  Need an efficient way to manage and control the interaction of

multiple simulators/computational agents
•  Puppeteer Pattern – guides the interaction between the tasks/

puppets to guarantee correctness of the overall task
•  Puppeteer: 1) schedules puppets 2) manages exchange of data

between puppets
•  Difference with agent and repository?

•  No central repository
•  Data transfer between tasks/puppets

48/17

Puppet1 Puppet2
1

Puppet3

Puppetn

Framework	

Change Control Manager	

Interfaces	

Examples?	

Architecting Paralle Software	

Keutzer and Mattson	

13	

Video Game

49/17

Input Physics Graphics AI

Framework	

Change Control Manager	

Interfaces	

Model of circulation
• Modeling of blood moving in blood vessels
• The computation is structured as a controlled interaction
between solid (blood vessel) and fluid (blood) simulation codes
•  The two simulations use different data structures and the
number of iterations for each simulation code varies
•  Need an efficient way to manage and control the interaction of
the two codes
• 

50

Pattern 10: Static Task Graph
Tasks receive inputs and produce outputs
All data sharing is through explicit messaging (arrow “!” means

message passing communication)
Task configuration is statically defined and may not be changed at

runtime

Task 1

Task 3

Task 5

Task 2

Task 4

Example?	

Example: one game architecture
There exist fixed dependencies between subsystems
Can be modeled as an arbitrary task graph
Example: Moving the zombie

¨  Keyboard -> AI -> Physics -> Graphics

Input

Physics

Graphics

AI

Effects

Architecting Paralle Software	

Keutzer and Mattson	

14	

53

Outline
n  What doesn’t work
n  Pieces of the problem … and solution
n  General approach to architecting parallel sw
n  Detail on Structural Patterns
n  Detail on Computational Patterns
n  High-level examples of architecting applications

You explore these every class

Structured Grid
Dense Matrix
Sparse Matrix
Spectral (FFT)
Monte Carlo
N-Body

Dynamic Prog.
Unstructured Grid

Finite State Mach.
Circuits

Apps

Dwarves E
m
be
d

S
P
E
C

D
B
G
am
es

M
L

H
P
C

C
A
D

Health Image Speech Music Browser
Graph Algorithms
Graphical Models
Backtrack / B&B

55

Outline
n  What doesn’t work
n  Pieces of the problem … and solution
n  General approach to architecting parallel sw
n  Detail on Structural Patterns
n  Detail on Computational Patterns
n  High-level examples of architecting applications

Automatic Speech Recognition

Architecting Paralle Software	

Keutzer and Mattson	

15	

57/69	

Large	 Vocabulary	 Con0nuous	 	 Speech	 Recogni0on	

§  Inference	 engine	 based	 system	
§  Used	 in	 Sphinx	 (CMU,	 USA),	 HTK	 (Cambridge,	 UK),	 and	 Julius	 (CSRC,	 Japan)	 [10,15,9]	

§  Modular	 and	 flexible	 setup	
§  Shown	 to	 be	 effecPve	 for	 Arabic,	 English,	 Japanese,	 and	 Mandarin	

Signal	
Processing	
Module	

Inference	 	
Engine	

Voice	
Input	

	

Recogni0on	 Network	
	

	

Speech	
Features	
	

	

Word	
Sequence	

	

…

I think
therefore
I am

AcousPc	
Model	

PronunciaPon	
Model	

Language	
Model	

58"

Recogni0on	 Network	

aa	

hh	

n	

HMM	 AcousPc	 	
Phone	 Model	

HOP	

ON	
POP	

CAT	

HAT	

IN	

THE	

...	

...	

...	

...	

...	

CA
T	

HA
T	

...
	

...
	

HO
P	

IN
	

...
	

O
N
	

PO
P	

...
	

TH
E	

...
	

Bigram	 	
Language	 Model	

…
	

Features	
from	 one	
frame	

Gaussian	 Mixture	 Model	 	
for	 One	 Phone	 State	

…

…

…

…

…
 …	

…	

Mixture	 Components	

Compu0ng	 	
distance	 to	
each	 mixture	 	
components	

Compu0ng	
weighted	 sum	
of	 all	 components	

Speech Recognition at High Level!

...	
HOP	 	 hh	 aa	 p	
...	
ON	 	 	 aa	 n	
...	
POP	 	 p	 aa	 p	
...	

PronunciaPon	 Model	

59/69	

Inference	 Engine	

Beam Search Iterations

LVCSR	 SoEware	 Architecture	

Pipe-‐and-‐filter	

Graphical	 Model	

Dynamic	
Programming	

Itera0ve	 Refinement	

Pipe	 and	 Filter	
Word	
Seque
nce	
	
	 Speech	

Feature	
Extractor	

Voice	
Input	
	
	

Speech	
Features	

	
	
	

…
	

I think
therefore
I am

Recogni0on	 Network	
	
	
	
AcousPc	
Model	

PronunciaPon	
Model	

Language	
Model	

MapReduce	

Word	
Sequence	

	

	
I think
therefore
I am

Active State Computation Steps

60/69	

Key	 computa0on:	 HMM	 Inference	 Algorithm	

§  Finds	 the	 most-‐likely	 sequence	 of	 states	 that	 produced	 the	 observaPon	

s	 s	

x An Observation s	 A State

P(xt|st)

P(st|st-1)

s	 m [t-1][st-1]

s	 m [t][st]

 Legends:

 Markov Condition:

An	 instance	 of:	 	 Graphical	 Models	 Implemented	 with:	 Dynamic	 Programming	

J. Chong, Y. Yi, A. Faria, N.R. Satish and K. Keutzer, “Data-Parallel Large Vocabulary Continuous Speech
Recognition on Graphics Processors”, Emerging Applications and Manycore Arch. 2008, pp. 23-35, June 2008

s	 s	 s	 s	

s	 s	 s	 s	

s	 s	 s	 s	

s	 s	 s	 s	

State 1

State 2

State 3

State 4

Obs 1 Obs 2 Obs 3 Obs 4
x x x x

t

 Viterbi Algorithm

GMM	

Rec Network Transition Probability	
Frontier	

Architecting Paralle Software	

Keutzer and Mattson	

16	

61"

HMMs for speech!

Dan Klein’s CS288, Lecture 9	

need 	

62/69	

Itera0ve	 Refinement	 Structural	 PaPern	

Hidden	
Markov	
Model	

§  One iteration per time step
§  Identify the set of probable

states in the network given
acoustic signal given
current active state set

§  Prune unlikely states
§  Repeat

63/69	

Inference	 Engine	 in	 LVCSR	

§  Three	 steps	 of	 inference	
0. 	 Gather	 operands	 from	 irregular	 data	 structure	 to	 runPme	 buffer	
1.  Perform	 observaPon	 probability	 computaPon	
2.  Perform	 graph	 traversal	 computaPon	

Parallelism	 in	 the	 inference	 engine:	

 0. Gather operand

s 2. m [t][st]

 1. P(xt|st)	
x

64/69	

Each Filter is a Map Reduce
0. Gather operands

n  Gather	 and	 coalesce	 each	 of	 the	 above	 operands	 for	 every	 st	 	
n  Facilitates	 opportunity	 for	 SIMD	 	

max 	

 0. Gather operand

Architecting Paralle Software	

Keutzer and Mattson	

17	

65/69	

Each	 Filter	 is	 Map	 Reduce	
1.	 observa0on	 probability	 computa0on

n  Gaussian	 Mixture	 Model	 Probability	
n  Probability	 that	 given	 this	 feature-‐frame	 (e.g.	 10ms)	 we	 are	 in	

this	 state/phone	

max 	

 1. P(xt|st)	
x

66/69	

§  Observation probabilities are computed from Gaussian Mixture Models
§  Each Gaussian probability in each mixture is independent
§  Probability for one phone state is the sum of all Gaussians times the

mixture probability for that state

Dan Klein’s CS288, Lecture 9	

1.	 Observa0on	 Probability	 	
Computa0onal	 PaPerns

67/69	

Each	 Filter	 is	 Map	 Reduce	 	
2.	 graph	 traversal	 computa0on

n Map	 probability	 computaPon	 across	 distributed	 data	 sets	 –	
perform	 mulPplicaPon	 as	 below	 	

n  	 Reduce	 the	 results	 to	 find	 the	 maximumly	 likely	 states	

s 2. m [t][st]

max 	

68/69	

All	 together:	 Inference	 Engine	 in	 LVCSR	

§  Put	 all	 together	 the	 inference	 engine	 is	 dynamic	 programming	 	

Parallelism	 in	 the	 inference	 engine:	

 0. Gather operand

s 2. m [t][st]

 1. P(xt|st)	
x

Architecting Paralle Software	

Keutzer and Mattson	

18	

69/69	

Inference	 Engine	

Beam Search Iterations

LVCSR	 SoEware	 Architecture	

Pipe-‐and-‐filter	

Graphical	 Model	

Dynamic	
Programming	

Itera0ve	 Refinement	

Pipe	 and	 Filter	

Speech	
Feature	
Extractor	

Voice	
Input	
	
	

Speech	
Features	

	
	
	

…
	

Recogni0on	 Network	
	
	
	
AcousPc	
Model	

PronunciaPon	
Model	

Language	
Model	

MapReduce	

Word	
Sequence	

	

	
I think
therefore
I am

Active State Computation Steps

70/69	

Time Observations

S
pe

ec
h

M
od

el
 S

ta
te

s

Wreck a nice beach
Interpretation

HMM computed with Dynamic Programming

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

a
x!
a
y!
c
h!
e
h!
g!

i
y!
k!

n!

p!

r!

s!

z!

r z sr e e e e k k a a a g n n

a

y

a

y

a

y

a

y

a

y

a

y p p

i

y

i

y

i

y

c
h

c
h

Recognize speech

71/69	

This	 Approach	 Works	

Application Speedups

MRI	 100x	
SVM-train	 20x	

SVM-classify	 109x	
Contour	 130x	

Object Recognition 	 80x	
Poselet	 20x	

Optical Flow	 32x	
Speech	 11x	

Value-at-risk	 60x	
Option Pricing	 25x	

IEEE TMI 2012	

ICML 2008	

ICCV 2009	

ECCV 2010	

Interspeech 2010, 2011	

WACV 2011	

“Considerations When Evaluating Microprocessor Platforms” In Proceedings of the 3rd USENIX conference
on Hot topics in parallelism (HotPar'11). USENIX Association, Berkeley, CA, USA.	

Wiley 2011	

>3000 Downloads	

>3000 Downloads	

72/69	

Outline	

n What	 doesn’t	 work	
n  Pieces	 of	 the	 problem	 …	 and	 soluPon	
n  General	 approach	 to	 architecPng	 parallel	 sw	
n  Detail	 on	 Structural	 Paherns	
n  Detail	 on	 ComputaPonal	 Paherns	
n  High-‐level	 examples	 of	 architecPng	 applicaPons	
n  Summary	

Architecting Paralle Software	

Keutzer and Mattson	

19	

73/69	

Recap:	 Architec0ng	 Parallel	 SoEware	

Identify the
Software
Structure

Identify the
Key

Computations

2. Define the
overall structure 	

3. Define computations
inside structural
elements	

4. Compose Structural
and computational
patterns to yield
software architecture	

Pipe&Filter	

"Image Feature Extraction for Mobile Processors", Mark Murphy, Hong Wang, Kurt Keutzer IISWC '09	

Catanzaro, Sundaram, Keutzer, “Fast SVM Training and Classification on
Graphics Processors”, ICML 2008

1. Start with a compelling,
performance sensitive
application.	

Image
Classification	

74/69	
74	

Graph-Algorithms	

Dynamic-Programming	

Dense-Linear-Algebra	

Sparse-Linear-Algebra	

Model-View-Controller 	

Iterative-Refinement	

Map-Reduce	

Layered-Systems	

Puppeteer	

Pipe-and-Filter	

Agent-and-Repository	

Process-Control	

Event-Based/Implicit-Invocation	

Arbitrary-Static-Task-Graph	

Unstructured-Grids	

Structured-Grids	

Graphical-Models	

Finite-State-Machines	

Backtrack-Branch-and-Bound	

N-Body-Methods	

Circuits	

Spectral-Methods	

Monte-Carlo	

Applications	

Structural Patterns 	
 Computational Patterns	

Task-Parallelism���
Divide and Conquer	

Data-Parallelism���
Pipeline	

Discrete-Event ���
Geometric-Decomposition ���
Speculation	

SPMD ���
Kernel-Par.	

Fork/Join ���
Actors ���
Vector-Par	

Distributed-Array���
Shared-Data	

Shared-Queue���
Shared-Map ���
Parallel Graph Traversal	

Coordinating Processes ���
Stream processing 	

Parallel Execution Patterns	

Parallel Algorithm Strategy Patterns	

Implementation Strategy Patterns	

Communication	

Shared Address Space Threads	

Task Driven Execution	

Algorithms and Data structure	
Program structure	

Synchronization	

Loop-Par.���
Workpile	

Thread/proc management	

Concurrency Foundation constructs (not expressed as patterns)	

Task Decomposition ���
Data Decomposition	

Ordered task groups ���
Data sharing	

Design Evaluation	

Finding Concurrency Patterns 	

OPL/PLPP	 2012	

Garlan and Shaw	

Architectural Styles	

Berkeley View	

13 dwarfs	

75/69	

Computa0onal	 PaPerns	 	
Make	 me	 Feel	 Smart	

§  For	 many	 years	 computaPon	 has	 been	 like	 a	 big	 ball	 of	 yarn	
§  ComputaPonal	 paherns	 help	 us	 to	 unravel	 it	 into	 13	 strands	
§  Alan	 Kay	 “PerspecPve	 is	 worth	 100	 IQ	 points.”	 	
§  ComputaPonal	 paherns	 give	 us	 perspecPve	 on	 computaPon	

76/69	

• Pipe-and-Filter
• Agent-and-Repository
• Event-based
• Layered Systems
• Model-view-controller
• Arbitrary Task Graphs
• Puppeteer
• Iterator/BSP
• MapReduce

Structural	 PaPerns	 	
Make	 me	 Feel	 Organized	

Structural Patterns

• The modularity provided by structural patterns make me feel
organized.
•  Even the most complex application can be broken down
into manageable modules

Architecting Paralle Software	

Keutzer and Mattson	

20	

77/69	

Summary	

§  The	 key	 to	 producPve	 and	 efficient	 parallel	 programming	 is	 creaPng	 	 a	
good	 somware	 architecture	 –	 a	 hierarchical	 composiPon	 of:	

§  Structural	 paherns:	 enforce	 modularity	 and	 expose	 invariants	
§  I	 showed	 you	 six	 –	 four	 more	 will	 be	 all	 you	 ever	 need	

§  ComputaPonal	 paherns:	 idenPfy	 key	 computaPons	 to	 be	 parallelized	
§  OrchestraPon	 of	 computaPonal	 and	 structural	 paherns	 creates	

architectures	 which	 greatly	 facilitates	 the	 development	 of	 parallel	
programs:	

	

Patterns: https://patterns.eecs.berkeley.edu/	

	

More examples

78

79 79

Architecting Speech Recognition

Signal	
Processing	

Inference	 Engine	

Recogni0on	
Network	

Voice	
Input	

Most	
Likely	
Word	

Sequence	

Iterator	

Pipe-‐and-‐filter	

MapReduce	

Beam
Search
Iterations

Active State
Computation Steps

Dynamic	
Programming	

Graphical	
Model	

Pipe-‐and-‐filter	

Large Vocabulary Continuous Speech Recognition Poster: Chong, Yi
Work also to appear at Emerging Applications for Manycore Architecture

80 80

CBIR Application Framework

Results

Exercise Classifier

Train Classifier

Feature Extraction

User Feedback

Choose Examples

New Images

?	

?	

Catanzaro, Sundaram, Keutzer, “Fast SVM Training and Classification on
Graphics Processors”, ICML 2008

Architecting Paralle Software	

Keutzer and Mattson	

21	

81 81

Feature Extraction

Image histograms are common to many feature extraction procedures,
and are an important feature in their own right

81

•  Agent and Repository: Each agent
computes a local transform of the
image, plus a local histogram.
•  Results are combined in the
repository, which contains the global
histogram

§  The data dependent access patterns found when constructing
histograms make them a natural fit for the agent and repository
pattern

82 82

Train Classifier:
SVM Training

82

Update
Optimality
Conditions

Select
Working

Set,
Solve QP

Train Classifier iterate

Iterator

MapReduce

Gap not small 	

enough?	

83 83

Exercise Classifier : SVM
Classification

Compute
dot

products

Compute
Kernel values,

sum & scale

Output	

Test	 Data	

SV	

Exercise Classifier

MapReduce

Dense Linear
Algebra

84

Reinvention of design?
n  In 1418 the Santa Maria del Fiore stood without a dome.
n  Brunelleschi won the competition to finish the dome.
n  Construction of the dome without the support of flying buttresses seemed

unthinkable.

Architecting Paralle Software	

Keutzer and Mattson	

22	

85

Innovation in architecture
n  After studying earlier

Roman and Greek
architecture, Brunelleschi
drew on diverse
architectural styles to arrive
at a dome design that could
stand independently

http://www.templejc.edu/dept/Art/ASmith/ARTS1304/Joe1/ZoomSlide0010.html	
 86

Innovation in tools

Scaffolding for cupola

http://www.artist-biography.info/gallery/filippo_brunelleschi/67/	

Mechanism for raising
materials

n  His construction of the dome design required the development of
new tools for construction, as well as an early (the first?) use of
architectural drawings (now lost).

87

Innovation in use of building materials

Herringbone pattern bricks

http://www.buildingstonemagazine.com/winter-06/art/dome8.jpg	

n  His construction of the dome design also required innovative use of
building materials.

88

Resulting Dome

Completed dome
http://www.duomofirenze.it/storia/

cupola_eng.htm

Architecting Paralle Software	

Keutzer and Mattson	

23	

89

The point?
n  Challenges to design and build the dome of Santa Maria del

Fiore showed underlying weaknesses of architectural
understanding, tools, and use of materials

n  By analogy, parallelizing code should not have thrown us for
such a loop. Our difficulties in facing the challenge of
developing parallel software are a symptom of underlying
weakness is in our abilities to:
¨  Architect software
¨  Develop robust tools and frameworks
¨  Re-use implementation approaches

n  Time for a serious rethink of all of software design

