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Parallel Programming Problem: Histogram 

• Consider the problem of computing a histogram: 
- Large number of “words” streaming in from somewhere 
- You want to count the # of words with a given property 

•  In shared memory 
- Lock each bucket 

A’s B’s C’s … Y’s Z’s 

• Distributed memory: the array is huge and spread out 
- Each processor has a substream and sends +1 to the 

appropriate processor… and that processor “receives” 

A’s B’s C’s D’s Y’s Z’s … 



PGAS = Partitioned Global Address Space 

• Global address space: thread may directly read/write 
remote data  
• Convenience of shared memory 

• Partitioned: data is designated as local or global 
• Locality and scalability of message passing 
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Programming Challenges and Solutions 

Message Passing Programming  
Divide up domain in pieces 
Each compute one piece 
Exchange (send/receive) data 
 
PVM, MPI, and many libraries 

Global Address Space Programming 
Each start computing 
Grab whatever you need whenever 
 
Global Address Space Languages 
and Libraries  
 ~10% of NERSC apps use some kind of PGAS-like model 



Science Across the “Irregularity” Spectrum 

Massive 
Independent 

Jobs for 
Analysis and 
Simulations 

Nearest 
Neighbor 

Simulations 

All-to-All 
Simulations 

Random 
access, large 
data Analysis 

Data analysis and simulation 



Low Overhead Atomic Updates Enable Genomics 
Assembly Grand Challenge 

k-mers  

New analysis filters errors 
using probabilistic “Bloom 

Filter”  

Graph algorithm (connected components) 
scales to 15K cores on NERSC’s Edison 

contigs 

Scaffolds using Scalable Alignment 

Human: 44 hours to 20 secs 
Wheat: “doesn’t run” to 32 secs 

x 
x 

New fast I/O using SeqDB over HDF5 

reads 
Meraculous Assembly Pipeline 

UPC 
•  Gives tera- to petabtye “shared” 

memory 
•  Combines with parallel I/O new 

genome mapping algorithm to 
anchor 92% of wheat chromosome 

Meraculous assembler is used in production 
at the Joint Genome Institute 
•  Wheat assembly is a “grand challenge”  
•  Hardest part is contig generation  (large 

in-memory hash table) 



History of UPC 
•  Initial Tech. Report from IDA in collaboration with LLNL 

and UCB in May 1999 (led by IDA). 
- Based on Split-C (UCB), AC (IDA) and PCP (LLNL) 

• UPC consortium participants (past and present) are:  
- ARSC, Compaq, CSC, Cray Inc., Etnus, GMU, HP, IDA CCS, 

Intrepid Technologies, LBNL, LLNL, MTU, NSA, SGI, Sun 
Microsystems, UCB, U. Florida, US DOD 
- UPC is a community effort, well beyond UCB/LBNL 

• Design goals: high performance, expressive, consistent 
with C goals, …, portable 

• UPC Today 
- Multiple vendor and open compilers (Cray, HP, IBM, SGI, gcc-upc 

from Intrepid, Berkeley UPC) 
- “Pseudo standard” by moving into gcc trunk 
- Most widely used on irregular / graph problems today 



Bringing Users Along: UPC Experience 

• Ecosystem:  
- Users with a need (fine-grained random access) 
- Machines with RDMA (not full hardware GAS) 
- Common runtime; Commercial and free software 
- Sustained funding and Center procurements 

• Success models: 
- Adoption by users: vectors à MPI, Python and Perl, UPC/CAF 
- Influence traditional models: MPI 1-sided; OpenMP locality control 
- Enable future models: Chapel, X10,… 

1991 
Active Msgs 
are fast 

1992 First Split-C 
(compiler class) 

1992 
First AC 
(accelerators + 
split memory) 

1993 
Split-C funding 
(DOE) 

1997 
First UPC 
Meeting 

“best of” AC, 
Split-C, PCP 

2001 
First UPC 
Funding 

2003 Berkeley 
Compiler release 

2001 
gcc-upc at Intrepid 

2006 
UPC in NERSC 
procurement 

2002 GASNet 
Spec 

2010 
Hybrid MPI/UPC 

Other GASNet-based languages 



UPC Execution 
Model"



UPC Execution Model 

•  A number of threads working independently in a SPMD 
fashion 
-  Number of threads specified at compile-time or run-time; 

available as program variable THREADS 
-  MYTHREAD specifies thread index (0..THREADS-1) 
-  upc_barrier is a global synchronization: all wait 
-  There is a form of parallel loop that we will see later 

•  There are two compilation modes 
-  Static Threads mode: 

•  THREADS is specified at compile time by the user 
•  The program may use THREADS as a compile-time constant 

-  Dynamic threads mode: 
•  Compiled code may be run with varying numbers of threads 



Hello World in UPC 

• Any legal C program is also a legal UPC program 
•  If you compile and run it as UPC with P threads, it will 

run P copies of the program. 
• Using this fact, plus the a few UPC keywords: 

#include <upc.h>  /* needed for UPC extensions */ 
#include <stdio.h> 
 
main() { 
  printf("Thread %d of %d: hello UPC world\n",  
         MYTHREAD, THREADS); 
} 



Example: Monte Carlo Pi Calculation 

• Estimate Pi by throwing darts at a unit square 
• Calculate percentage that fall in the unit circle 

- Area of square = r2 = 1 
- Area of circle quadrant = ¼ * π r2 = π/4  

• Randomly throw darts at x,y positions 
•  If x2 + y2 < 1, then point is inside circle 
• Compute ratio: 

- # points inside / # points total 
-  π = 4*ratio  

r =1 



Each thread calls “hit” separately 

Initialize random in 
math library 

Each thread can use 
input arguments 

Each thread gets its own 
copy of these variables 

Pi in UPC  

• Independent estimates of pi: 
  main(int argc, char **argv) { 
    int i, hits, trials = 0; 
    double pi; 
 
    if (argc != 2)trials = 1000000; 
    else trials = atoi(argv[1]); 
 
    srand(MYTHREAD*17); 
 
    for (i=0; i < trials; i++) hits += hit(); 
    pi = 4.0*hits/trials; 
    printf("PI estimated to %f.", pi); 
  } 



Helper Code for Pi in UPC 

• Required includes: 
    #include <stdio.h> 
    #include <math.h>  
    #include <upc.h>  

• Function to throw dart and calculate where it hits: 
  int hit(){ 
    int const rand_max = 0xFFFFFF; 
    double x = ((double) rand()) / RAND_MAX; 
    double y = ((double) rand()) / RAND_MAX; 
    if ((x*x + y*y) <= 1.0) { 
         return(1); 
    } else { 
         return(0); 
    } 
  } 



Shared vs. Private 
Variables"



Private vs. Shared Variables in UPC 

• Normal C variables and objects are allocated in the private 
memory space for each thread. 

• Shared variables are allocated only once, with thread 0 
     shared int ours;  // use sparingly: performance 
     int mine; 

• Shared variables may not have dynamic lifetime:  may not 
occur in a function definition, except as static.  Why? 

Shared 
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Private 
mine:  mine:  mine:  

Thread0   Thread1                                       Threadn 

ours:  



Pi in UPC: Shared Memory Style 

• Parallel computing of pi, but with a bug 
  shared int hits; 
  main(int argc, char **argv) { 
      int i, my_trials = 0; 
      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)    
        hits += hit(); 
      upc_barrier; 
      if (MYTHREAD == 0) { 
        printf("PI estimated to %f.", 4.0*hits/trials); 
      } 
   } 

shared variable to 
record hits 

divide work up evenly 

accumulate hits 

What is the problem with this program? 



Shared Arrays Are Cyclic By Default 

• Shared scalars always live in thread 0 
• Shared arrays are spread over the threads 
• Shared array elements are spread across the threads 

shared int x[THREADS]        /* 1 element per thread */ 
shared int y[3][THREADS] /* 3 elements per thread */ 
shared int z[3][3]               /* 2 or 3 elements per thread */ 

•  In the pictures below, assume THREADS = 4 
- Blue elts have affinity to thread 0 

x 

y 

z 

As a 2D array, y is 
logically blocked 
by columns 

Think of linearized 
C array, then map 
in round-robin 

z is not 



Pi in UPC: Shared Array Version 

• Alternative fix to the race condition  
• Have each thread update a separate counter: 

- But do it in a shared array 
- Have one thread compute sum 

shared int all_hits [THREADS]; 
main(int argc, char **argv) { 
  … declarations an initialization code omitted 
  for (i=0; i < my_trials; i++)  
    all_hits[MYTHREAD] += hit(); 
  upc_barrier; 
  if (MYTHREAD == 0) { 
    for (i=0; i < THREADS; i++) hits += all_hits[i]; 
    printf("PI estimated to %f.", 4.0*hits/trials); 
  } 
} 

all_hits is 
shared by all 
processors, 
just as hits was 

update element 
with local affinity 



UPC 
Synchronization"



UPC Global Synchronization 

•  UPC has two basic forms of barriers: 
-  Barrier: block until all other threads arrive  

 upc_barrier 
-  Split-phase barriers 
   upc_notify;  this thread is ready for barrier 
      do computation unrelated to barrier 
   upc_wait;      wait for others to be ready 

•  Optional labels allow for debugging 
#define MERGE_BARRIER 12 
if (MYTHREAD%2 == 0) { 
     ... 
     upc_barrier MERGE_BARRIER;   
} else { 
     ... 
     upc_barrier MERGE_BARRIER; 
} 



Synchronization - Locks 

•  Locks in UPC are represented by an opaque type: 
upc_lock_t 

•  Locks must be allocated before use: 
upc_lock_t *upc_all_lock_alloc(void); 

   allocates 1 lock, pointer to all threads 
upc_lock_t *upc_global_lock_alloc(void); 

     allocates 1 lock, pointer to one thread 
•  To use a lock: 

void upc_lock(upc_lock_t *l) 
void upc_unlock(upc_lock_t *l) 

  use at start and end of critical region 
•  Locks can be freed when not in use 

void upc_lock_free(upc_lock_t *ptr); 



Pi in UPC: Shared Memory Style 

• Like pthreads, but use shared accesses judiciously 
  shared int hits; 
  main(int argc, char **argv) { 
      int i, my_hits, my_trials = 0; 
  upc_lock_t *hit_lock = upc_all_lock_alloc(); 
      int trials = atoi(argv[1]); 
      my_trials = (trials + THREADS - 1)/THREADS; 
      srand(MYTHREAD*17); 
      for (i=0; i < my_trials; i++)  
         my_hits += hit(); 
      upc_lock(hit_lock); 
      hits += my_hits; 
      upc_unlock(hit_lock); 
      upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*hits/trials); 
   } 

create a lock 

accumulate hits 
locally 

accumulate 
across threads 

other private variables 

one shared scalar variable 



Recap: Private vs. Shared Variables in UPC 

• We saw several kinds of variables in the pi example 
- Private scalars (my_hits) 
- Shared scalars (hits) 
- Shared arrays (all_hits) 
- Shared locks (hit_lock) 

Shared 
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Private 
my_hits:  my_hits:  my_hits:  

Thread0   Thread1                                       Threadn 

all_hits[0]: 

hits:  

all_hits[n]: all_hits[1]: 

hit_lock:  

where: 
n=Threads-1 



UPC Collectives"



UPC (Value-Based) Collectives 

•  A portable library of collectives on scalar values (not arrays) 

 Example:  x = bupc_allv_reduce(double, x, 0, UPC_ADD) 
  TYPE bupc_allv_reduce(TYPE, TYPE value, int root, upc_op_t op)  
-  'TYPE' is the type of value being collected 
-  root is the thread ID for the root (e.g., the source of a broadcast) 
-  'value’ is both the input and output (must be a “variable” or l-value) 
-  op is the operation: UPC_ADD, UPC_MULT, UPC_MIN, …  

•  Computational Collectives: reductions and scan (parallel prefix)   
•  Data movement collectives: broadcast, scatter, gather 

•  Portable implementation available from: 
- http://upc.lbl.gov/download/dist/upcr_preinclude/bupc_collectivev.h    

•  UPC also has more general collectives over arrays 
•  http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf 



Pi in UPC: Data Parallel Style 

• The previous version of Pi works, but is not scalable: 
- On a large # of threads, the locked region will be a bottleneck 

• Use a reduction for better scalability 
   
  #include <bupc_collectivev.h> 
  // shared int hits; 
  main(int argc, char **argv) { 
      ... 
      for (i=0; i < my_trials; i++)  
         my_hits += hit(); 
      my_hits =         // type, input, thread, op 
         bupc_allv_reduce(int, my_hits, 0, UPC_ADD);  
      // upc_barrier; 
      if (MYTHREAD == 0)  
        printf("PI: %f", 4.0*my_hits/trials); 
   } 

 Berkeley collectives 
no shared variables 

barrier implied by collective 



UPC Collectives in General 

•  The UPC collectives interface is in the language spec: 
- http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf 

•  It contains typical functions: 
- Data movement: broadcast, scatter, gather, … 
- Computational: reduce, prefix, … 

•  Interface has synchronization modes: 
- Avoid over-synchronizing (barrier before/after is simplest 

semantics, but may be unnecessary) 
- Data being collected may be read/written by any thread 

simultaneously 
•  Simple interface for collecting scalar values (int, double,…) 

- Berkeley UPC value-based collectives  
- Works with any compiler 
- http://upc.lbl.gov/docs/user/README-collectivev.txt 



local 

shared 

Full UPC Collectives 
- Value-based collectives pass in and return scalar values  
- But sometimes you want to collect over arrays 
- When can a collective argument begin executing? 

•  Arguments with affinity to thread i are ready when thread i calls the 
function; results with affinity to thread i are ready when thread i returns. 

•  This is appealing but it is incorrect: In a broadcast, thread 1 does not 
know when thread 0 is ready. 

0 2 1 

dst dst dst 

src src src 

Slide source: Steve Seidel, MTU 



UPC Collective: Sync Flags  

•  In full UPC Collectives, blocks of data may be collected 
•  A extra argument of each collective function is the sync mode of type 

upc_flag_t.  
•  Values of sync mode are formed by or-ing together a constant of the form 

UPC_IN_XSYNC and a constant of the form UPC_OUT_YSYNC, where X 
and Y may be NO, MY, or ALL. 

•  If sync_mode is (UPC IN_XSYNC | UPC OUT YSYNC), then if X is: 
-  NO the collective function may begin to read or write data when the first thread 

has entered the collective function call, 
- MY the collective function may begin to read or write only data which has 

affinity to threads that have entered the collective function call, and 
-  ALL the collective function may begin to read or write data only after all threads 

have entered the collective function call 
•  and if Y is 

-  NO the collective function may read and write data until the last thread has 
returned from the collective function call, 

- MY the collective function call may return in a thread only after all reads and 
writes of data with affinity to the thread are complete3, and 

-  ALL the collective function call may return only after all reads and writes of data 
are complete. 



Work Distribution 
Using upc_forall 



Example: Vector Addition 

 /* vadd.c */ 
 #include <upc_relaxed.h> 
#define N 100*THREADS 
 
shared int v1[N], v2[N], sum[N]; 
void main() { 

 int i; 
 for(i=0; i<N; i++) 

   if (MYTHREAD == i%THREADS)
     sum[i]=v1[i]+v2[i]; 

} 

• Questions about parallel vector additions: "
• How to layout data (here it is cyclic)"
• Which processor does what (here it is “owner computes”)"

cyclic layout 

owner computes 



•  A common idiom:  
-  Loop over all elements; work on those owned by this thread 

•  UPC adds a special type of loop 
    upc_forall(init; test; loop; affinity) 
      statement; 

•  Programmer indicates the iterations are independent 
-  Undefined if there are dependencies across threads 

•  Affinity expression indicates which iterations to run on each thread.  
It may have one of two types: 
-  Integer: affinity%THREADS is MYTHREAD 
-  Pointer: upc_threadof(affinity) is MYTHREAD 

•  Syntactic sugar for: 
      for(i=0; i<N; i++) if (MYTHREAD == i%THREADS) 

•  Compilers will sometimes do better than this, e.g.,  
   for(i=MYTHREAD; i<N; i+=THREADS) 

Work Sharing with upc_forall() 



Vector Addition with upc_forall 

#define N 100*THREADS 
 
shared int v1[N], v2[N], sum[N]; 
 
void main() { 

 int i; 
 upc_forall(i=0; i<N; i++; i) 

                 sum[i]=v1[i]+v2[i]; 
} 

• Vector addition can be written as follows 

Cyclic data 
distribution default"

• The code would be correct but slow if the affinity expression 
were i+1 rather than i. 

• Equivalent code could use “&sum[i]” for affinity and would 
still work if you change the layout of sum 

Execute iff this is 
ith thread (modulo 
# of threads)"



Distributed Arrays 
in UPC"



Blocked Layouts in UPC 

#define N 100*THREADS 
shared int [*] v1[N], v2[N], sum[N]; 
 
void main() { 

 int i; 
 upc_forall(i=0; i<N; i++; &sum[i])   
     

                 sum[i]=v1[i]+v2[i]; 
} 

•  Array layouts are controlled by blocking factors: 
Empty (cyclic layout) 
[*] (blocked layout) 
[b] (fixed block size) 
[0] or [] (indefinite layout, all on 1 thread) 

•  Vector addition example can be rewritten as follows using a cyclic or 
(maximally) blocked layout 

blocked layout 



Layouts in General 

• All non-array objects have affinity with thread zero. 
• Array layouts are controlled by layout specifiers: 

- Empty (cyclic layout) 
- [*] (blocked layout) 
- [0] or [] (indefinite layout, all on 1 thread) 
- [b] or [b1][b2]…[bn] = [b1*b2*…bn] (fixed block size) 

• The affinity of an array element is defined in terms of: 
- block size, a compile-time constant 
- and THREADS.   

• Element i has affinity with thread  
        (i / block_size) % THREADS 

•  In 2D and higher, linearize the elements as in a C 
representation, and then use above mapping 



2D Array Layouts in UPC 

• Array a1 has a row layout and array a2 has a block row 
layout. 

           shared [m] int a1 [n][m];  
      shared [k*m] int a2 [n][m]; 

•  If (k + m) % THREADS = = 0 them a3 has a row layout 
     shared int a3 [n][m+k]; 
• To get more general HPF and ScaLAPACK style 2D 

blocked layouts, one needs to add dimensions.   
• Assume r*c = THREADS; 
   shared [b1][b2] int a5 [m][n][r][c][b1][b2]; 
•  or equivalently 
    shared [b1*b2] int a5 [m][n][r][c][b1][b2]; 



Pointers to Shared vs. Arrays 

#define N 100*THREADS 
shared int v1[N], v2[N], sum[N]; 
void main() { 

int i; 
shared int *p1, *p2; 
 
p1=v1; p2=v2; 
for (i=0; i<N; i++, p1++, p2++ )  

     if (i %THREADS= = MYTHREAD) 
  sum[i]= *p1 + *p2; 

} 

•  In the C tradition, array can be access through pointers"
• Here is the vector addition example using pointers"

v1 

p1 



UPC Pointers  

Local Global (to shared) 
Private p1 p2 

Shared p3 p4 

Where does the pointer point? 

Where 
does the 
pointer 
reside? 

int *p1;        /* private pointer to local memory */ 
shared int *p2; /* private pointer to shared space */ 
int *shared p3; /* shared pointer to local memory */ 
shared int *shared p4; /* shared pointer to  
                           shared space */ 
Shared to local memory (p3) is not recommended. 



UPC Pointers  

int *p1;        /* private pointer to local memory */ 
shared int *p2; /* private pointer to shared space */ 
int *shared p3; /* shared pointer to local memory */ 
shared int  *shared p4; /* shared pointer to   
                           shared space */ 

Shared 
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Private 

Thread0   Thread1                                       Threadn 

p2:  p2:  p2:  

p1:  p1:  p1:  

p4:  p4:  p4:  

p3:  p3:  p3:  

Pointers to shared often require more storage and are more costly 
to dereference; they may refer to local or remote memory. 



Common Uses for UPC Pointer Types  

int *p1;  
•  These pointers are fast (just like C pointers) 
•  Use to access local data in part of code performing local work 
•  Often cast a pointer-to-shared to one of these to get faster 

access to shared data that is local 
shared int *p2;  
•  Use to refer to remote data 
•  Larger and slower due to test-for-local + possible 

communication  
int *shared p3;  
•  Not recommended 
shared int  *shared p4;  
•  Use to build shared linked structures, e.g., a linked list 



UPC Pointers  

•  In UPC pointers to shared objects have three fields:  
-  thread number  
-  local address of block 
-  phase (specifies position in the block) 

•  Example implementation 

Phase Thread Virtual Address 

0 37 38 48 49 63 

Virtual Address Thread Phase 

Phase is 
needed to 
implement 
p++ within/
between 
threads 



UPC Pointers 

•  Pointer arithmetic supports blocked and non-blocked 
array distributions 

•  Casting of shared to private pointers is allowed but 
not vice versa ! 

•  When casting a pointer-to-shared to a pointer-to-local, 
the thread number of the pointer to shared may be 
lost 

•  Casting of shared to local is well defined only if the 
object pointed to by the pointer to shared has affinity 
with the thread performing the cast 



Special Functions 

•  size_t upc_threadof(shared void *ptr); 
returns the thread number that has affinity to the pointer 
to shared 

•  size_t upc_phaseof(shared void *ptr); 
returns the index (position within the block)field of the 
pointer to shared 

•  shared void *upc_resetphase(shared void *ptr); resets 
the phase to zero 



Global Memory Allocation  
shared void *upc_alloc(size_t nbytes); 

  nbytes : size of memory in bytes 
•  Non-collective: called by one thread  
•  The calling thread allocates a contiguous memory space in the shared 

space with affinity to itself.  
 shared [] double [n] p2 = upc_alloc(n&sizeof(double); 

void upc_free(shared void *ptr); 
•  Non-collective function; frees the dynamically allocated shared 

memory pointed to by ptr 

Shared 
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Private 

Thread0   Thread1                                       Threadn 

p2:  

 n doubles 

p2:  

 n doubles 

p2:  

 n doubles 



Global Memory Allocation  
shared void *upc_all_alloc(size_t nblocks, size_t 

nbytes); 

   nblocks : number of blocks 
    nbytes : block size 

•  Collective: called by all threads together  
•  Allocates a memory space in the shared space with the shape: 
    shared [nbytes] char[nblocks * nbytes] 
•  All threads get the same pointer 

shared void *upc_global_alloc(size_t nblocks,   
size_t nbytes); 

•  Not collective 
•  Each thread allocates its own space and receives a different 

pointer (to a different distributed block) 
•  (Implementation challenges) 



Distributed Arrays Directory Style 

• Many UPC programs avoid the UPC style arrays in 
factor of directories of objects 

typedef shared [] double *sdblptr; 
shared sdblptr directory[THREADS]; 
directory[i]=upc_alloc(local_size*sizeof(double)); 

directory 

• These are also more general: 
• Multidimensional, unevenly distributed 
• Ghost regions around blocks 

physical and 
conceptual 
3D array 
layout 



Memory Consistency in UPC 

•  The consistency model defines the order in which one thread may 
see another threads accesses to memory 
- If you write a program with unsychronized accesses, what 

happens? 
- Does this work? 

data = …            while (!flag) { }; 
flag = 1;           … = data;   // use the data 

•  UPC has two types of accesses:  
- Strict: will always appear in order 
- Relaxed: May appear out of order to other threads 

•  There are several ways of designating the type, commonly: 
- Use the include file: 

#include <upc_relaxed.h> 

- Which makes all accesses in the file relaxed by default  
- Use strict on variables that are used as synchronization (flag) 



Properties of UPC memory model 

• Definitions: 
- A data race is: 

•  Two concurrent memory operations from two different 
threads to the same memory location in which at least one 
is a write. 

- A race-free program is one in which: 
•  All executions of the program are free of data races (would 

be nice if the user could only worry about naïve 
implementations) 

• And states that programs will be sequentially consistent 
(behave as if all operations from each thread execute in 
order) if either of the following holds: 
- The program is race-free 
- The program contains no relaxed operations 



Intuition on Strict Oderings 

•  Each thread may “build” its own total order to explain behavior 
•  They all agree on the strict ordering shown above in black, but 

- Different threads may see relaxed writes in different orders 
•  Allows non-blocking writes to be used in implementations 

- Each thread sees own dependencies, but not those of 
other threads 

•  Weak, but otherwise there would place consistency requirements 
on some relaxed operations (e.g., local cache control insufficient) 

•  Preserving dependencies requires usual compiler/hw analysis 

P0 

P1 



Synchronization- Fence 

• Upc provides a fence construct 
- Equivalent to a null strict reference, and has the 

syntax 
•  upc_fence; 

- UPC ensures that all shared references issued 
before the upc_fence are complete 



UPC Performance 
Features"



UPC Compiler Implementation 

UPC-to-C translator 

•  Pros: portable, can use any 
backend C compiler 

•  Cons: may lose program 
information between the two 
compilation phases 

•  Example: Berkeley UPC 

UPC-to-object-code compiler  

•  Pros: better for implementing 
UPC specific optimizations 

•  Cons: less portable 
•  Example: GCC UPC and 

most vendor UPC compilers 

UPC code 

UPC source-to-source 
translator 

C code 

UPC code 

UPC source-to-object-
code complier 

Machine Instr. 



Exemplar Programming System Stack on Cray 

Cray Communication Libraries (DMAPP/GNI) 

Cray MPI / 
MPICH2 

MPI Apps 

GASNet GNI Conduit 

BUPC 
Runtime 

UPC Apps 

Cray PGAS Runtime 

Cray Networks (Gemini/Aries) 

Cray UPC 
Compiler 

BUPC 
Compiler 

Chapel 
Runtime 

Cray CAF 
Compiler 

CAF 
Apps 

Chapel 
Compiler 

Chapel 
Apps 



Berkeley UPC Software Stack 

UPC-to-C Translator 

UPC Applications 

UPC Runtime 

GASNet Communication Library  

Network and OS API 

C code with Runtime Calls 

H
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D
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Language D

ependant 

Tip: you can choose your favorite C compiler (e.g., clang, 
icc, gcc, nvcc, xlc) as the backend compiler with BUPC. 



GASNet Software Stack 

Active 
Messages 

Low-level communication APIs (e.g., Cray GNI, IBM 
PAMI, IB Verbs, Portals 4, UDP, shared-memory) 

Interconnect 

One-sided 
Communication 

PGAS Programming Systems (e.g., BUPC, CAF 2.0, 
Chapel, OpenSHMEM, Titanium, and DEGAS) 

Collective 
Communication 

GASNet 



Implementing UPC Shared Data Access 

shared int s; 
s= 5; 

 

UPC-to-C Translator 

UPCR_PUT_PSHARED_VAL(s, 0, 5, 4); 

UPC Runtime 

GASNet Local Memory operation 

Where is  
“s”? 

Remote Local 

Tip: try “upcc	
  –trans	
  test.upc” to see the 
translated C code for Berkeley UPC. 

Runtime 
Address 
Translation 
Overheads 



When Address Translation Overheads Matter? 

Case 1: access local data 
1.  Get the partition id of the 

global address (1 cycle) 
2.  Check if the partition is 

local (1 cycle) 
3.  Get the local address of 

the partition (1 cycle) 
4.  Access data through the 

local address (1 cycle) 
 
3 CPU cycles for address 
translation vs. 1 cycle for 
real work  
(Bad: 3X overhead) 

1.  Get the partition id of the 
global address (1 cycle) 

2.  Check if the partition is 
local (1 cycle) 

3.  Get the local address of 
the partition (1 cycle) 

4.  Access data through the 
network (~104 cycles) 

 
3 CPU cycles for address 
translation vs. ~104 cycles 
for real work  
(Good: 0.3% overhead) 

Case 2: access remote data 



Performance: Pointer-to-local vs. Pointer-to-shared 
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Tip: Cast a pointer-to-shared to a regular C pointer 
for accessing the local portion of a shared object. 
E.g., int *p = (int *)pts; p[0] = 1; 



• Move data in chunks 
upc_mem(cpy|put|get)(…)	
  
non-­‐blocking	
  upc_mem(cpy|put|get)	
  are	
  even	
  better	
  

• Cast pointer-to-shared to pointer-to-local  
#include<upc_castable.h>	
  //	
  in	
  UPC	
  1.3	
  
void	
  *upc_cast(const	
  shared	
  void	
  *ptr);	
  	
  

 
 

 

How to Amortize Address Translation Overheads 

Physical Shared-memory Virtual Address Space 

int *p1 = (int *)sp1; 

shared int *sp1 

shared int *sp2 

Thread 1’s perspective 

int *p2 = upc_cast(sp2); 

UPC 1.2 

UPC 1.3 

Tip: UPC 1.3 enables you to 
cast a pointer-to-shared with 
affinity to another UPC 
thread to a pointer-to-local if 
both threads share the same 
physical node. 

T1 T2 



Non-blocking Memcpy is crucial to performance 

Hardware can reorder operations to improve 
performance (e.g., network adaptive routing),  
but possible data dependencies may prohibit it.  

put 2 to *p2 

put 1 to *p1 

Src Node 

Dst Node 

These two Put operations may be 
completed out-of-order iff p1 and 
p2 are different addresses.    

By using non-blocking memcpy, 
the user gives the permission to 
complete memory operations in 
arbitrary order.  



UPC 1.3 Non-blocking Memcpy 

#include<upc_nb.h>	
  	
  
	
  
upc_handle_t	
  h	
  =	
  	
  
upc_memcpy_nb(shared	
  void	
  *	
  restrict	
  dst,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  shared	
  const	
  void	
  *	
  restrict	
  src,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  size_t	
  n);	
   
void	
  upc_sync(upc_handle_t	
  h);	
  	
  	
  	
  	
  	
  	
  	
  //	
  blocking	
  wait	
  
int	
  upc_sync_attempt(upc_handle_t	
  h);	
  //	
  non-­‐blocking	
  	
  
	
  
//	
  Implicit	
  handle	
  version,	
  no	
  handle	
  management	
  by	
  user	
  
void	
  upc_memcpy_nbi(…);	
  // parameters the same as upc_memcpy 
void	
  upc_synci();	
  //	
  sync	
  all	
  issued	
  implicit	
  operations	
  
int	
  upc_sync_attempti();	
  //	
  test	
  the	
  completion	
  status	
  of	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  //	
  implicit	
  operations	
  
	
  
	
  
	
  
 



UPC 1.3 Atomic Operations 

• More efficient than using locks when applicable 

• Hardware support for atomic operations are available, but 

upc_lock();	
  
update();	
  
upc_unlock();	
  

atomic_update();	
  vs 

Memory 

CPU 

GPU 

NIC 

Memory 

Atomic_CAS on uint64_t 

Atomic_Add on double 

Only support limited operations 
on a subset of data types. e.g., 

Atomic ops from different 
processors may not be 
atomic to each other 



UPC 1.3 Atomic Operations (cont.) 

• Key new idea: atomicity domain 
Users specify the operand data type and the set of 
operations over which atomicity is needed 
 
//	
  atomicity	
  domain	
  for	
  incrementing	
  64-­‐bit	
  integers	
  
upc_atomicdomain_t	
  *domain	
  =	
  	
  	
  	
  	
  	
  
	
  	
  upc_all_atomicdomain_alloc(UPC_INT64,	
  UPC_INC,	
  0);	
  
	
  

	
  	
  	
  upc_atomic_strict(upc_atomicdomain_t	
  *domain,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  void	
  *	
  restrict	
  fetch_ptr,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  upc_op_t	
  op,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  shared	
  void	
  *	
  restrict	
  target,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  const	
  void	
  *	
  restrict	
  operand1,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  const	
  void	
  *	
  restrict	
  operand2);	
  	
  
	
  
	
  	
  	
  upc_atomic_relaxed(…);	
  //	
  relaxed	
  consistency	
  version	
  	
  

	
   



Performance of 
UPC"



Berkeley UPC Compiler "

Compiler-generated C code 

UPC Runtime system 

GASNet Communication System 

Network Hardware 

Platform- 
independent 

Network- 
independent 

Language- 
independent 

Compiler- 
independent 

UPC Code UPC Compiler 
Used by bupc and 

gcc-upc 

Used by Cray 
UPC, CAF, 

Chapel, Titanium, 
and others  



PGAS Languages have Performance Advantages 
Strategy for acceptance of a new language 
• Make it run faster than anything else 
 
Keys to high performance 
• Parallelism: 

- Scaling the number of processors 
• Maximize single node performance 

- Generate friendly code or use tuned libraries 
(BLAS, FFTW, etc.) 

• Avoid (unnecessary) communication cost 
- Latency, bandwidth, overhead 
- Berkeley UPC and Titanium use GASNet 

communication layer 
• Avoid unnecessary delays due to dependencies 

- Load balance; Pipeline algorithmic dependencies 



One-Sided vs Two-Sided 

•  A one-sided put/get message can be handled directly by a network 
interface with RDMA support 
- Avoid interrupting the CPU or storing data from CPU (preposts) 

•  A two-sided messages needs to be matched with a receive to 
identify memory address to put data 
- Offloaded to Network Interface in networks like Quadrics 
- Need to download match tables to interface (from host) 
- Ordering requirements on messages can also hinder bandwidth 

address 

message id 

data payload 

data payload 

one-sided put message 

two-sided message 

network 
 interface 

memory 

host 
CPU 



Why Should You Care about PGAS? 
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One-Sided vs. Two-Sided: Practice 
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•  InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5 
•  Half power point (N ½ ) differs by one order of magnitude 
•  This is not a criticism of the implementation! 

Joint work with Paul Hargrove and Dan Bonachea"
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processors 



GASNet: Portability and High-Performance 
(d
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GASNet better for latency across machines 

8-byte Roundtrip Latency
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GASNet at least as high (comparable) for large messages 

Flood Bandwidth for 2MB messages
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GASNet excels at mid-range sizes: important for overlap 

GASNet: Portability and High-Performance 

Flood Bandwidth for 4KB messages
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Communication Strategies for 3D FFT 

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea"

chunk = all rows with same destination 

pencil = 1 row 

•  Three approaches: 
• Chunk:  

•  Wait for 2nd dim FFTs to finish 
•  Minimize # messages 

• Slab:  
•  Wait for chunk of rows destined for 1 

proc to finish 
•  Overlap with computation 

• Pencil:  
•  Send each row as it completes 
•  Maximize overlap and 
•  Match natural layout 

slab = all rows in a single plane with 
same destination 



Overlapping Communication 
•  Goal: make use of “all the wires all the time” 

- Schedule communication to avoid network backup 
•  Trade-off: overhead vs. overlap 

- Exchange has fewest messages, less message overhead 
- Slabs and pencils have more overlap; pencils the most 

•  Example: Class D problem on 256 Processors 

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea"

Exchange (all data at once) 512 Kbytes 
Slabs (contiguous rows that go to 1 processor) 64 Kbytes 

Pencils (single row) 16 Kbytes 



NAS FT Variants Performance Summary 

•  Slab is always best for MPI; small message cost too high 
•  Pencil is always best for UPC; more overlap 
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.5 Tflops 



FFT Performance on BlueGene/P 

HPC Challenge Peak as of July 09 is 
~4.5 Tflops on 128k Cores 

•  UPC implementation 
consistently outperform 
MPI 

•  Uses highly optimized local 
FFT library on each node 

•  UPC version avoids send/
receive synchronization 

•  Lower overhead 
•  Better overlap 
•  Better bisection 

bandwidth 
•  Numbers are getting close 

to HPC record on BG/P 
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FFT Performance on Cray XT4 

•  1024 Cores of the Cray XT4 
- Uses FFTW for local FFTs 
- Larger the problem size the more effective the overlap 

G 
O 
O 
D 



Event Driven LU in UPC 

• DAG Scheduling before it’s time 
• Assignment of work is static; schedule is dynamic 
• Ordering needs to be imposed on the schedule 

- Critical path operation: Panel Factorization 
• General issue: dynamic scheduling in partitioned memory 

- Can deadlock in memory allocation 
- “memory constrained” lookahead 
 

some edges omitted 



UPC HPL Performance 

•  Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid 
- ScaLAPACK (block size 64) 25.25 GFlop/s (tried  several block sizes) 
- UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s 

•  n = 32000 on a 4x4 process grid 
- ScaLAPACK - 43.34 GFlop/s (block size = 64)  
- UPC - 70.26 Gflop/s (block size = 200) 

X1 Linpack Performance
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• MPI HPL numbers 
from HPCC 
database 

• Large scaling:  
• 2.2 TFlops on 512p,  
• 4.4 TFlops on 1024p 
(Thunder) 

Joint work with Parry Husbands"



MILC (QCD) Performance in UPC 

•  MILC is Lattice Quantum Chromo-Dynamics application 
•  UPC scales better than MPI when carefully optimized 
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Performance results on Cray XE6  
(24K cores, 32k × 32k matrices) 

2.5D + Overlap 
2.5D (Avoiding) 
2D + Overlap 
2D (Original) 

Communication Overlap Complements Avoidance 

•  Even with communication-optimal algorithms (minimized bandwidth) there are still 
benefits to overlap and other things that speed up networks 

•  Communication Avoiding and Overlapping for Numerical Linear Algebra, Georganas et 
al, SC12 



Summary 

• UPC designed to be consistent with C 
- Ability to use pointers and arrays interchangeably 

• Designed for high performance 
- Memory consistency explicit; Small implementation 
- Transparent runtime  

•  gcc version of UPC: 
http://www.gccupc.org/ 

• Berkeley compiler 
http://upc.lbl.gov 

•  Language specification and other documents 
https://code.google.com/p/upc-specification 
https://upc-lang.org 

• Vendor compilers: Cray, IBM, HP, SGI,… 



Application Development 
in UPC"



Topics 

• Starting a project 
- Choosing the right SDK 
- Interoperability with other programming models 

•  OpenMP, MPI, CUDA… 

• Shared memory programming  
-  Data layout and allocation 
-  Computational efficiency (“serial” performance 
-  Synchronization 
-  Managing parallelism – data parallel & dynamic 

tasking 
-  UPC and  OpenMP 
 

 



Topics (2) 

• Distributed memory programming 
- UPC and MPI 

• Tuning communication performance  
• Hybrid parallelism  
 



UPC SDKs 

• Multiple SDKs are available 
- Portable 

•  BUPC provided by LBL is portable – available at                   
http://upc.lbl.gov 

•  GUPC provided by Intrepid, gcc based, portable, uses 
BUPC runtime 

- Vendor SDKs – Cray UPC XT/XE 

v  UPC has been shown to interoperate with  
§  MPI, OpenMP, CUDA, Intel TBB, Habanero-C 
§  Any pthreads based libray  e.g. MKL 

•  Some interoperability aspects are implementation 
specific, e.g. who owns main()!

§  E.g. http://upc.lbl.gov/docs/user/interoperability.shtml 



Shared Memory Programming 



Shared Memory Programming 

• Performance determined by 

- Locality – placement, data initialization 
- Computational efficiency 
- Synchronization performance  
- Management of parallelism 

When should memory be shared (shared) ? 
When should memory be blocked (shared []) ? 
 
 



Pointer Arithmetic and Data Placement 

• Memory is allocated with upc_alloc, upc_all_alloc with 
affinity to a certain thread 

• The pointer type determines the address arithmetic rules 
and the “locality” of access 

 
shared double *p1;!
shared [*] double *ps;!
shared [] double *pi;!
for(i=0; i < N; i++) {!

!p1[i] = i;!

!ps[i] = i;!

!pi[i] = i;!

}  !

1 3 2 4 

3 4 1 2 
1 2 3 4



2-D Stencil – Laplace Filter – block cyclic 

shared double matrix[ROWS][COLS];!
…!
main() {!
  for(i=0; i < ROWS; i++) !
    for(j = 0; ; j < COLS; j++) {!
        up = (i == 0) ? 0 : matrix[i-1][j];!
        down = (i == ROWS-1) ? 0 : matrix[i+1][j];                         !
        left = (j == 0) ? 0 : matrix[i][j-1]; !
        right = (j == COLS - 1) ? 0 : matrix[i][j+1];!
        tmp[i][j] = 4 * matrix[i][j] - up - down - left - right; !
   }!
!
!
!

Block cyclic layout easy to choose when porting 
codes, bad for locality 



2-D Stencil – Laplace Filter – block layout 

shared [*] double matrix[ROWS][COLS];!
…!
main() {!
  for(i=0; i < ROWS; i++) !
    for(j = 0; ; j < COLS; j++) {!
        up = (i == 0) ? 0 : matrix[i-1][j];!
        down = (i == ROWS-1) ? 0 : matrix[i+1][j];                         !
        left = (j == 0) ? 0 : matrix[i][j-1]; !
        right = (j == COLS - 1) ? 0 : matrix[i][j+1];!
        tmp[i][j] = 4 * matrix[i][j] - up - down - left - right; !
   }!
!
!
!

Blocked layout easy to choose when porting codes, 
good for locality, 
code not portable 



2-D Stencil – Laplace Filter – directory 
typedef shared [] double * SDPT;!
shared  SDPT  matrix[ROWS];!
SDPT local_dir[ROWS];!
…!
main() {!
  ..matrix[my_row] = upc_alloc(..);  //allocate ptrs to rows!
  upc_barrier;!
  ..local_dir[i] = matrix[i];        //local copies of dir entries!

!!
  for(i=0; i < ROWS; i++) !
    for(j = 0; ; j < COLS; j++) {!
        up = (i == 0) ? 0 : local_dir[i-1][j];!
        ..right = (j == COLS - 1) ? 0 : local_dir[i][j+1];!
        tmp[i][j] = 4 * local_dir[i][j] - up - down - left - right; !
   }!
 

Directory based approach provides locality and 
portability 



Computational Efficiency 
(ALWAYS Cast to C) 
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Cast a pointer-to-shared to a regular C pointer for 
accessing the local portion of a shared object. 
           
            E.g., int *p = (int *)pts; p[0] = 1; 

Computational Intensity – ALWAYS cast to C 



Application Examples 



LULESH - https://codesign.llnl.gov/lulesh.php 
 
• Livermore Unstructured Lagrangian Explicit Shock 

Hydrodynamics 
• Models explicit hydrodynamics portion of ALE3D 
• Particular application is a Sedov blast wave problem 
• Used to explore various programming models, e.g. Charm

++, Chapel, Loci, Liszt 
• Solves equations on a staggered 3D spatial mesh 
• Most communication is nearest neighbor on a hexahedral 

3D grid 



LULESH OMP 

• Doesn’t scale beyond 12 cores (2 NUMA nodes) 



LULESH OMP Parallel Initialization 

• Parallel initialization helps only slightly 
• Still doesn’t scale beyond 18 cores 
• Uses temporary arrays with malloc and free in many 

calls 



LULESH OpenMP to UPC 

•  LULESH authors advise: 
“Do not make simplifications” 

•  None-the-less, I made some simplifications: 
-  Primarily for readability and clarity 
-  Why follow certain impl. choices? (e.g. temp 

arrays) 
•  Performance improvements in UPC at scale 
-  Primarily due to locality management, not 

simplifications 
•  UPC with one thread is slower than C++ serial 
-  Best UPC 298s, best C++ serial 283s 



LULESH Naïve UPC – block cyclic distribution 

• Shared arrays distributed cyclically (default) 
• Replicate data to make it private where possible 
• Poor compared to OMP 



LULESH UPC Blocked Memory Layout 

• Cyclic layout poor fit for communication pattern 
• Contiguous layout (blocked) reduces communication 

!shared [*] double x[N * THREADS];!



LULESH UPC Communication 

             Cyclic layout                 Contiguous layout 



LULESH UPC Cast Shared to Private 

• Use private pointer to the thread block in shared array 
 double* my_x = (double*)(x + MYTHREAD * BSIZE)!



XSBench - Embarrassingly parallel 
 

• Monte Carlo simulation of paths of neutrons traveling 
across a reactor core 
- 85% of runtime in calculation of macroscopic neutron 

cross sections 

random_sample!
binary_search!
for each nuclide!
    lookup_bounding_micro_xs!
    interpolate!
    accumulate_macro_xs!
!

• Uses a lot of memory 



XSBench OMP Doesn’t Scale 

• Option to add flops; according to README: 
“Adding flops has so far shown to increase scaling, 
indicating that there is in fact a bottleneck being 
caused by the memory loads” 



XSBench OMP Initialization 

• But memory locality is the problem (on NUMA) 
• Adding parallel initialization makes it scale 



XSBench UPC 

• Private replication of data 
• Except: make largest memory array shared 



XSBench UPC No Shared Memory 

• Improves if all memory is private 
• Can’t do for large problems, e.g. 355 isotopes 

requires 60GB for full replication on 48 cores 



Synchronization Performance 



Barriers, locks, atomics, collectives…. 

• OpenMP provides an implicit model of synchronization 

• The UPC language provides rich synchronization 
primitives 
- e.g. UPC 1.3 atomics  

 
• Some are well optimized for multicore performance 
“Optimizing Collective Communication on Multicore”. Nishtala&Yelick, HotPart’09 
 

•  In general, UPC synchronization performs much better 
than OpenMP synchronization or other pthreads based 
libraries (implementation does matter) 

  #pragma omp critical!
      -> bupc_allv_reduce_all()!
 
 



LULESH UPC Procs vs Pthreads 

• At 48 cores, pthreads takes 33s, processes only 
22s 

• Top non-app code functions with pthreads: 
- upcr_wait_internal 15% (barrier)!
- gasnete_coll_broadcast 2%!
- gasnete_coll_gather 2%!

• Top non-app code functions with pinned procs: 
- gasnete_pshmbarrier_wait 5%!

• For comparison, collectives with pinned procs: 
- gasnete_coll_broadcast 0.2% (15x)!
- gasnete_coll_gather 0.04% (75x)!



Lessons Learned 

• On a large NUMA system, managing remote memory access is 
key 
- Good preparation for distributed memory? 

• UPC 
- Contiguous blocking is effective at reducing communication 

- Explicitly cast to private whenever possible 

- Procs can be significantly faster than pthreads 
Hybrid PGAS Runtime Support for Multicore Nodes 
Blagojevic, Hargrove, Iancu, Yelick. PGAS 2010  

- Replication to private can help, but limited by available 
memory -> replicate fixed amount? 

 



Managing Parallelism 



Managing Parallelism 

• Data parallel constructs in UPC – upc_forall 
- SPMD, shorthand for filtering the computation 

performed by a task 
- Not real equivalent of #pragma omp for.. 

• Task parallelism in OMP: #pragma omp task 
• UPC tasking library – available at http://upc.lbl.gov 
• Written in stock UPC, works on 

-  shared memory - comparable to  OpenMP tasking 
-  distributed memory – akin to Charm++ 

• Provides: 
- Init, termination 
- Locality aware distributed work-stealing 
- Synchronization for dependent task graphs 



Task Library API 

taskq_t *taskq_all_alloc(int nFunc, void *func1, 
int input_size1, int output_size1, ...);!
 

int taskq_put(taskq_t *taskq, void *func, void 
*in, void *out); !
!

int taskq_execute(taskq_t *taskq); !
int taskq_steal(taskq_t *taskq); !
!
void taskq_wait(taskq_t *taskq); !
void taskq_fence(taskq_t *taskq); !
!
int taskq_all_isEmpty(taskq_t *taskq);!

 
Hierarchical Work Stealing on Manycore Clusters  

Min, Iancu,Yelick. PGAS 2011  !



UPC Task Library – Shared Memory 

0 

0.5 

1 

1.5 

2 

2.5 

FIB (47)  NQueens(14)  UTS(T1L)  UTS(T2L)  UTS(T3L)  SpLU(256,16) 

Ex
ec
. T
im

e 
N
or
m
al
ize

d 
to
 g
cc
‐O
pe

nM
P 

(L
ow

er
 th

e 
Be

>
er
) 

Performance of VicBm SelecBon 

Policies on 8 Core Nehalem SMP 

gcc‐OpenMP  icc‐OpenMP 

UPC (Intra‐Socket)  UPC (HVS) 

UPC (RAND)  UPC (RAND+BestChunk) 



UPC Task Library – Distributed Memory 
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Distributed Memory Programming 



UPC and MPI 

• Send/Recv carry both data and synchronization 
• One-sided  carries only data 
• When porting codes from MPI two-sided to one sided, a 

Send/Recv pair needs to be replaced with Put/Get and 
producer-consumer semantics 

• There are also performance differences 
-  UPC can saturate the network with fewer cores 

active per node 
- It alleviates the need for packing messages 



Cray XE6 BW Saturation (hopper @ NERSC) 
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Cray XE6 Application Performance 
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Tuning Communication Performance 



UPC Trends 

•  In MPI, large messages or large message 
concurrency (messages per core, ranks per node) is 
required for performance  

•  In UPC, communication overlap is beneficial 
- with other communication 
- with other computation 

•  In UPC: 
-  Pays to think about increasing the message 

concurrency 
-  Sometimes need to take care to avoid congestion 
Congestion Avoidance on Manycore HPC Systems 
Luo, Panda, Ibrahim, Iancu. ICS’12 

• Again, avoiding pthreads improves performance 



Saturation IB 
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Messages < 1024 
 benefit from concurrent  
injection 

Messages > 8K benefit 
from throttling 



Throughput and Message Concurrency 

!1#

0#

1#

2#

3#

4#

5#

6#

8# 128# 2048# 32768# 524288#

Sp
ee
du

p#
ov
er
#T
(1
28
)#

Size#(B)#

Throughput#Varia?on#with#Msg/Core#!#Gemini#

1# 2# 4#

8# 16# 32#

Cray UPC on Cray XE6 (Gemini) 
Limiting the number of outstanding messages 
 provides 5X speedup (expected 32X slower) 



When To   Use It? 

• With irregular parallelism with “natural small messages” 
• When hybrid parallelism makes packing complex 

• Need to mix with pthreads based libraries and want to 
perform communication from within pthreads 
- Implementation specific, but available  

• Do not want to worry about matching communication 
concurrency to intra-node concurrency… 

• Challenges: 
- Exporting data, do not want to modify data structures 
- One-sided is different, need to understand it… 



Beyond UPC"



DEGAS Programming System: UPC++ 

DEGAS is a DOE-funded X-Stack project led by Lawrence 
Berkeley National Lab (PI: Kathy Yelick), in collaboration 
with LLNL, Rice Univ., UC Berkeley, and UT Austin.    

A template-based programming 
system enabling PGAS features 
for C++ applications 



C++ is Important in Scientific Computing 

Languages use at NERSC: 75% Fortran, 45% C/C++, 10% Python with 
C++ at least as important as C 

•  DOE’s Exascale Co-Design Centers 
–  ExaCT: Combustion simulation 

(uniform and adaptive mesh) 
–  ExMatEx: Materials (multiple codes) 
–  CESAR: Nuclear engineering 

(structures, fluids, transport) 
–  NNSA Center: umbrella for 3 labs 

•  “Proxy apps” to represent them 
–  10 codes 
–  4 in C++ 

C++, 
4 

C, 3 

F, 3 



Private address 
space 

Global address 
space 

UPC++: PGAS with Enhancements 

Multi-threading 
option 

Local 
task 
queue 

Function shipping across nodes Multidimension
al arrays 
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A “Compiler-Free” Approach for PGAS 

• Leverage the C++ standard and compilers 
- Implement UPC++ as a C++ template library 
- C++ templates can be used as a mini-language to 

extend the C++ grammar 
• New features in C++ 11 makes UPC++ more powerful 

- E.g., async, auto type inference, lambda functions  
- C++ 11 is well-supported by major compilers 



UPC++ Software Stack 

GASNet Communication Library  

Network Drivers and OS Libraries 

C++ Compiler  

C/C++ Apps 

UPC++ 
Runtime 

UPC++ 
Template 
Header 
Files 

UPC 
Runtime 

UPC 
Apps 

UPC 
Compiler 

C11 standard: 701 pages 
C++11 standard: 1334 pages 



UPC++ Introduction 

137"

UPC++ “Language” (no compiler involved) 

•  Shared variable 
	
  shared_var<int>	
  s;	
  	
  	
  	
  	
  	
  	
  //	
  int	
  in	
  the	
  shared	
  space	
  

•  Global pointers (to remote data)	
  
	
  global_ptr<LLNode> g;  // pointer to shared space 

•  Shared arrays	
  
shared_array<int>	
  sa(8);	
  	
  //	
  array	
  in	
  shared	
  space	
  

•  Locks	
  
	
  shared_lock	
  l; 	
   	
  	
  	
  	
  // lock in shared space 

•  Default execution model is SPMD, but with optional async 
	
  async(place)(Function	
  f,	
  T1	
  arg1,…);	
  
	
  wait();	
  	
  	
  	
  	
  //	
  other	
  side	
  does	
  poll()	
  



UPC++ Translation Example 

shared_array	
  <int,	
  1>	
  sa(100);	
  
sa[0]	
  =	
  1;	
  	
  //	
  “[]”	
  and	
  “=”	
  overloaded	
  
	
  

C++	
  Compiler	
  

UPC++	
  RunMme	
  

Local	
  Access	
  

Is	
  tmp_ref	
  
local?	
  

Yes No 

tmp_ref	
  =	
  sa.operator	
  []	
  (0);	
  
tmp_ref.operator	
  =	
  (1);	
  

Remote	
  Access	
  



Dynamic Global Memory Management 

• Global address space pointers (pointer-to-shared) 
global_ptr<data_type>	
  ptr;	
  
	
  

• Dynamic shared memory allocation 
global_ptr<T>	
  allocate<T>(uint32_t	
  where,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  size_t	
  count);	
  
void	
  deallocate(global_ptr<T>	
  ptr);	
  
	
  
Example: allocate space for 512 integers on rank 2 
global_ptr<int>	
  p	
  =	
  allocate<int>(2,	
  512);	
  

Remote memory allocation is not 
available in MPI-3, UPC or SHMEM. 
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Optimization Opportunities for Async_copy 

MPI_Put(origin_addr,	
  origin_count,	
  origin_datatype,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  target_rank,	
  target_disp,	
  target_count,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  target_datatype,	
  win)	
  

upcxx::async_copy<T>(global_ptr<T>	
  src,	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  global_ptr<T>	
  dst,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  size_t	
  count);	
  

Template specialization plus runtime compilation may 
translate this into a few load and store instructions! 

This would be very difficult to do with a heavy-weight MPI API 
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One-Sided Data Transfer Functions 

//	
  Copy	
  count	
  elements	
  of	
  T	
  from	
  src	
  to	
  dst	
  
upcxx::copy<T>(global_ptr<T>	
  src,	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  global_ptr<T>	
  dst,	
  	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  size_t	
  count);	
  
	
  

//	
  Non-­‐blocking	
  version	
  of	
  copy	
  
upcxx::async_copy<T>(global_ptr<T>	
  src,	
  

	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  global_ptr<T>	
  dst,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  size_t	
  count);	
  
	
  

//	
  Synchronize	
  all	
  previous	
  asyncs	
  
upcxx::async_wait();	
  

Similar to upc_memcpy_nb extension in UPC 
1.3 141"



UPC++ Equivalents for UPC Users 

UPC UPC++ 

Num. of threads THREADS THREADS 

My ID MYTHREAD MYTHREAD 

Shared variable shared Type s shared_var<Type>  s 

Shared array shared [BS] Type A[sz] shared_array<Type, BS> A(sz) 

Pointer-to-shared shared Type *pts global_ptr<Type> pts 

Dynamic memory 
allocation 

shared void * 
upc_alloc(nbytes) 

global_ptr<Type>   
allocate<Type>(place, count) 

Bulk data transfer upc_memcpy(dst, src,      
                       nbytes); 

copy<Type>(src, dst, count); 

Affinity query  upc_threadof(ptr) global_ptr.where() 

Synchronization upc_lock_t  shared_lock 

upc_barrier barrier() 

Homework: how to translate upc_forall? 



Asynchronous Task Execution 

• C++ 11 async function 
   std::future<T>	
  handle	
  	
  
	
  	
  	
  	
  	
  =	
  std::async(Function&&	
  f,	
  Args&&…	
  args);	
  

handle.wait();	
  
!

• UPC++ async function 
//	
  Remote	
  Procedure	
  Call	
  

	
  	
  	
  upcxx::async(place)(Function	
  f,	
  T1	
  arg1,	
  T2	
  arg2,…);	
  
upcxx::wait();	
  
	
  
//	
  Explicit	
  task	
  synchronization	
  

	
  	
  	
  upcxx::event	
  e;	
  	
  
	
  	
  	
  upcxx::async(place,	
  &e)(Function	
  f,	
  T1	
  arg1,	
  …);	
  

e.wait();	
  
!



Async Task Example 

#include	
  <upcxx.h>	
  
#include	
  <forkjoin.h>	
  //	
  using	
  the	
  fork-­‐join	
  execution	
  model	
  
	
  
void	
  print_num(int	
  num)	
  
{	
  	
  
	
  	
  printf(“myid	
  %u,	
  arg:	
  %d\n”,	
  MYTHREAD,	
  num);	
  	
  
}	
  
	
  
int	
  main(int	
  argc,	
  char	
  **argv)	
  
{	
  	
  
	
  	
  upcxx::range	
  tg(1,	
  THREADS,	
  2);	
  //	
  threads	
  1,3,5,…	
  
	
  	
  //	
  call	
  a	
  function	
  on	
  a	
  group	
  of	
  remote	
  processes	
  	
  	
  
	
  	
  upcxx::async(tg)(print_num,	
  123);	
  	
  
	
  	
  upcxx::wait();	
  //	
  wait	
  for	
  the	
  remote	
  tasks	
  to	
  complete	
  
	
  	
  return	
  0;	
  
}	
  



Async with Lambda Function 

//	
  Thread	
  0	
  spawns	
  async	
  tasks	
  
for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  THREADS;	
  i++)	
  {	
  
	
  	
  //	
  spawn	
  a	
  task	
  at	
  place	
  “i”	
  
	
  	
  //	
  the	
  task	
  is	
  expressed	
  by	
  a	
  lambda	
  (anonymous)	
  function	
  
	
  	
  upcxx::async(i)([]	
  (int	
  num)	
  {	
  printf("num:	
  %d\n”,	
  num);	
  },	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1000+i);	
  //	
  argument	
  to	
  the	
  λ	
  function	
  
	
  	
  upcxx::wait();	
  //	
  wait	
  for	
  all	
  tasks	
  to	
  finish	
  
}	
  
	
  

mpirun –n 4  ./test_async!
!
Output: !
num:  1000 !
num:  1001 !
num:  1002 !
num:  1003 !



X10-style Finish-Async Programming Idiom 

using	
  namespace	
  upcxx;	
  
	
  
//	
  Thread	
  0	
  spawns	
  async	
  tasks	
  
finish	
  {	
  
	
  	
  for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  THREADS;	
  i++)	
  {	
  
	
  	
  	
  	
  async(i)([]	
  (int	
  num)	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  {	
  printf("num:	
  %d\n”,	
  num);	
  },	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1000+i);	
  
	
  	
  }	
  
}	
  //	
  All	
  async	
  tasks	
  are	
  completed	
  
	
  



How We Did It? 

//	
  finish	
  {	
  =>	
  macro	
  expansion	
  =>	
  
for	
  (f_scope	
  _fs;	
  _fs.done	
  ==	
  0;	
  _fs.done	
  =	
  1)	
  {	
  
	
  	
  //	
  f_scope	
  constructor	
  call	
  generated	
  by	
  compiler	
  
	
  	
  //	
  push	
  the	
  current	
  scope	
  in	
  a	
  stack	
  
	
  	
  f_scope()	
  {	
  push_event(&_fs.e);	
  }	
  
	
  
	
  	
  for	
  (int	
  i	
  =	
  0;	
  i	
  <	
  THREADS;	
  i++)	
  {	
  
	
  	
  	
  	
  //	
  register	
  the	
  async	
  with	
  the	
  current	
  scope	
  
	
  	
  	
  	
  async(i,	
  e	
  =	
  peek_event())(…);	
  
	
  	
  }	
  
	
  	
  //	
  f_scope	
  destructor	
  call	
  generated	
  by	
  compiler	
  
	
  	
  ~f_scope()	
  {	
  pop_event();	
  	
  _fs.e.wait();	
  }	
  
	
  	
  //	
  All	
  registered	
  tasks	
  are	
  waited	
  for	
  completion	
  
}	
   Leverage C++ Programming Idiom Resource 

Acquisition Is Initialization (RAII) 
 



Random Access Benchmark (GUPS) 

//	
  shared	
  uint64_t	
  Table[TableSize];	
  in	
  UPC	
  
shared_array<uint64_t>	
  Table(TableSize);	
  
	
  
void	
  RandomAccessUpdate()	
  	
  
{	
  
	
  	
  uint64_t	
  ran,	
  i;	
  	
  
	
  	
  ran	
  =	
  starts(NUPDATE	
  /	
  THREADS	
  *	
  MYTHREAD);	
  
	
  	
  for(i	
  =	
  MYTHREAD;	
  i	
  <	
  NUPDATE;	
  i	
  +=	
  THREADS)	
  {	
  
	
  	
  	
  	
  ran	
  =	
  (ran	
  <<	
  1)	
  ^	
  ((int64_t)ran	
  <	
  0	
  ?	
  POLY	
  :	
  0);	
  
	
  	
  	
  	
  Table[ran	
  &	
  (TableSize-­‐1)]	
  ^=	
  ran;	
  
	
  	
  }	
  
} 
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Manycore - A Good Fit for PGAS 

61 cores, 30MB aggregate L2 
1TFlops, 352GB/s memory bw 
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GUPS Performance on MIC 

Difference between UPC++ and UPC is only 
about 0.2 µs (~220 cycles) 
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GUPS Performance on BlueGene/Q 

Difference is negligible at large scale 
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UPC++ Application: Embree 

•  Intel open-source ray tracing toolkit written in C++ 
• Ported to UPC++ by Michael Driscoll 
• Performance scaled on Edison (Cray XC30) 

Low resolution High resolution 



Embree Performance on Edison 

Hybrid UPC++ for internode communication 
and OpenMP within a NUMA node 

24 

48 

96 

192 

384 

768 

1536 

3072 

6144 

24 48 96 192 384 768 1536 3072 6144 

Pe
rf

or
m

an
ce

 S
pe

ed
up

s 

Number of Cores 

UPC++ 



LULESH Proxy Application 

• Livermore Unstructured Lagrangian Explicit 
Shock Hydrodynamics  

• Proxy App for UHPC, ExMatEx, and LLNL ASC 
• Written in C++ with MPI, OpenMP, and CUDA 

versions 

https://codesign.llnl.gov/lulesh.php 



LULESH 3-D Data Partitioning 



LULESH Communication Pattern 

26 neighbors 
• 6 faces 
• 12 edges 
• 8 corners 

Cross-section view 
of the 3-D processor 
grid 



Data Layout of Each Partition 

•  Blue planes are contiguous 
•  Green planes are stride-N2 chunks 
•  Red planes are stride-N elements 

Stride 
N2 

Stride 
N 

Stride 
N2 

•  3-D array A[x][y][z] 
•  row-major storage 
•  z index goes the 

fastest 

x 

z 

y 
size: 
N3  



Convert MPI to UPC++ 

//	
  Post	
  Non-­‐blocking	
  Recv	
  
MPI_Irecv(RecvBuf1);	
  
…	
  
MPI_Irecv(RecvBufN);	
  
	
  
Pack_Data_to_Buf();	
  
	
  
//	
  Post	
  Non-­‐bocking	
  Send	
  
MPI_Isend(SendBuf1);	
  
…	
  
MPI_Isend(SendBufN);	
  
	
  
MPI_Wait();	
  
…	
  
Unpack_Data();	
  
	
  

Pack_Data_to_Buf();	
  
//	
  Get	
  neighbors’	
  RecvBuf	
  addresses	
  
//	
  Post	
  Non-­‐blocking	
  Copy	
  
upcxx::async_copy(SendBuf1,	
  RecvBuf1);	
  
…	
  
upcxx::async_copy(SendBufN,	
  RecvBufN);	
  
	
  
async_copy_fence();	
  
…	
  
Unpack_Data();	
  
	
  

Pseudo code 



LULESH Performance on Cray XC30 (Edison) 
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Example: Building A Task Graph 

using namespace upcxx; 
event e1, e2, e3; 

t1 

e1 

t2 

t4 t3 

t5 

e3 

e2 

t6 

async(P1, &e1)(task1); 
async(P2, &e1)(task2); 
async_after(P3, &e1, &e2)(task3); 
async(P4, &e2)(task4); 
async_after(P5, &e2, &e3)(task5); 
async_after(P6, &e2, &e3)(task6); 
async_wait(); // all tasks will be done  
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Application: Full-Waveform Seismic Imaging 
•  Method	
  for	
  developing	
  models	
  of	
  earth	
  structure,	
  applicable	
  to	
  …	
  

•  basic	
  science:	
  study	
  of	
  interior	
  structure	
  and	
  composiVon	
  
•  petroleum	
  exploraVon	
  and	
  environmental	
  monitoring	
  
•  nuclear	
  test-­‐ban	
  treaty	
  verificaVon	
  

•  Model	
  is	
  trained	
  to	
  predict	
  (via	
  numerical	
  simulaVon)	
  seismograms	
  
recorded	
  from	
  real	
  earthquakes	
  or	
  controlled	
  sources	
  

•  Training	
  defines	
  a	
  non-­‐linear	
  regression	
  problem,	
  solved	
  iteraVvely	
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Problem 2: Combining Data Sets  

• Merge measurement data into simulation and evaluate fit 
• Matrix is too large for single shared memory 
• Assembly: Strided writes into a global array 
• Goal is scalability in context of full code 



Application: Full-Waveform Seismic Imaging 
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Performance of Convergent Matrix on Cray XC30 

New	
  implementaVon	
  
•  Scales	
  to	
  larger	
  dataset	
  size	
  and	
  matrix	
  dimension	
  (currently	
  ~2x	
  in	
  

both)	
  
•  Earlier	
  runs	
  that	
  required	
  4+	
  phases	
  now	
  achieved	
  in	
  a	
  single	
  phase	
  on	
  

the	
  same	
  aggregate	
  number	
  of	
  cores	
  and	
  with	
  ~40%	
  wallclock	
  Vme	
  
reducVon	
   163"



UPC++ Arrays Based on Titanium 

• Titanium is a PGAS language based on Java 
•  Line count comparison of Titanium and other languages: 

0 

500 

1000 

1500 

2000 

NPB-CG NPB-FT NPB-MG 

Li
ne

s 
of

 C
od

e 

NAS Parallel Benchmarks 
MPI+Fortran UPC Titanium 

AMR Chombo C++/Fortran/MPI Titanium 
AMR data structures 35000 2000 
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* Somewhat more functionality in PDE part of C++/Fortran 
code 164"



UPC++ Multidimensional Arrays 

• True multidimensional arrays with sizes specified at 
runtime 

• Support subviews without copying (e.g. view of interior) 

• Can be created over any rectangular index space, with 
support for strides 
- Striding important for AMR and multigrid applications 

•  Local-view representation makes locality explicit and 
allows arbitrarily complex distributions 
- Each rank creates its own piece of the global data 

structure 

• Allow fine-grained remote access as well as one-sided 
bulk copies 
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Overview of UPC++ Array Library 

• A point is an index, consisting of a tuple of integers 

• A rectangular domain is an index space, specified with a 
lower bound, upper bound, and optional stride 

• An array is defined over a rectangular domain and 
indexed with a point 

• One-sided copy operation copies all elements in the 
intersection of source and destination domains 

ndarray<double, 2> A(r); A[lb] = 3.14; 

point<2> lb = {{1, 1}}, ub = {{10, 20}}; 

rectdomain<2> r(lb, ub); 

ndarray<double, 2, global> B = ...; 
B.async_copy(A); // copy from A to B 
async_wait(); // wait for copy completion 
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Arrays in Adaptive Mesh Refinement 

• AMR starts with a coarse grid 
over the entire domain 

• Progressively finer AMR 
levels added as needed over 
subsets of the domain 

• Finer level composed of 
union of regular subgrids, 
but union itself is not regular 

•  Individual subgrids can be 
represented with UPC++ 
arrays 

• Directory structure can be used to represent union of all 
subgrids 

167"



Example: Ghost Exchange in AMR 

foreach (l, my_grids.domain()) 
 foreach (a, all_grids.domain()) 

  if (l != a) 

   my_grids[l].copy(all_grids[a].shrink(1)); 

 

Proc 0 Proc 1 
my_grids 

all_grids 

• Can allocate arrays in a global index space 
• Let library compute intersections 

"ghost" cells 

Avoid null copies"

Copy from interior of other grid"
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NAS Benchmarks on One Node of Cray XC30 
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Case Study: miniGMG 

• Compact 3D geometric multigrid code 
- Can be used to evaluate performance 

bottlenecks in MG+Krylov methods and 
prototype new algorithms. 

- Highly instrumented for detailed timing 
analysis 

• Can be configured to proxy BoxLib AMR applications 
- Finite-volume (cell-centered) multigrid 
- 7pt variable-coefficient Helmholtz operator (stencil) 
- Cubical domain decomposed into one 1283 subdomain per 

socket 
- Restriction terminated when subdomains are coarsened to 23 

(U-Cycle) 
- Gauss Seidel, Red-Black (“GSRB”) smoother 
- BiCGStab bottom solver (matrix is never explicitly formed) 170"



miniGMG Communication Paradigms 

• One programming system w. three communication 
paradigms 
- Bulk version that uses manual packing/unpacking with one-

sided puts 
- Fine-Grained version that does multiple one-sided puts of 

contiguous data 
- Array version that logically copies entire ghost zones, 

delegating actual procedure to array library 
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miniGMG Results 

• Savings of ~200 lines of communication and setup code 
over Bulk and Fine-Grained versions 

• Performance results on IBM Blue Gene/Q 

• Currently working to bridge gap between Array and 
Bulk versions 
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Performance Results on Cray XC30 

• Fine-grained and array versions do much better with 
higher injection concurrency 
- Array version does not currently parallelize packing/

unpacking, unlike bulk/MPI 
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UPC++ HPGMG (work in progress) 

• Ghost Exchange  
- 380 lines for comm. setup 
- same level 

• Restriction 
- 330 lines for comm. setup 
- between two levels 
- finer level to coarser level, 

1-1 or many-1, different 
owner 

•  Interpolation  
- 330 lines for comm. setup 
- between two levels 
- coarser level to finer level, 

1-1, 1-many, different owner  
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HPGMG Performance (Box size = 2^7) 
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Though the naturally-grained version is about 3X slower but it 
saves over 1000 lines of very difficult code (testified by the 
original HPGMG developer) and saves auxiliary data structures 
for packing and unpacking. Can Interconnect innovations bridge the 

performance gap between large and small 
messages? 175"



PGAS Summary 

• Productivity through shared memory convenience 
- Especially for irregular communication 

• Ensure scalability through locality control 
• Expose lightweight RDMA communication 
- Possibly for “PGAS on a chip” systems  

• Minimally invasive, interoperable features 
• Open source and vendor (e.g., Cray) compilers 

http://upc.lbl.gov 
http://www.gccupc.org 
https://bitbucket.org/upcxx 
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A Family of PGAS Languages 
•  UPC based on C philosophy / history 

- http://upc-lang.org 
- Free open source compiler: http://upc.lbl.gov 
- Also a gcc variant: http://www.gccupc.org 

•  Java dialect: Titanium 
- http://titanium.cs.berkeley.edu 

•  Co-Array Fortran 
- Part of Stanford Fortran (subset of features) 
- CAF 2.0 from Rice: http://caf.rice.edu 

•  Chapel from Cray (own base language better than Java) 
- http://chapel.cray.com (open source) 

•  X10 from IBM also at Rice (Java, Scala,…) 
- http://www.research.ibm.com/x10/ 

•  Phalanx from Echelon projects at NVIDIA, LBNL,… 
- C++ PGAS languages with CUDA-like features for GPU clusters 

•  Coming soon…. PGAS for Python, aka PyGAS 



Productivity of the Titanium Language 

• Titanium is a PGAS language based on Java 
•  Line count comparison of Titanium and other languages: 

178"
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Productive Features in Titanium 

• UPC++ already provides many of Titanium’s productivity 
features 
- Basic high-level language features (e.g. object 

orientation, memory management) 
- Templates and operator overloading 
- SPMD execution model and PGAS memory model 

• Titanium features we want to implement in UPC++ 
- True multidimensional rectangular arrays 

•  Not distributed, but may be located on a remote thread 
- Hierarchical teams 
- Global object model (future work) 
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C and UPC Arrays 

• C/C++ arrays are limited in many ways 
- Multidimensional arrays must specify sizes of all but 

first dimension as compile-time constants 
•  These sizes are part of the type, which makes it hard to 

write generic code 
- Easy to get view of contiguous subset of an array, 

but non-contiguous view must be handled manually 
• UPC shared arrays have their own limitations 

- Can only be distributed in one dimension 
•  User must manually linearize a multidimensional array, 

use a directory structure, or both 
- Blocking factor must be a compile-time constant 
- upc_memcpy only supports contiguous source and 

destination 
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Example: Ghost Zones 

• Copying ghost zones 
requires manually packing/ 
unpacking elements at 
source/destination 
- In effect, turns one-sided 

operation into two-sided 
• Strided copy is not enough 

for ghost cell thickness > 1 
- Need “side factors” to specify how many elements to 

skip at end of each dimension 
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Multidimensional Arrays in Titanium 

• True multidimensional arrays 
- Supports subarrays without copies 

•  Can refer to rows, columns, slabs, 
interior, boundary, etc. 

- Indexed by Points (tuples of ints) 
- Built on a rectangular set of Points, RectDomain 
- Points and RectDomains are built-in immutable 

classes, with useful literal syntax 
• Support for AMR and other grid computations 

- domain operations: intersection, shrink, border 
• Arrays are located on a single thread, but can be a 

remote thread 
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Points, RectDomains, Arrays in General 

• Points specified by a tuple of ints 

• RectDomains given by 3 points:  
- lower bound, upper bound (and optional stride) 

• Array declared by number of dimensions and type 

• Array created by passing RectDomain 
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double [2d] a; 

Point<2> lb = [1, 1]; 
Point<2> ub = [10, 20]; 

RectDomain<2> r = [lb : ub]; 

a = new double [r];
  



Unordered Iteration 

• Motivation: 
- Memory hierarchy optimizations are essential 
- Compilers sometimes do these, but hard in general 

• Titanium has explicitly unordered iteration 
- Helps the compiler with analysis  
- Helps programmer avoid indexing details 

           foreach (p in r) { … A[p] … }  
•  p is a Point (tuple of ints), can be used as array index  
•  r is a RectDomain 

• Note: foreach is not a parallelism construct 
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Simple Array Example 

• Matrix sum in Titanium 
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Point<2> lb = [1,1]; 
Point<2> ub = [10,20]; 
RectDomain<2> r = [lb:ub]; 
 
double [2d] a = new double [r]; 
double [2d] b = new double [1:10,1:20]; 
double [2d] c = new double [lb:ub:[1,1]]; 
 
for (int i = 1; i <= 10; i++) 
   for (int j = 1; j <= 20; j++)  
     c[i,j] = a[i,j] + b[i,j]; 
 
foreach (p in c.domain()) { c[p] = a[p] + b[p]; } 

No array allocation here"

Syntactic sugar"

Optional stride"

Equivalent loops"



More Array Operations 

• Titanium arrays have a rich set of operations 

• None of these modify the original array, they just create 
another view of the data in that array 

• Most important array operation: one line copy between 
any two arrays with same element type and arity 

 dst.copy(src) 
- Copies all elements in intersection of source and 

destination domains 
- Both source and destination can be located on any 

thread 
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translate restrict slice (n dim to n-1) 



Example: Setting Boundary Conditions 
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foreach (l in local_grids.domain()) { 
 foreach (a in all_grids.domain()) { 
  local_grids[l].copy(all_grids[a]); 
 } 
} 

Proc 0 Proc 1 
local_grids 

all_grids 

• Can allocate arrays in a global index space 
•  Let compiler compute intersections 

"ghost" cells 



Implementation of Titanium Arrays in UPC++ 

• UPC++ implementation built using C++ templates and 
operator overloading 
- Template parameters specify arity and element type 
- Overload element access operator [] 

• Macros provide simple syntax for domain/array literals 
- Titanium 
  [1, 3] 
  RectDomain<3> rd = [[1, 1, 1] : [3, 3, 3]]; 
  int[3d] local arr = new int[[1, 1, 1] : [3, 3, 3]]; 

- UPC++ 
  POINT(1, 3) 
  rectdomain<3> rd = RECTDOMAIN((1, 1, 1), (3, 3, 3)); 
  ndarray<int, 3> arr = 
    ARRAY(int, ((1, 1, 1), (3, 3, 3))); 
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Foreach Implementation 

• Macros also allow definition of foreach loops 
 
#define foreach(p, dom)                        \ 
  foreach_(p, dom, UNIQUIFYN(foreach_ptr_, p)) 
 
#define foreach_(p, dom, ptr_)                 \ 
  for (auto ptr_ = (dom).iter(); !ptr_.done;   \ 
       ptr_.done = true)                       \ 
    for (auto p = ptr_.start(); ptr_.next(p);) 
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Preliminary Results 

• Currently have full implementation of Titanium-style 
domains and arrays in UPC++ 

• Additionally have ported useful pieces of the Titanium 
library to UPC++ 
- e.g. timers, higher-level collective operations 

• Four kernels ported from Titanium to UPC++ 
- 3D 7-point stencil, NAS conjugate gradient, Fourier 

transform, and multigrid 
- Minimal porting effort for these examples 

•  Less than a day for each kernel 
•  Array code only requires change in syntax 
•  Most time spent porting Java features to C++ 

- Larger applications will require global object model to 
be defined and implemented in UPC++ 
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Performance Tuning 

• Since UPC++ is a library, cannot rely on compiler to 
optimize array accesses 
- Array library is very general, but generality results in 

overhead in simple cases 
• Preliminary approach is to provide template 

specializations that allow users to bypass inefficient, 
general code 

•  In the future, we plan to explore automatic dynamic 
specialization 
- Potentially leverage SEJITS work at UCB 
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Example: CG SPMV 

• Unspecialized local SPMV in conjugate gradient kernel 
void multiply(ndarray<double, 1> output, 
              ndarray<double, 1> input) { 
  double sum = 0; 
  foreach (i, lrowRectDomains.domain()) { 
    sum = 0; 
    foreach (j, lrowRectDomains[i]) { 
      sum += la[j] * input[lcolidx[j]]; 
    } 
    output[i] = sum; 
  } 
} 

•  3x slower than hand-tuned code (sequential PGCC on 
Cray XE6) 
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Example: CG SPMV 

• Specialized local SPMV 
void multiply(ndarray<double, 1, simple> output, 
              ndarray<double, 1, simple> input) { 
  double sum = 0; 
  foreach1 (i, lrowRectDomains.domain()) { 
    sum = 0; 
    foreach1 (j, lrowRectDomains[i]) { 
      sum += la[j] * input[lcolidx[j]]; 
    } 
    output[i] = sum; 
  } 
} 

• Comparable to hand-tuned code (sequential PGCC on 
Cray XE6) 
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Hierarchical Programming 
 

• Applications can reduce communication costs by 
adapting to machine hierarchy"

• Applications may also have  
inherent, algorithmic hierarchy"
- Recursive algorithms"
- Composition of multiple algorithms"
- Hierarchical division of data"
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Algorithm Example: Merge Sort 

• Task parallel 
int[] mergeSort(int[] data) { 
  int len = data.length; 
  if (len < threshold) 
    return sequentialSort(data); 
  d1 = fork mergeSort(data[0:len/2-1]); 
  d2 = mergeSort(data[len/2:len-1]); 
  join d1; 
  return merge(d1, d2); 
} 

• Cannot fork threads in SPMD 
- Must rewrite to execute over fixed set of threads 
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Algorithm Example: Merge Sort 

• SPMD 
int[] mergeSort(int[] data, int[] ids) { 
  int len = data.length; 
  int threads = ids.length; 
  if (threads == 1) return sequentialSort(data); 
  if (myId in ids[0:threads/2-1]) 
    d1 = mergeSort(data[0:len/2-1], 
                   ids[0:threads/2-1]); 
  else 
    d2 = mergeSort(data[len/2:len-1], 
                   ids[threads/2:threads-1]); 
  barrier(ids); 
  if (myId == ids[0]) return merge(d1, d2); 
} 
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Hierarchical Teams 

• Thread teams are basic units of cooperation"
- Groups of threads that cooperatively execute code"
- Collective operations over teams"

• Structured, hierarchical teams provide many benefits 
over flat teams"
- Expressive: match structure of algorithms, machines 
- Safe: eliminate many sources of deadlock 
- Composable: enable existing code to be composed 

without being rewritten to explicitly use teams 
- Efficient: allow users to take advantage of machine 

structure, resulting in performance gains 
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Team Data Structure 

• Threads comprise teams in tree-like structure"

• First-class object to allow easy creation and 
manipulation"

• Work in progress: add ability to automatically construct 
team hierarchy from machine structure"
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Team Usage Construct 

• Syntactic construct specifies that all enclosed operations 
are with respect to the given team 
- Collectives and constants such as MYTHREAD are 

with respect to currently scoped team 
 teamsplit(row_team) { 
   Reduce::add(mtmp, myresults, rpivot); 
 } 
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Team Construct Implementation 

//	
  teamsplit(row_team)	
  {	
  =>	
  macro	
  expansion	
  =>	
  
for	
  (ts_scope	
  _ts(row_team);	
  _ts.done	
  ==	
  0;	
  
	
  	
  	
  	
  	
  _ts.done	
  =	
  1)	
  {	
  
	
  	
  //	
  ts_scope	
  constructor	
  call	
  generated	
  by	
  compiler	
  
	
  	
  //	
  descend	
  one	
  level	
  in	
  team	
  hierarchy	
  
	
  	
  ts_scope(team	
  &t)	
  {	
  descend_team(t-­‐>mychild());	
  }	
  
	
  
	
  	
  //	
  collective	
  operation	
  on	
  current	
  team	
  	
  	
  
	
  	
  Reduce::add(mtmp,	
  myresults,	
  rpivot);	
  
	
  
	
  	
  //	
  ts_scope	
  destructor	
  call	
  generated	
  by	
  compiler	
  
	
  	
  ~ts_scope()	
  {	
  ascend_team();	
  }	
  
}	
  

Leverage C++ Programming Idiom 
Resource Acquisition Is Initialization 
(RAII) 
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• teamsplit implemented exactly like finish 



Merge Sort Team Hierarchy 

• Team hierarchy is binary tree 
• Trivial construction 

• Threads walk down to bottom 
of hierarchy, sort, then walk 
back up, merging along the way 
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void divide_team(team &t) { 
  if (THREADS > 1) { 
    t.split(MYTHREAD % 2, 
            MYTHREAD / 2); 
    teamsplit(t) { 
      
divide_team(t.mychild()); 
    } 
  } 
} 



Merge Sort Implementation 

• Control logic for sorting and merging 
   void sort_and_merge(team &t) { 
     if (THREADS == 1) { 
       allres[myidx] = sequential_sort(mydata); 
     } else { 
       teamsplit(t) { 
         sort_and_merge(t.mychild()); 
       } 
       barrier(); 
       if (MYTHREAD == 0) { 
         int other = myidx + t.mychild().size(); 
         ndarray<int, 1> myres = allres[myidx]; 
         ndarray<int, 1> otherres = allres[other]; 
         ndarray<int, 1> newres = target(depth(t), myres, 
                                         otherres); 
         allres[myidx] = merge(myres, otherres, newres); 
       } 
     } 
   } 
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Hierarchical Teams Results (Titanium) 

• Titanium has full hierarchical team implementation, 
including machine model 

• Hierarchical sort algorithm has both algorithmic 
hierarchy (merge sort) and machine-level hierarchy 
(mixed sample sort and merge sort) 
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Summary 

• Many productive language features can be implemented 
in C++ without modifying the compiler 
- Macros and template metaprogramming provide a lot 

of power for extending the core language 
• Many Titanium applications can be ported to UPC++ 

with little effort 
- UPC++ can provide the same productivity gains as 

Titanium 
• However, analysis and optimization still an open 

question 
- Can we build a lightweight standalone analyzer/

optimizer for UPC++? 
- Can we provide automatic specialization at runtime 

in C++? 
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Future Work 

• Arrays 
- Investigate dynamic optimization using just-in-time 

specialization 
- Design and build distributed array library on top of 

current library 
• Hierarchical teams 

- Design hierarchical machine model for UPC++ 
- Add ability to query machine structure at runtime 

• Global object model 
- Explore template metaprogramming techniques for 

implementing a global object interface 
- Build a tool for generating global analogs from local 

class definitions 
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Application Work in PGAS 

• Network simulator in UPC (Steve Hofmeyr, LBNL) 
• Real-space multigrid (RMG) quantum mechanics 

(Shirley Moore, UTK) 
•  Landscape analysis, i.e., “Contributing Area 

Estimation” in UPC (Brian Kazian, UCB) 
• GTS Shifter in CAF (Preissl, Wichmann, 
Long, Shalf, Ethier,  
Koniges, LBNL,  
Cray, PPPL)  



Two Distinct Parallel Programming Questions 

• What is the parallel control model? 

• What is the model for sharing/communication? 
  

 
 
 
      synchronization may be coupled (implicit) or separate (explicit) 

data parallel 
(singe thread of control) 

dynamic 
threads 

single program 
multiple data (SPMD) 

shared memory 
load 
store 

send 

receive 

message passing 

PGAS load/store with partitioning for locality, 
but need a “signaling store” for producer 
consumer parallelism 

SPMD “default” plus data parallelism through 
collectives and dynamic tasking within nodes 
or between nodes through libraries 



PyGAS: Combine two popular ideas 

• Python 
- No. 6 Popular on http://langpop.com and extensive 

libraries, e.g., Numpy, Scipy, Matplotlib, NetworkX 
- 10% of NERSC projects use Python 

• PGAS 
- Convenient data and object sharing 

• PyGAS : Objects can be shared via Proxies with operations 
intercepted and dispatched over the network: 

•  Leveraging duck typing: 
•  Proxies behave like original objects. 
•  Many libraries will automatically work. 

num = 1+2*j 
    = share(num, from=0) 

print pxy.real # shared read 
pxy.imag = 3   # shared write 
print pxy.conjugate() # invoke 



Arrays in a Global Address Space 

• Key features of Titanium arrays 
- Generality: indices may start/end and any point 
- Domain calculus allow for slicing, subarray, 

transpose and other operations without data copies 
• Use domain calculus to identify ghosts and iterate: 

   foreach (p in gridA.shrink(1).domain()) ... 

• Array copies automatically work on intersection 
   gridB.copy(gridA.shrink(1)); 

gridA gridB 

“restricted” (non-
ghost) cells  

ghost 
cells  

intersection (copied 
area) 

Joint work with Titanium group"

Useful in grid 
computations 
including AMR 



Languages Support Helps Productivity 

C++/Fortran/MPI AMR 
•  Chombo package from LBNL 
•  Bulk-synchronous comm: 

-  Pack boundary data between procs 
-  All optimizations done by programmer 

Titanium AMR 
•  Entirely in Titanium 
•  Finer-grained communication 

-  No explicit pack/unpack code 
-  Automated in runtime system 

•  General approach 
-  Language allow programmer optimizations 
-  Compiler/runtime does some automatically 

Work by Tong Wen and Philip Colella; Communication optimizations joint with Jimmy Su"
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Particle/Mesh Method: Heart Simulation 

•  Elastic structures in an incompressible fluid. 
- Blood flow, clotting, inner ear, embryo growth, … 

•  Complicated parallelization 
- Particle/Mesh method, but  “Particles” connected 

into materials (1D or 2D structures) 
- Communication patterns irregular between particles 

(structures) and mesh (fluid) 

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen"

2D Dirac Delta Function 

Code Size in Lines"
Fortran" Titanium"

8000" 4000"

Note: Fortran code is not parallel 





Compiler-free “UPC++” eases interoperability  

global_array_t<int, 1> A(10); // shared [1] int A[10]; 

L-value reference (write/put) 
A[1] = 1; // A[1] -> global_ref_t ref(A, 1); ref = 1;  

R-value reference (read/get) 
int n = A[1] + 1; // A[1] -> global_ref_t ref(A, 1);  n = (int)ref + 1; 
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Hierarchical SPMD (demonstrated in Titanium) 

• Thread teams may execute distinct tasks 
partition(T) { 
  { model_fluid(); } 
  { model_muscles(); } 
  { model_electrical(); } 
} 

• Hierarchy for machine / tasks 
- Nearby: access shared data 
- Far away: copy data 

• Advantages:  
- Provable pointer types  
- Mixed data / task style  
- Lexical scope prevents some deadlocks 
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Single Program Multiple Data 
(SPMD) is too restrictive 

Hierarchical machines à Hierarchical programs 

• Option 1: Dynamic parallelism creation 
- Recursively divide until… you run out of work (or hardware) 
- Runtime needs to match parallelism to hardware hierarchy 

• Option 2: Hierarchical SPMD with “Mix-ins” 
- Hardware threads can be grouped into units hierarchically 
- Add dynamic parallelism with voluntary tasking on a group 
- Add data parallelism with collectives on a group 

Option 1 spreads threads, option 2 collecte them together 
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•  Hierarchical memory 
model may be necessary 
(what to expose vs hide) 

•  Two approaches to 
supporting the 
hierarchical control 



One-sided communication works everywhere 

Support for one-sided communication (DMA) appears in: 
•  Fast one-sided network communication (RDMA, Remote 

DMA) 
•  Move data to/from accelerators 
•  Move data to/from I/O system (Flash, disks,..) 
•  Movement of data in/out of local-store (scratchpad) memory 

PGAS programming model 
 
   *p1 = *p2 + 1; 
   A[i] = B[i]; 
 
   upc_memput(A,B,64); 
 
It is implemented using one-sided 
communication: put/get 



Vertical PGAS 
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Shared 
partitioned 
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l:  m:  Private on-chip 

Shared 
off-chip 
DRAM or 
NVRAM 

• New type of wide pointer? 
-  Points to slow (offchip memory)  
- The type system could get unwieldy quickly 



HPC: From Vector Supercomputers to 
Massively Parallel Systems 

Programmed by 
“annotating” 
serial programs 

Programmed by 
completely rethinking 
algorithms and 
software for parallelism 

25%                            industrial use                         50%   



PGAS Languages 

• Global address space: thread may directly read/write remote data  
•  Hides the distinction between shared/distributed memory 

• Partitioned: data is designated as local or global 
•  Does not hide this: critical for locality and scaling 

G
lo

ba
l a

dd
re

ss
 s

pa
ce
"

x: 1 
y:  

l:  l:  l:  

g:  g:  g:  

x: 5 
y:  

x: 7 
y: 0 

p0" p1" pn"
•  UPC, CAF, Titanium: Static parallelism (1 thread per proc)  

•  Does not virtualize processors 
•  X10, Chapel and Fortress: PGAS,but not static (dynamic threads) 



A Brief History of Languages 

• When vector machines were king 
- Parallel “languages” were loop annotations (IVDEP)  
- Performance was fragile, but there was good user support 

• When SIMD machines were king 
- Data parallel languages popular and successful (CMF, *Lisp, C*, …) 
- Quite powerful: can handle irregular data (sparse mat-vec multiply) 
- Irregular computation is less clear (multi-physics, adaptive meshes, 

backtracking search, sparse matrix factorization) 
• When shared memory multiprocessors (SMPs) were king 

- Shared memory models, e.g., OpenMP, POSIX Threads, were popular 
• When clusters took over 

- Message Passing (MPI) became dominant 
•  With multicore building blocks for clusters 

- Mixed MPI + OpenMP is the preferred choice 


