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CS 267  
Sources of  

Parallelism and Locality  
in Simulation – Part 2"

James Demmel !
www.cs.berkeley.edu/~demmel/cs267_Spr15!
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Recap of Last Lecture 
•  4 kinds of simulations 

•  Discrete Event Systems 
•  Particle Systems 
•  Ordinary Differential Equations (ODEs) 
•  Partial Differential Equations (PDEs) (today) 

•  Common problems: 
•  Load balancing 

•  May be due to lack of parallelism or poor work distribution 
•  Statically, divide grid (or graph) into blocks 
•  Dynamically, if load changes significantly during run 

•  Locality 
•  Partition into large chunks with low surface-to-volume ratio 

–  To minimize communication 
•  Distributed particles according to location, but use irregular spatial 

decomposition (e.g., quad tree) for load balance 
•  Constant tension between these two 

•  Particle-Mesh method: can’t balance particles (moving), balance mesh 
(fixed) and keep particles near mesh points without communication 
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Partial Differential Equations!
PDEs!
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Continuous Variables, Continuous Parameters 
Examples of such systems include 
•  Elliptic problems (steady state, global space dependence) 

•  Electrostatic or Gravitational Potential: Potential(position) 
•  Hyperbolic problems (time dependent, local space dependence): 

•  Sound waves: Pressure(position,time) 
•  Parabolic problems (time dependent, global space dependence) 

•  Heat flow:  Temperature(position, time) 
•  Diffusion:  Concentration(position, time) 

Global vs Local Dependence 
•  Global means either a lot of communication, or tiny time steps 
•  Local arises from finite wave speeds: limits communication 
 

Many problems combine features of above 
•  Fluid flow: Velocity,Pressure,Density(position,time) 
•  Elasticity:   Stress,Strain(position,time) 
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Example: Deriving the Heat Equation 

0 1x x+h
Consider a simple problem 
• A bar of uniform material, insulated except at ends 
•  Let u(x,t) be the temperature at position x at time t 
• Heat travels from x-h to x+h at rate proportional to: 

• As h !  0, we get the heat equation: 

d u(x,t)                  (u(x-h,t)-u(x,t))/h - (u(x,t)- u(x+h,t))/h
    dt                                                  h

= C *

d u(x,t)           d2 u(x,t)
    dt                  dx2

= C *

x-h
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Details of the Explicit Method for Heat 

• Discretize time and space using explicit approach           
(forward Euler) to approximate time derivative: 

     (u(x,t+δ) – u(x,t))/δ =  C  [ (u(x-h,t)-u(x,t))/h - (u(x,t)- u(x+h,t))/h  ] / h 
                                     =  C [u(x-h,t) – 2*u(x,t) + u(x+h,t)]/h2 
      Solve for  u(x,t+δ) : 
                       u(x,t+δ) =  u(x,t)+ C*δ /h2 *(u(x-h,t) – 2*u(x,t) + u(x+h,t)) 

•  Let z = C*δ /h2, simplify: 
     u(x,t+δ) =  z* u(x-h,t) + (1-2z)*u(x,t) + z*u(x+h,t) 

• Change variable x to j*h,  t to i*δ, and u(x,t) to u[j,i]  
       u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i]+ z*u[j+1,i] 

d u(x,t)           d2 u(x,t)
    dt                  dx2

= C *
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Explicit Solution of the Heat Equation 
• Use “finite differences” with u[j,i] as the temperature at 

•  time t= i*δ (i = 0,1,2,…) and position x = j*h (j=0,1,…,N=1/h) 
•  initial conditions on u[j,0]
•  boundary conditions on u[0,i] and u[N,i]

• At each timestep i = 0,1,2,... 

• This corresponds to 
•  Matrix-vector-multiply by T (next slide) 
•  Combine nearest neighbors on grid 

i=5

i=4

i=3

i=2

i=1

i=0
 u[0,0]   u[1,0]   u[2,0]   u[3,0]  u[4,0]   u[5,0]

For j=1 to N-1 

    u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i] + z*u[j+1,i]

where z =C*δ/h2 

i

j
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Matrix View of Explicit Method for Heat 
•  u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i] + z*u[j+1,i],   same as: 
•  u[ :, i+1] = T * u[ :, i] where T is tridiagonal: 

•  L called Laplacian (in 1D) 
• For a 2D mesh (5 point stencil) the Laplacian is pentadiagonal 

•  More on the matrix/grid views later 

1-2z z z 

Graph and “3 point stencil” 

T = = I – z*L,    L = 

2     -1  

-1     2    -1 

       -1     2    -1 

               -1    2    -1 

                     -1    2 

1-2z    z  

z    1-2z    z 

      z    1-2z    z 

             z    1-2z    z 

                   z    1-2z 
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Parallelism in Explicit Method for PDEs 
• Sparse matrix vector multiply, via Graph Partitioning 
• Partitioning the space (x) into p chunks 

•  good load balance (assuming large number of points relative to p) 
•  minimize communication (least dependence on data outside chunk) 

• Generalizes to  
•  multiple dimensions. 
•  arbitrary graphs (= arbitrary sparse matrices). 

• Explicit approach often used for hyperbolic equations 
•  Finite wave speed, so only depend on nearest chunks 

• Problem with explicit approach for heat (parabolic):  
•  numerical instability. 
•  solution blows up eventually if z = Cδ/h2  > .5 
•  need to make the time step δ very small when h is small:  δ < .5*h2  /C 
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Instability in Solving the Heat Equation Explicitly 
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Implicit Solution of the Heat Equation 

• Discretize time and space using implicit approach 
(Backward Euler) to approximate time derivative: 

     (u(x,t+δ) – u(x,t))/dt = C*(u(x-h,t+δ) – 2*u(x,t+δ) + u(x+h, t+δ))/h2 
        u(x,t) =  u(x,t+δ) - C*δ/h2 *(u(x-h,t+δ) – 2*u(x,t+δ) + u(x+h,t+δ)) 

•  Let z = C*δ/h2  and change variable t to i*δ, x to j*h and  
u(x,t) to u[j,i] 

       (I + z *L)* u[:, i+1] = u[:,i]  

• Where I is identity and 
    L is Laplacian as before 
        

2    -1  

-1    2    -1 

      -1     2    -1 

             -1    2     -1 

                   -1     2 

L =

d u(x,t)           d2 u(x,t)
    dt                  dx2

= C *
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Implicit Solution of the Heat Equation 

• The previous slide derived Backward Euler 
•  (I + z *L)* u[:, i+1] = u[:,i]  

• But the Trapezoidal Rule has better numerical properties: 

• Again I is the identity matrix and L is: 

• Other problems (elliptic instead of parabolic) yield 
Poisson’s equation (Lx = b in 1D) 

(I + (z/2)*L) * u[:,i+1]= (I - (z/2)*L) *u[:,i]

2    -1  

-1    2    -1 

      -1     2    -1 

             -1    2     -1 

                   -1     2 

 

L =" 2 -1 -1 

Graph and “stencil” 
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Relation of Poisson to Gravity, Electrostatics 
• Poisson equation arises in many problems 
• E.g., force on particle at (x,y,z) due to particle at 0 is 
      -(x,y,z)/r3,  where r = sqrt(x2  + y2  + z2) 
• Force is also gradient of potential V = -1/r 
     = -(d/dx V, d/dy V, d/dz V) = -grad V 
• V satisfies Poisson’s equation (try working this out!) 

d2V   + d2V   +  d2V    =   0
dx2           dy2        dz2
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2D Implicit Method  
• Similar to the 1D case, but the matrix L is now 

• Multiplying by this matrix (as in the explicit case) is 
simply nearest neighbor computation on 2D grid. 

• To solve this system, there are several techniques. 

4    -1           -1 

-1    4    -1          -1 

      -1     4                 -1 

 -1                4     -1          -1 

       -1         -1     4    -1          -1           

              -1         -1     4                  -1 

                   -1                   4    -1 

                          -1            -1     4    -1 

                                -1             -1     4 

L =
4 

-1 

-1 

-1 

-1 

Graph and “5 point stencil” 

3D case is analogous 
(7 point stencil) 

2/3/2015! CS267 Lecture 5! 15!

Algorithms for 2D (3D) Poisson Equation (N vars) 
Algorithm  Serial   PRAM   Memory      #Procs 
•  Dense LU  N3   N   N2   N2 
•  Band LU  N2  (N7/3)  N   N3/2  (N5/3)  N(N4/3) 
•  Jacobi  N2  (N5/3)  N (N2/3)   N   N 
•  Explicit Inv.  N   log N   N   N 
•  Conj.Gradients  N3/2 (N4/3)  N1/2 (1/3) *log N  N   N 
•  Red/Black SOR N3/2 (N4/3)  N1/2 (N4/3)  N   N 
•  Sparse LU  N3/2 (N2)   N1/2 (N2/3)  N*log N  (N4/3)  N(N4/3) 
•  FFT   N*log N   log N   N   N 
•  Multigrid  N   log2 N   N   N 
•  Lower bound  N   log N   N 

All entries in “Big-Oh” sense (constants omitted) 
PRAM is an idealized parallel model with zero cost communication 
References:  James Demmel, Applied Numerical Linear Algebra, SIAM, 1997. 
Decision tree to help choose algorithms: 
           www.netlib.org/linalg/html_templates/Templates.html 

2 2 2 
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Overview of Algorithms 
• Sorted in two orders (roughly): 

•  from slowest to fastest on sequential machines. 
•  from most general (works on any matrix) to most specialized (works on matrices “like” T). 

• Dense LU: Gaussian elimination; works on any N-by-N matrix. 
• Band LU: Exploits the fact that T is nonzero only on sqrt(N) diagonals nearest main 
diagonal. 

• Jacobi: Essentially does matrix-vector multiply by T in inner loop of iterative 
algorithm. 

• Explicit Inverse: Assume we want to solve many systems with T, so we can 
precompute and store inv(T) “for free”, and just multiply by it (but still expensive). 

• Conjugate Gradient: Uses matrix-vector multiplication, like Jacobi, but exploits 
mathematical properties of T that Jacobi does not. 

• Red-Black SOR (successive over-relaxation): Variation of Jacobi that exploits yet 
different mathematical properties of T.  Used in multigrid schemes. 

• Sparse LU: Gaussian elimination exploiting particular zero structure of T. 
• FFT (Fast Fourier Transform): Works only on matrices very like T. 
• Multigrid: Also works on matrices like T, that come from elliptic PDEs. 
• Lower Bound: Serial (time to print answer); parallel (time to combine N inputs). 
• Details in class notes and www.cs.berkeley.edu/~demmel/ma221. 
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Mflop/s Versus Run Time in Practice 
• Problem: Iterative solver for a convection-diffusion 

problem; run on a 1024-CPU NCUBE-2. 
• Reference: Shadid and Tuminaro, SIAM Parallel 

Processing Conference, March 1991. 

Solver   Flops   CPU Time(s) Mflop/s 
Jacobi   3.82x1012  2124   1800 
Gauss-Seidel  1.21x1012    885   1365 
Multigrid   2.13x109        7     318 
 
• Which solver would you select? 
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Summary of Approaches to Solving PDEs 
• As with ODEs, either explicit or implicit approaches are 

possible 
•  Explicit, sparse matrix-vector multiplication 
•  Implicit, sparse matrix solve at each step 

•  Direct solvers are hard (more on this later) 
•  Iterative solves turn into sparse matrix-vector multiplication 

–  Graph partitioning 

• Graph and sparse matrix correspondence: 
•  Sparse matrix-vector multiplication is nearest neighbor 
“averaging” on the underlying mesh 

• Not all nearest neighbor computations have the same 
efficiency 

•  Depends on the mesh structure (nonzero structure) and the 
number of Flops per point. 
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Comments on practical meshes 
• Regular 1D, 2D, 3D meshes 

•  Important as building blocks for more complicated meshes 
• Practical meshes are often irregular 

•  Composite meshes, consisting of multiple “bent” regular 
meshes joined at edges 

•  Unstructured meshes, with arbitrary mesh points and 
connectivities 

•  Adaptive meshes, which change resolution during solution 
process to put computational effort where needed 
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Parallelism in  Regular meshes 
• Computing a Stencil on a regular mesh 

•  need to communicate mesh points near boundary to 
neighboring processors. 

•  Often done with ghost regions 
•  Surface-to-volume ratio keeps communication down, but 

•  Still may be problematic in practice 

Implemented using 
“ghost” regions.  !

Adds memory overhead!
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Composite mesh from a mechanical structure 
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Converting the mesh to a matrix 
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Example of Matrix Reordering Application 

When performing 
Gaussian Elimination 
Zeros can be filled L 

Matrix can be reordered 
to reduce this fill 
But it’s not the same 
ordering as for 
parallelism 
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Irregular mesh: NASA Airfoil in 2D (direct solution) 
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Irregular mesh: Tapered Tube (multigrid) 
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Source of Unstructured Finite Element Mesh: Vertebra 

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta 

Study failure modes of trabecular Bone under stress 
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Micro-Computed Tomography"
µCT @ 22 µm resolution"

Mechanical Testing"
E, εyield, σult, etc."

Methods: µFE modeling (Gordon Bell Prize, 2004) 

3D image"

2.5 mm cube"
44 µm elements"

µFE mesh!

Source: Mark Adams, PPPL 

Up to 537M unknowns 
2/3/2015! CS267 Lecture 5! 28!

Adaptive Mesh Refinement (AMR) 

• Adaptive mesh around an explosion!
• Refinement done by estimating errors; refine mesh if too large!

• Parallelism !
• Mostly between “patches,” assigned to processors for load balance!
• May exploit parallelism within a patch  !

• Projects: !
•  Titanium (http://www.cs.berkeley.edu/projects/titanium)!
• Chombo (P. Colella, LBL), KeLP (S. Baden, UCSD), J. Bell, LBL!



CS267 Lecture 2 8 

2/3/2015! CS267 Lecture 5! 29!

Adaptive Mesh 

Shock waves in  gas dynamics using AMR (Adaptive Mesh Refinement) 
See: http://www.llnl.gov/CASC/SAMRAI/   
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Challenges of Irregular Meshes 
• How to generate them in the first place 

•  Start from geometric description of object 
•  Triangle, a 2D mesh partitioner by Jonathan Shewchuk 
•  3D harder! 

• How to partition them 
•  ParMetis, a parallel graph partitioner 

• How to design iterative solvers 
•  PETSc, a Portable Extensible Toolkit for Scientific Computing 
•  Prometheus, a multigrid solver for finite element problems on 

irregular meshes 
• How to design direct solvers 

•  SuperLU, parallel sparse Gaussian elimination 

• These are challenges to do sequentially, more so in parallel 
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Summary – sources of parallelism and locality 

• Current attempts to categorize main “kernels” 
dominating simulation codes 

•  “Seven Dwarfs” (P. Colella) 
• Structured grids  

•  including locally structured grids, as in AMR 
• Unstructured grids 
• Spectral methods (Fast Fourier Transform) 
• Dense Linear Algebra 
• Sparse Linear Algebra 

•  Both explicit (SpMV) and implicit (solving) 
• Particle Methods 
• Monte Carlo/Embarrassing Parallelism/Map Reduce 

(easy!) 

Motif/Dwarf: Common Computational Methods    
(Red Hot → Blue Cool) 
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1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

What  do commercial and CSE applications have in common? 


