CS267 Applications of Parallel Computers

www.cs.berkeley.edu/~demmel/cs267_Spr15/

Lecture 1: Introduction

Jim Demmel

EECS & Math Departments

demmel@berkeley.edu

1

Units of Measure • High Performance Computing (HPC) units are: - Flop: floating point operation, usually double precision unless noted - Flop/s: floating point operations per second - Bytes: size of data (a double precision floating point number is 8 bytes) Typical sizes are millions, billions, trillions... Mega Mflop/s = 10⁶ flop/sec Mbyte = 2²⁰ = 1048576 ~ 10⁶ bytes Giga Gflop/s = 10^9 flop/sec Gbyte = $2^{30} \sim 10^9$ bytes Tflop/s = 10^{12} flop/sec Tbyte = $2^{40} \sim 10^{12}$ bytes Tera Pflop/s = 10¹⁵ flop/sec Pbyte = 2⁵⁰ ~ 10¹⁵ bytes Peta Exa Eflop/s = 10¹⁸ flop/sec Ebyte = 2⁶⁰ ~ 10¹⁸ bytes Zetta Zflop/s = 10²¹ flop/sec Zbyte = 2⁷⁰ ~ 10²¹ bytes Yflop/s = 10²⁴ flop/sec Ybyte = 2⁸⁰ ~ 10²⁴ bytes Yotta Current fastest (public) machine ~ 55 Pflop/s, 3.1M cores - Up-to-date list at www.top500.org 01/20/2015 CS267 - Lecture 1 3

• Listir in the	ng the 500 most powerful computers
• Yard - So - Do	stick: Rmax of Linpack lve Ax=b, dense problem, matrix is random minated by dense matrix-matrix multiply
• Upda - IS0 - S0	ated twice a year: C' xy in June in Germany xy in November in the U.S.
• All in web	formation available from the TOP500 site at: www.top500.org
01/20/2015	CS267 - Lecture 1

	The TOP10 in N	ovemb	er 2014			_	
#	Site	Manufacturer	Computer	Country	Cores	Rmax	Power [MW]
1	National University of Defense Technology	NUDT	Tianhe-2 NUDT TH-IVB-FEP, Xeon 12C 2.2GHz, IntelXeon Phi	China	3,120,000	33.9	17.8
2	Oak Ridge National Laboratory	Cray	Titan Cray XK7, Opteron 16C 2.2GHz, Gemini, NVIDIA K20x	USA	560,640	17.6	8.21
3	Lawrence Livermore National Laboratory	IBM	Sequoia BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	1,572,864	17.2	7.89
4	RIKEN Advanced Institute for Computational Science	Fujitsu	K Computer SPARC64 VIIIfx 2.0GHz, Tofu Interconnect	Japan	795,024	10.5	12.7
5	Argonne National Laboratory	IBM	Mira BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	786,432	8.59	3.95
6	Swiss National Supercomputing Centre (CSCS)	Cray	Piz Daint Cray XC30, Xeon E5 8C 2.6GHz, Aries, NVIDIA K20x	Switzer- land	115,984	6.27	2.33
7	Texas Advanced Computing Center/UT	Dell	Stampede PowerEdge C8220, Xeon E5 8C 2.7GHz, Intel Xeon Phi	USA	462,462	5.17	4.51
8	Forschungszentrum Juelich (FZJ)	IBM	JuQUEEN BlueGene/Q, Power BQC 16C 1.6GHz, Custom	Germany	458,752	5.01	2.30
9	Lawrence Livermore National Laboratory	IBM	Vulcan BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	393,216	4.29	1.97
10	Government	Cray	Cray CS-Storm, Xeon E5 10C 2.2GHz, I-FDR, NVIDIDA K40	USA	72,800	3.58	1.50

	The TOP10 in N	ovemb	er 2014				
#	Site	Manufacturer		Country	Cores	Rmax [Pflops]	Power [MW]
1	National University of Defense Technology	NUDT	Tianhe-2 NUDT TH-IVB-FEP, Xeon 12C 2.2GHz, IntelXeon Phi	China	3,120,000	33.9	17.8
2	Oak Ridge National Laboratory	Cray	Titan Cray XK7, Opteron 16C 2.2GHz, Gemini, NVIDIA K20x	USA	560,640	17.6	8.21
3	Lawrence Livermore National Laboratory	IBM	Sequoia BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	1,572,864	17.2	7.89
4	RIKEN Advanced Institute for Computational Science	Fujitsu	K Computer SPARC64 VIIIfx 2.0GHz, Tofu Interconnect	Japan	795,024	10.5	12.7
5	Argonne National Laboratory	IBM	Mira BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	786,432	8.59	3.95
6	Swiss National Supercomputing Centre (CSCS)	Cray	Piz Daint Cray XC30, Xeon E5 8C 2.6GHz, Aries, NVIDIA K20x	Switzer- land	115,984	6.27	2.33
7	Texas Advanced Computing Center/UT	Dell	Stampede PowerEdge C8220, Xeon E5 8C 2.7GHz, Intel Xeon Phi	USA	462,462	5.17	4.51
8	Forschungszentrum Juelich (FZJ)	ІВМ	JuQUEEN BlueGene/Q, Power BQC 16C 1.6GHz, Custom	Germany	458,752	5.01	2.30
24	Lawrence Berkeley National Laboratory	Cray	Edison Cray XC30, Intel Xeon E5-2695v2, 2.4GHz	USA	133,824	1.65	
44	Lawrence Berkeley National Laboratory	Cray	Hopper Cray XE6, Opteron 12C 2.1 GHZ, Gemini	USA	153,408	1.05	2.90

	42 st List: The	TOP10	in November 2013				
	Site	Manufacturer	Computer	Country	Cores	Rmax [Pflops]	Power [MW]
1	National University of Defense Technology	NUDT	Tianhe-2 NUDT TH-IVB-FEP, Xeon 12C 2.2GHz, IntelXeon Phi	China	3,120,000	33.9	17.8
2	Oak Ridge National Laboratory	Cray	Titan Cray XK7, Opteron 16C 2.2GHz, Gemini, NVIDIA K20x	USA	560,640	17.6	8.21
3	Lawrence Livermore National Laboratory	ІВМ	Sequoia BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	1,572,864	17.2	7.89
4	RIKEN Advanced Institute for Computational Science	Fujitsu	K Computer SPARC64 VIIIfx 2.0GHz, Tofu Interconnect	Japan	795,024	10.5	12.7
5	Argonne National Laboratory	ІВМ	Mira BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	786,432	8.59	3.95
6	Swiss National Supercomputing Centre (CSCS)	Cray	Piz Daint Cray XC30, Xeon E5 8C 2.6GHz, Aries, NVIDIA K20x	Switzer- land	115,984	6.27	2.33
7	Texas Advanced Computing Center/UT	Dell	Stampede PowerEdge C8220, Xeon E5 8C 2.7GHz, Intel Xeon Phi	USA	462,462	5.17	4.51
8	Forschungszentrum Juelich (FZJ)	ІВМ	JuQUEEN BlueGene/Q, Power BQC 16C 1.6GHz, Custom	Germany	458,752	5.01	2.30
9	Lawrence Livermore National Laboratory	ІВМ	Vulcan BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	393,216	4.29	1.97
10	Leibniz Rechenzentrum	IBM	SuperMUC iDataPlex DX360M4, Xeon E5 8C 2.7GHz, Infiniband FDR	Germany	147,456	2.90	3.52

	Site	Manufacturer	Computer	Country	Cores	Rmax [Pflops]	Power [MW]
1	National University of Defense Technology	NUDT	Tianhe-2 NUDT TH-IVB-FEP, Xeon 12C 2.2GHz, IntelXeon Phi	China	3,120,000	33.9	17.
2	Oak Ridge National Laboratory	Cray	Titan Cray XK7, Opteron 16C 2.2GHz, Gemini, NVIDIA K20x	USA	560,640	17.6	8.2
3	Lawrence Livermore National Laboratory	ІВМ	Sequoia BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	1,572,864	17.2	7.8
4	RIKEN Advanced Institute for Computational Science	Fujitsu	K Computer SPARC64 VIIIfx 2.0GHz, Tofu Interconnect	Japan	795,024	10.5	12
5	Argonne National Laboratory	ІВМ	Mira BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	786,432	8.59	3.9
6	Swiss National Supercomputing Centre (CSCS)	Cray	Piz Daint Cray XC30, Xeon E5 8C 2.6GHz, Aries, NVIDIA K20x	Switzer- land	115,984	6.27	2.3
7	Texas Advanced Computing Center/UT	Dell	Stampede PowerEdge C8220, Xeon E5 8C 2.7GHz, Intel Xeon Phi	USA	462,462	5.17	4.5
8	Forschungszentrum Juelich (FZJ)	ІВМ	JuQUEEN BlueGene/Q, Power BQC 16C 1.6GHz, Custom	Germany	458,752	5.01	2.3
9	Lawrence Livermore National Laboratory	ІВМ	Vulcan BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	393,216	4.29	1.9
28	Lawrence Berkeley National Laboratory	Cray	Hopper Cray XE6, Opteron 12C 2.1 GHZ, Gemini	USA	153,408	1.05	2.9

	Site	Manufacturer	Computer	Country	Cores	Rmax [Pflops]	Powe [MW
1	Oak Ridge National Laboratory	Cray	Titan Cray XK7, Opteron 16C 2.2GHz, Gemini, NVIDIA K20x	USA	560,640	17.59	8.2
2	Lawrence Livermore National Laboratory	IBM	Sequoia BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	1,572,864	16.32	7.8
3	RIKEN Advanced Institute for Computational Science	Fujitsu	K computer SPARC64 VIIIfx 2.0GHz, Tofu Interconnect	Japan	705,024	10.51	12.6
4	Argonne National Laboratory	IBM	Mira BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	786,432	8.16	3.9
5	Forschungszentrum Juelich (FZJ)	IBM	JUQUEEN BlueGene/Q, Power BQC 16C 1.6GHz, Custom	Germany	393,216	4.14	1.9
6	Leibniz Rechenzentrum	IBM	SuperMUC iDataPlex DX360M4, Xeon E5 8C 2.7GHz, Infiniband FDR	Germany	147,456	2.90	3.4
7	Texas Advanced Computing Center/UT	Dell	Stampede PowerEdge C8220, Xeon E5 8C 2.7GHz, Intel Xeon Phi	USA	204,900	2.66	
8	National SuperComputer Center in Tianjin	NUDT	Tianhe-1A NUDT TH MPP, Xeon 6C, NVidia, FT-1000 8C	China	186,368	2.57	4.0
9	CINECA	IBM	Fermi BlueGene/Q, Power BQC 16C 1.6GHz, Custom	Italy	163,840	1.73	.8
10	IBM	IBM	DARPA Trial Subset Power 775, Power7 8C 3.84GHz, Custom	USA	63,360	1.52	3.5

	The TOP	10 in	November 2012, p	lus o	ne		_
	Site	Manufacturer	Computer	Country	Cores	Rmax [Pflops]	Power [MW]
1	Oak Ridge National Laboratory	Cray	Titan Cray XK7, Opteron 16C 2.2GHz, Gemini, NVIDIA K20x	USA	560,640	17.59	8.21
2	Lawrence Livermore National Laboratory	IBM	Sequoia BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	1,572,864	16.32	7.89
3	RIKEN Advanced Institute for Computational Science	Fujitsu	K computer SPARC64 VIIIfx 2.0GHz, Tofu Interconnect	Japan	705,024	10.51	12.66
4	Argonne National Laboratory	IBM	Mira BlueGene/Q, Power BQC 16C 1.6GHz, Custom	USA	786,432	8.16	3.95
5	Forschungszentrum Juelich (FZJ)	ІВМ	JUQUEEN BlueGene/Q, Power BQC 16C 1.6GHz, Custom	Germany	393,216	4.14	1.97
6	Leibniz Rechenzentrum	IBM	SuperMUC iDataPlex DX360M4, Xeon E5 8C 2.7GHz, Infiniband FDR	Germany	147,456	2.90	3.42
7	Texas Advanced Computing Center/UT	Dell	Stampede PowerEdge C8220, Xeon E5 8C 2.7GHz, Intel Xeon Phi	USA	204,900	2.66	
8	National SuperComputer Center in Tianjin	NUDT	Tianhe-1A NUDT TH MPP, Xeon 6C, NVidia, FT-1000 8C	China	186,368	2.57	4.04
9	CINECA	IBM	Fermi BlueGene/Q, Power BQC 16C 1.6GHz, Custom	Italy	163,840	1.73	.82
10	IBM	IBM	DARPA Trial Subset Power 775, Power7 8C 3.84GHz, Custom	USA	63,360	1.52	3.58
19	Lawrence Berkeley National Laboratory	Cray	Hopper Cray XE6, 6C 2.1 GHz	USA	153,408	1.054	2.91

- One piece is modeling the fluid flow in the atmosphere
 Solve Navier-Stokes equations
 - Roughly 100 Flops per grid point with 1 minute timestep
- · Computational requirements:
 - To match real-time, need 5 x 10^{11} flops in 60 seconds = 8 Gflop/s
 - Weather prediction (7 days in 24 hours) \rightarrow 56 Gflop/s
 - Climate prediction (50 years in 30 days) → 4.8 Tflop/s
 - To use in policy negotiations (50 years in 12 hours) \rightarrow 288 Tflop/s
- To double the grid resolution, computation is 8x to 16x
- State of the art models require integration of atmosphere, clouds, ocean, sea-ice, land models, plus possibly carbon cycle, geochemistry and more

CS267 - Lecture 1

• Current models are coarser than this

01/20/2015

39

Evolution Of CMB Data Sets: Cost > O(Np^3)								
Experiment	Nt	Np	N _b	Limiting Data	Notes			
COBE (1989)	2x10 ⁹	6x10 ³	3x101	Time	Satellite, Workstation			
BOOMERanG (1998)	3x10 ⁸	5x10⁵	3x101	Balloon, 1st HPC/NERSC				
(4yr) WMAP (2001)	7x10 ¹⁰	4x10 ⁷	1x10³	?	Satellite, Analysis-bound			
Planck (2007)	5x10 ¹¹	6x10 ⁸	6x10 ³	Time/ Pixel	Satellite, Major HPC/DA effort			
POLARBEAR (2007)	8x10 ¹²	6x10 ⁶	1x10 ³	Time	Ground, NG-multiplexing			
CMBPol (~2020)	10 ¹⁴	10 ⁹	10 ⁴	Time/ Pixel	Satellite, Early planning/design			
data compression								
01/20/2015		CS26	7 - Lecture 1	44				

Rough List of Topics

- Basics of computer architecture, memory hierarchies, performance
- Parallel Programming Models and Machines
 - Shared Memory and Multithreading
 - Distributed Memory and Message Passing
 - Data parallelism, GPUs
 - Cloud computing
- Parallel languages and libraries
 - Shared memory threads and OpenMP
 - MPI
 - Other Languages , frameworks (UPC, CUDA, PETSC, "Pattern Language", ...)
- · "Seven Dwarfs" of Scientific Computing
 - Dense & Sparse Linear Algebra
 - Structured and Unstructured Grids
 - Spectral methods (FFTs) and Particle Methods
- 6 additional motifs
 - Graph algorithms, Graphical models, Dynamic Programming, Branch & Bound, FSM, Logic
- General techniques
 - Autotuning, Load balancing, performance tools
- Applications: climate modeling materials science, astrophysics ... (guest lecturers)

Reading Materials · Pointers on class web page Must read: - "The Landscape of Parallel Processing Research: The View from Berkeley" - http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-183.pdf Some on-line texts: - Demmel's notes from CS267 Spring 1999, which are similar to 2000 and 2001. However, they contain links to html notes from 1996. - http://www.cs.berkeley.edu/~demmel/cs267_Spr99/ - Ian Foster's book, "Designing and Building Parallel Programming". - http://www-unix.mcs.anl.gov/dbpp/ · Potentially useful texts: - "Sourcebook for Parallel Computing", by Dongarra, Foster, Fox, ... - A general overview of parallel computing methods "Performance Optimization of Numerically Intensive Codes" by Stefan Goedecker and Adolfy Hoisie - This is a practical guide to optimization, mostly for those of you who have never done any optimization 62 01/20/2015 CS267 - Lecture 1

Reading	Materials (cont.)		<u></u>
 Recent bo art 	oks with papers about the cur	rent state of the	•
 David Ba Application 	der (ed.), "Petascale Computing, Algor ns", Chapman & Hall/CRC, 2007	ithms and	
- Michael H Processir	leroux, Padma Ragahvan, Horst Simor ng for Scientific Computing", SIAM, 200	n (ed.),"Parallel 16.	
- M. Sottile Program	, T. Mattson, C. Rasmussen, Introduct ning Languages, Chapman & Hall/CRC	ion to Concurrency in ; 2009.	
 More point 	ers on the web page		
			• {
01/20/2015	CS267 - Lecture 1	63	01/20/201

Students			
 73 75 register 28 CS or EEC 	ed or on the wa S grad student	aitlist (61 grad, 12 undergra s, rest from	d)
Applied Math Applied Science Astrophysics Bioengineering Business Admin Chemical Engine Chemistry Civil & Environm Engineering Geography	& Technology istration eering eental	Geography Industrial Engineering and Operations Research Information Management and Systems Math Mechanical Engineering Music Nuclear Engineering Physics Statistics	
8 CS or EECS	S undergrads, 4	double	
/20/2015	CS267 - Lecture 1	64	

