
CS267 Lecture 2 1

2/3/2015! CS267 Lecture 5! 1!

CS 267  
Sources of  

Parallelism and Locality  
in Simulation – Part 2"

James Demmel !
www.cs.berkeley.edu/~demmel/cs267_Spr15!

2/3/2015! CS267 Lecture 5! 2!

Recap of Last Lecture
•  4 kinds of simulations

•  Discrete Event Systems
•  Particle Systems
•  Ordinary Differential Equations (ODEs)
•  Partial Differential Equations (PDEs) (today)

•  Common problems:
•  Load balancing

•  May be due to lack of parallelism or poor work distribution
•  Statically, divide grid (or graph) into blocks
•  Dynamically, if load changes significantly during run

•  Locality
•  Partition into large chunks with low surface-to-volume ratio

–  To minimize communication
•  Distributed particles according to location, but use irregular spatial

decomposition (e.g., quad tree) for load balance
•  Constant tension between these two

•  Particle-Mesh method: can’t balance particles (moving), balance mesh
(fixed) and keep particles near mesh points without communication

2/3/2015! CS267 Lecture 5! 3!

Partial Differential Equations!
PDEs!

2/3/2015! CS267 Lecture 5! 4!

Continuous Variables, Continuous Parameters
Examples of such systems include
•  Elliptic problems (steady state, global space dependence)

•  Electrostatic or Gravitational Potential: Potential(position)
•  Hyperbolic problems (time dependent, local space dependence):

•  Sound waves: Pressure(position,time)
•  Parabolic problems (time dependent, global space dependence)

•  Heat flow: Temperature(position, time)
•  Diffusion: Concentration(position, time)

Global vs Local Dependence
•  Global means either a lot of communication, or tiny time steps
•  Local arises from finite wave speeds: limits communication

Many problems combine features of above
•  Fluid flow: Velocity,Pressure,Density(position,time)
•  Elasticity: Stress,Strain(position,time)

CS267 Lecture 2 2

2/3/2015! CS267 Lecture 5! 5!

Example: Deriving the Heat Equation

0 1x x+h
Consider a simple problem
• A bar of uniform material, insulated except at ends
•  Let u(x,t) be the temperature at position x at time t
• Heat travels from x-h to x+h at rate proportional to:

• As h ! 0, we get the heat equation:

d u(x,t) (u(x-h,t)-u(x,t))/h - (u(x,t)- u(x+h,t))/h
 dt h

= C *

d u(x,t) d2 u(x,t)
 dt dx2

= C *

x-h

2/3/2015! CS267 Lecture 5! 6!

Details of the Explicit Method for Heat

• Discretize time and space using explicit approach
(forward Euler) to approximate time derivative:

 (u(x,t+δ) – u(x,t))/δ = C [(u(x-h,t)-u(x,t))/h - (u(x,t)- u(x+h,t))/h] / h
 = C [u(x-h,t) – 2*u(x,t) + u(x+h,t)]/h2
 Solve for u(x,t+δ) :
 u(x,t+δ) = u(x,t)+ C*δ /h2 *(u(x-h,t) – 2*u(x,t) + u(x+h,t))

•  Let z = C*δ /h2, simplify:
 u(x,t+δ) = z* u(x-h,t) + (1-2z)*u(x,t) + z*u(x+h,t)

• Change variable x to j*h, t to i*δ, and u(x,t) to u[j,i]
 u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i]+ z*u[j+1,i]

d u(x,t) d2 u(x,t)
 dt dx2

= C *

2/3/2015! CS267 Lecture 5! 7!

Explicit Solution of the Heat Equation
• Use “finite differences” with u[j,i] as the temperature at

•  time t= i*δ (i = 0,1,2,…) and position x = j*h (j=0,1,…,N=1/h)
•  initial conditions on u[j,0]
•  boundary conditions on u[0,i] and u[N,i]

• At each timestep i = 0,1,2,...

• This corresponds to
•  Matrix-vector-multiply by T (next slide)
•  Combine nearest neighbors on grid

i=5

i=4

i=3

i=2

i=1

i=0
 u[0,0] u[1,0] u[2,0] u[3,0] u[4,0] u[5,0]

For j=1 to N-1

 u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i] + z*u[j+1,i]

where z =C*δ/h2

i

j

2/3/2015! CS267 Lecture 5! 8!

Matrix View of Explicit Method for Heat
•  u[j,i+1]= z*u[j-1,i]+ (1-2*z)*u[j,i] + z*u[j+1,i], same as:
•  u[:, i+1] = T * u[:, i] where T is tridiagonal:

•  L called Laplacian (in 1D)
• For a 2D mesh (5 point stencil) the Laplacian is pentadiagonal

•  More on the matrix/grid views later

1-2z z z

Graph and “3 point stencil”

T = = I – z*L, L =

2 -1

-1 2 -1

 -1 2 -1

 -1 2 -1

 -1 2

1-2z z

z 1-2z z

 z 1-2z z

 z 1-2z z

 z 1-2z

CS267 Lecture 2 3

2/3/2015! CS267 Lecture 5! 9!

Parallelism in Explicit Method for PDEs
• Sparse matrix vector multiply, via Graph Partitioning
• Partitioning the space (x) into p chunks

•  good load balance (assuming large number of points relative to p)
•  minimize communication (least dependence on data outside chunk)

• Generalizes to
•  multiple dimensions.
•  arbitrary graphs (= arbitrary sparse matrices).

• Explicit approach often used for hyperbolic equations
•  Finite wave speed, so only depend on nearest chunks

• Problem with explicit approach for heat (parabolic):
•  numerical instability.
•  solution blows up eventually if z = Cδ/h2 > .5
•  need to make the time step δ very small when h is small: δ < .5*h2 /C

2/3/2015! CS267 Lecture 5! 10!

Instability in Solving the Heat Equation Explicitly

2/3/2015! CS267 Lecture 5! 11!

Implicit Solution of the Heat Equation

• Discretize time and space using implicit approach
(Backward Euler) to approximate time derivative:

 (u(x,t+δ) – u(x,t))/dt = C*(u(x-h,t+δ) – 2*u(x,t+δ) + u(x+h, t+δ))/h2
 u(x,t) = u(x,t+δ) - C*δ/h2 *(u(x-h,t+δ) – 2*u(x,t+δ) + u(x+h,t+δ))

•  Let z = C*δ/h2 and change variable t to i*δ, x to j*h and
u(x,t) to u[j,i]

 (I + z *L)* u[:, i+1] = u[:,i]

• Where I is identity and
 L is Laplacian as before

2 -1

-1 2 -1

 -1 2 -1

 -1 2 -1

 -1 2

L =

d u(x,t) d2 u(x,t)
 dt dx2

= C *

2/3/2015! CS267 Lecture 5! 12!

Implicit Solution of the Heat Equation

• The previous slide derived Backward Euler
•  (I + z *L)* u[:, i+1] = u[:,i]

• But the Trapezoidal Rule has better numerical properties:

• Again I is the identity matrix and L is:

• Other problems (elliptic instead of parabolic) yield
Poisson’s equation (Lx = b in 1D)

(I + (z/2)*L) * u[:,i+1]= (I - (z/2)*L) *u[:,i]

2 -1

-1 2 -1

 -1 2 -1

 -1 2 -1

 -1 2

L =" 2 -1 -1

Graph and “stencil”

CS267 Lecture 2 4

2/3/2015! CS267 Lecture 5! 13!

Relation of Poisson to Gravity, Electrostatics
• Poisson equation arises in many problems
• E.g., force on particle at (x,y,z) due to particle at 0 is
 -(x,y,z)/r3, where r = sqrt(x2 + y2 + z2)
• Force is also gradient of potential V = -1/r
 = -(d/dx V, d/dy V, d/dz V) = -grad V
• V satisfies Poisson’s equation (try working this out!)

d2V + d2V + d2V = 0
dx2 dy2 dz2

2/3/2015! CS267 Lecture 5! 14!

2D Implicit Method
• Similar to the 1D case, but the matrix L is now

• Multiplying by this matrix (as in the explicit case) is
simply nearest neighbor computation on 2D grid.

• To solve this system, there are several techniques.

4 -1 -1

-1 4 -1 -1

 -1 4 -1

 -1 4 -1 -1

 -1 -1 4 -1 -1

 -1 -1 4 -1

 -1 4 -1

 -1 -1 4 -1

 -1 -1 4

L =
4

-1

-1

-1

-1

Graph and “5 point stencil”

3D case is analogous
(7 point stencil)

2/3/2015! CS267 Lecture 5! 15!

Algorithms for 2D (3D) Poisson Equation (N vars)
Algorithm Serial PRAM Memory #Procs
•  Dense LU N3 N N2 N2
•  Band LU N2 (N7/3) N N3/2 (N5/3) N(N4/3)
•  Jacobi N2 (N5/3) N (N2/3) N N
•  Explicit Inv. N log N N N
•  Conj.Gradients N3/2 (N4/3) N1/2 (1/3) *log N N N
•  Red/Black SOR N3/2 (N4/3) N1/2 (N4/3) N N
•  Sparse LU N3/2 (N2) N1/2 (N2/3) N*log N (N4/3) N(N4/3)
•  FFT N*log N log N N N
•  Multigrid N log2 N N N
•  Lower bound N log N N

All entries in “Big-Oh” sense (constants omitted)
PRAM is an idealized parallel model with zero cost communication
References: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.
Decision tree to help choose algorithms:
 www.netlib.org/linalg/html_templates/Templates.html

2 2 2

2/3/2015! CS267 Lecture 5! 16!

Overview of Algorithms
• Sorted in two orders (roughly):

•  from slowest to fastest on sequential machines.
•  from most general (works on any matrix) to most specialized (works on matrices “like” T).

• Dense LU: Gaussian elimination; works on any N-by-N matrix.
• Band LU: Exploits the fact that T is nonzero only on sqrt(N) diagonals nearest main
diagonal.

• Jacobi: Essentially does matrix-vector multiply by T in inner loop of iterative
algorithm.

• Explicit Inverse: Assume we want to solve many systems with T, so we can
precompute and store inv(T) “for free”, and just multiply by it (but still expensive).

• Conjugate Gradient: Uses matrix-vector multiplication, like Jacobi, but exploits
mathematical properties of T that Jacobi does not.

• Red-Black SOR (successive over-relaxation): Variation of Jacobi that exploits yet
different mathematical properties of T. Used in multigrid schemes.

• Sparse LU: Gaussian elimination exploiting particular zero structure of T.
• FFT (Fast Fourier Transform): Works only on matrices very like T.
• Multigrid: Also works on matrices like T, that come from elliptic PDEs.
• Lower Bound: Serial (time to print answer); parallel (time to combine N inputs).
• Details in class notes and www.cs.berkeley.edu/~demmel/ma221.

CS267 Lecture 2 5

2/3/2015! CS267 Lecture 5! 17!

Mflop/s Versus Run Time in Practice
• Problem: Iterative solver for a convection-diffusion

problem; run on a 1024-CPU NCUBE-2.
• Reference: Shadid and Tuminaro, SIAM Parallel

Processing Conference, March 1991.

Solver Flops CPU Time(s) Mflop/s
Jacobi 3.82x1012 2124 1800
Gauss-Seidel 1.21x1012 885 1365
Multigrid 2.13x109 7 318

• Which solver would you select?

2/3/2015! CS267 Lecture 5! 18!

Summary of Approaches to Solving PDEs
• As with ODEs, either explicit or implicit approaches are

possible
•  Explicit, sparse matrix-vector multiplication
•  Implicit, sparse matrix solve at each step

•  Direct solvers are hard (more on this later)
•  Iterative solves turn into sparse matrix-vector multiplication

–  Graph partitioning

• Graph and sparse matrix correspondence:
•  Sparse matrix-vector multiplication is nearest neighbor
“averaging” on the underlying mesh

• Not all nearest neighbor computations have the same
efficiency

•  Depends on the mesh structure (nonzero structure) and the
number of Flops per point.

2/3/2015! CS267 Lecture 5! 19!

Comments on practical meshes
• Regular 1D, 2D, 3D meshes

•  Important as building blocks for more complicated meshes
• Practical meshes are often irregular

•  Composite meshes, consisting of multiple “bent” regular
meshes joined at edges

•  Unstructured meshes, with arbitrary mesh points and
connectivities

•  Adaptive meshes, which change resolution during solution
process to put computational effort where needed

2/3/2015! CS267 Lecture 5! 20!

Parallelism in Regular meshes
• Computing a Stencil on a regular mesh

•  need to communicate mesh points near boundary to
neighboring processors.

•  Often done with ghost regions
•  Surface-to-volume ratio keeps communication down, but

•  Still may be problematic in practice

Implemented using
“ghost” regions. !

Adds memory overhead!

CS267 Lecture 2 6

2/3/2015! CS267 Lecture 5! 21!

Composite mesh from a mechanical structure

2/3/2015! CS267 Lecture 5! 22!

Converting the mesh to a matrix

2/3/2015! CS267 Lecture 7! 23!

Example of Matrix Reordering Application

When performing
Gaussian Elimination
Zeros can be filled L

Matrix can be reordered
to reduce this fill
But it’s not the same
ordering as for
parallelism

2/3/2015! CS267 Lecture 5! 24!

Irregular mesh: NASA Airfoil in 2D (direct solution)

CS267 Lecture 2 7

2/3/2015! CS267 Lecture 9! 25!

Irregular mesh: Tapered Tube (multigrid)

2/3/2015! CS267 Lecture 5! 26!

Source of Unstructured Finite Element Mesh: Vertebra

Source: M. Adams, H. Bayraktar, T. Keaveny, P. Papadopoulos, A. Gupta

Study failure modes of trabecular Bone under stress

2/3/2015! CS267 Lecture 5! 27!

Micro-Computed Tomography"
µCT @ 22 µm resolution"

Mechanical Testing"
E, εyield, σult, etc."

Methods: µFE modeling (Gordon Bell Prize, 2004)

3D image"

2.5 mm cube"
44 µm elements"

µFE mesh!

Source: Mark Adams, PPPL

Up to 537M unknowns
2/3/2015! CS267 Lecture 5! 28!

Adaptive Mesh Refinement (AMR)

• Adaptive mesh around an explosion!
• Refinement done by estimating errors; refine mesh if too large!

• Parallelism !
• Mostly between “patches,” assigned to processors for load balance!
• May exploit parallelism within a patch !

• Projects: !
•  Titanium (http://www.cs.berkeley.edu/projects/titanium)!
• Chombo (P. Colella, LBL), KeLP (S. Baden, UCSD), J. Bell, LBL!

CS267 Lecture 2 8

2/3/2015! CS267 Lecture 5! 29!

Adaptive Mesh

Shock waves in gas dynamics using AMR (Adaptive Mesh Refinement)
See: http://www.llnl.gov/CASC/SAMRAI/

flu
id

 d
en

si
ty

2/3/2015! CS267 Lecture 5! 30!

Challenges of Irregular Meshes
• How to generate them in the first place

•  Start from geometric description of object
•  Triangle, a 2D mesh partitioner by Jonathan Shewchuk
•  3D harder!

• How to partition them
•  ParMetis, a parallel graph partitioner

• How to design iterative solvers
•  PETSc, a Portable Extensible Toolkit for Scientific Computing
•  Prometheus, a multigrid solver for finite element problems on

irregular meshes
• How to design direct solvers

•  SuperLU, parallel sparse Gaussian elimination

• These are challenges to do sequentially, more so in parallel

2/3/2015! CS267 Lecture 5! 31!

Summary – sources of parallelism and locality

• Current attempts to categorize main “kernels”
dominating simulation codes

•  “Seven Dwarfs” (P. Colella)
• Structured grids

•  including locally structured grids, as in AMR
• Unstructured grids
• Spectral methods (Fast Fourier Transform)
• Dense Linear Algebra
• Sparse Linear Algebra

•  Both explicit (SpMV) and implicit (solving)
• Particle Methods
• Monte Carlo/Embarrassing Parallelism/Map Reduce

(easy!)

Motif/Dwarf: Common Computational Methods
(Red Hot → Blue Cool)

Em
be

d

SP
EC

D
B

G
am

es

M
L

H
PC Health Image Speech Music Browser

1 Finite State Mach.
2 Combinational
3 Graph Traversal
4 Structured Grid
5 Dense Matrix
6 Sparse Matrix
7 Spectral (FFT)
8 Dynamic Prog
9 N-Body

10 MapReduce
11 Backtrack/ B&B
12 Graphical Models
13 Unstructured Grid

What do commercial and CSE applications have in common?

