
Partitioned Global Address  
Space Programming 

with  
Unified Parallel C (UPC) and UPC++"

Kathy Yelick
Associate Laboratory Director for Computing Sciences

Lawrence Berkeley National Laboratory

EECS Professor, UC Berkeley

Computing Sciences at Berkeley Lab

Computing
Sciences

Computational
Research

Applied Math

Computer
Science

Data Science

Science
Partnerships

ESnet Facility NERSC
Facility

My research activity
(UPC, DEGAS,..)

Parallel Programming Problem: Histogram

• Consider the problem of computing a histogram:
- Large number of “words” streaming in from somewhere
- You want to count the # of words with a given property

•  In shared memory
- Lock each bucket

A’s B’s C’s … Y’s Z’s

• Distributed memory: the array is huge and spread out
- Each processor has a substream and sends +1 to the

appropriate processor… and that processor “receives”

A’s B’s C’s D’s Y’s Z’s …

PGAS = Partitioned Global Address Space

• Global address space: thread may directly read/write
remote data
• Convenience of shared memory

• Partitioned: data is designated as local or global
• Locality and scalability of message passing

G
lo

ba
l a

dd
re

ss
 s

pa
ce
"

x: 1
y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0" p1" pn"

Programming Challenges and Solutions

Message Passing Programming
Divide up domain in pieces
Each compute one piece
Exchange (send/receive) data

PVM, MPI, and many libraries

Global Address Space Programming
Each start computing
Grab whatever you need whenever

Global Address Space Languages
and Libraries
 ~10% of NERSC apps use some kind of PGAS-like model

Science Across the “Irregularity” Spectrum

Massive
Independent

Jobs for
Analysis and
Simulations

Nearest
Neighbor

Simulations

All-to-All
Simulations

Random
access, large
data Analysis

Data analysis and simulation

Low Overhead Atomic Updates Enable Genomics
Assembly Grand Challenge

k-mers

New analysis filters errors
using probabilistic “Bloom

Filter”

Graph algorithm (connected components)
scales to 15K cores on NERSC’s Edison

contigs

Scaffolds using Scalable Alignment

Human: 44 hours to 20 secs
Wheat: “doesn’t run” to 32 secs

x
x

New fast I/O using SeqDB over HDF5

reads
Meraculous Assembly Pipeline

UPC
•  Gives tera- to petabtye “shared”

memory
•  Combines with parallel I/O new

genome mapping algorithm to
anchor 92% of wheat chromosome

Meraculous assembler is used in production
at the Joint Genome Institute
•  Wheat assembly is a “grand challenge”
•  Hardest part is contig generation (large

in-memory hash table)

History of UPC
•  Initial Tech. Report from IDA in collaboration with LLNL

and UCB in May 1999 (led by IDA).
- Based on Split-C (UCB), AC (IDA) and PCP (LLNL)

• UPC consortium participants (past and present) are:
- ARSC, Compaq, CSC, Cray Inc., Etnus, GMU, HP, IDA CCS,

Intrepid Technologies, LBNL, LLNL, MTU, NSA, SGI, Sun
Microsystems, UCB, U. Florida, US DOD
- UPC is a community effort, well beyond UCB/LBNL

• Design goals: high performance, expressive, consistent
with C goals, …, portable

• UPC Today
- Multiple vendor and open compilers (Cray, HP, IBM, SGI, gcc-upc

from Intrepid, Berkeley UPC)
- “Pseudo standard” by moving into gcc trunk
- Most widely used on irregular / graph problems today

Bringing Users Along: UPC Experience

• Ecosystem:
- Users with a need (fine-grained random access)
- Machines with RDMA (not full hardware GAS)
- Common runtime; Commercial and free software
- Sustained funding and Center procurements

• Success models:
- Adoption by users: vectors à MPI, Python and Perl, UPC/CAF
- Influence traditional models: MPI 1-sided; OpenMP locality control
- Enable future models: Chapel, X10,…

1991
Active Msgs
are fast

1992 First Split-C
(compiler class)

1992
First AC
(accelerators +
split memory)

1993
Split-C funding
(DOE)

1997
First UPC
Meeting

“best of” AC,
Split-C, PCP

2001
First UPC
Funding

2003 Berkeley
Compiler release

2001
gcc-upc at Intrepid

2006
UPC in NERSC
procurement

2002 GASNet
Spec

2010
Hybrid MPI/UPC

Other GASNet-based languages

UPC Execution
Model"

UPC Execution Model

•  A number of threads working independently in a SPMD
fashion
-  Number of threads specified at compile-time or run-time;

available as program variable THREADS
-  MYTHREAD specifies thread index (0..THREADS-1)
-  upc_barrier is a global synchronization: all wait
-  There is a form of parallel loop that we will see later

•  There are two compilation modes
-  Static Threads mode:

•  THREADS is specified at compile time by the user
•  The program may use THREADS as a compile-time constant

-  Dynamic threads mode:
•  Compiled code may be run with varying numbers of threads

Hello World in UPC

• Any legal C program is also a legal UPC program
•  If you compile and run it as UPC with P threads, it will

run P copies of the program.
• Using this fact, plus the a few UPC keywords:

#include <upc.h> /* needed for UPC extensions */
#include <stdio.h>

main() {
 printf("Thread %d of %d: hello UPC world\n",
 MYTHREAD, THREADS);
}

Example: Monte Carlo Pi Calculation

• Estimate Pi by throwing darts at a unit square
• Calculate percentage that fall in the unit circle

- Area of square = r2 = 1
- Area of circle quadrant = ¼ * π r2 = π/4

• Randomly throw darts at x,y positions
•  If x2 + y2 < 1, then point is inside circle
• Compute ratio:

- # points inside / # points total
-  π = 4*ratio

r =1

Each thread calls “hit” separately

Initialize random in
math library

Each thread can use
input arguments

Each thread gets its own
copy of these variables

Pi in UPC

• Independent estimates of pi:
 main(int argc, char **argv) {
 int i, hits, trials = 0;
 double pi;

 if (argc != 2)trials = 1000000;
 else trials = atoi(argv[1]);

 srand(MYTHREAD*17);

 for (i=0; i < trials; i++) hits += hit();
 pi = 4.0*hits/trials;
 printf("PI estimated to %f.", pi);
 }

Helper Code for Pi in UPC

• Required includes:
 #include <stdio.h>
 #include <math.h>
 #include <upc.h>

• Function to throw dart and calculate where it hits:
 int hit(){
 int const rand_max = 0xFFFFFF;
 double x = ((double) rand()) / RAND_MAX;
 double y = ((double) rand()) / RAND_MAX;
 if ((x*x + y*y) <= 1.0) {
 return(1);
 } else {
 return(0);
 }
 }

Shared vs. Private
Variables"

Private vs. Shared Variables in UPC

• Normal C variables and objects are allocated in the private
memory space for each thread.

• Shared variables are allocated only once, with thread 0
 shared int ours; // use sparingly: performance
 int mine;

• Shared variables may not have dynamic lifetime: may not
occur in a function definition, except as static. Why?

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
mine: mine: mine:

Thread0 Thread1 Threadn

ours:

Pi in UPC: Shared Memory Style

• Parallel computing of pi, but with a bug
 shared int hits;
 main(int argc, char **argv) {
 int i, my_trials = 0;
 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)
 hits += hit();
 upc_barrier;
 if (MYTHREAD == 0) {
 printf("PI estimated to %f.", 4.0*hits/trials);
 }
 }

shared variable to
record hits

divide work up evenly

accumulate hits

What is the problem with this program?

Shared Arrays Are Cyclic By Default

• Shared scalars always live in thread 0
• Shared arrays are spread over the threads
• Shared array elements are spread across the threads

shared int x[THREADS] /* 1 element per thread */
shared int y[3][THREADS] /* 3 elements per thread */
shared int z[3][3] /* 2 or 3 elements per thread */

•  In the pictures below, assume THREADS = 4
- Blue elts have affinity to thread 0

x

y

z

As a 2D array, y is
logically blocked
by columns

Think of linearized
C array, then map
in round-robin

z is not

Pi in UPC: Shared Array Version

• Alternative fix to the race condition
• Have each thread update a separate counter:

- But do it in a shared array
- Have one thread compute sum

shared int all_hits [THREADS];
main(int argc, char **argv) {
 … declarations an initialization code omitted
 for (i=0; i < my_trials; i++)
 all_hits[MYTHREAD] += hit();
 upc_barrier;
 if (MYTHREAD == 0) {
 for (i=0; i < THREADS; i++) hits += all_hits[i];
 printf("PI estimated to %f.", 4.0*hits/trials);
 }
}

all_hits is
shared by all
processors,
just as hits was

update element
with local affinity

UPC
Synchronization"

UPC Global Synchronization

•  UPC has two basic forms of barriers:
-  Barrier: block until all other threads arrive

 upc_barrier
-  Split-phase barriers
 upc_notify; this thread is ready for barrier
 do computation unrelated to barrier
 upc_wait; wait for others to be ready

•  Optional labels allow for debugging
#define MERGE_BARRIER 12
if (MYTHREAD%2 == 0) {
 ...
 upc_barrier MERGE_BARRIER;
} else {
 ...
 upc_barrier MERGE_BARRIER;
}

Synchronization - Locks

•  Locks in UPC are represented by an opaque type:
upc_lock_t

•  Locks must be allocated before use:
upc_lock_t *upc_all_lock_alloc(void);

 allocates 1 lock, pointer to all threads
upc_lock_t *upc_global_lock_alloc(void);

 allocates 1 lock, pointer to one thread
•  To use a lock:

void upc_lock(upc_lock_t *l)
void upc_unlock(upc_lock_t *l)

 use at start and end of critical region
•  Locks can be freed when not in use

void upc_lock_free(upc_lock_t *ptr);

Pi in UPC: Shared Memory Style

• Like pthreads, but use shared accesses judiciously
 shared int hits;
 main(int argc, char **argv) {
 int i, my_hits, my_trials = 0;
 upc_lock_t *hit_lock = upc_all_lock_alloc();
 int trials = atoi(argv[1]);
 my_trials = (trials + THREADS - 1)/THREADS;
 srand(MYTHREAD*17);
 for (i=0; i < my_trials; i++)
 my_hits += hit();
 upc_lock(hit_lock);
 hits += my_hits;
 upc_unlock(hit_lock);
 upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*hits/trials);
 }

create a lock

accumulate hits
locally

accumulate
across threads

other private variables

one shared scalar variable

Recap: Private vs. Shared Variables in UPC

• We saw several kinds of variables in the pi example
- Private scalars (my_hits)
- Shared scalars (hits)
- Shared arrays (all_hits)
- Shared locks (hit_lock)

Shared

G
lo

ba
l a

dd
re

ss

sp
ac

e

Private
my_hits: my_hits: my_hits:

Thread0 Thread1 Threadn

all_hits[0]:

hits:

all_hits[n]: all_hits[1]:

hit_lock:

where:
n=Threads-1

UPC Collectives"

UPC (Value-Based) Collectives

•  A portable library of collectives on scalar values (not arrays)

 Example: x = bupc_allv_reduce(double, x, 0, UPC_ADD)
 TYPE bupc_allv_reduce(TYPE, TYPE value, int root, upc_op_t op)
-  'TYPE' is the type of value being collected
-  root is the thread ID for the root (e.g., the source of a broadcast)
-  'value’ is both the input and output (must be a “variable” or l-value)
-  op is the operation: UPC_ADD, UPC_MULT, UPC_MIN, …

•  Computational Collectives: reductions and scan (parallel prefix)
•  Data movement collectives: broadcast, scatter, gather

•  Portable implementation available from:
- http://upc.lbl.gov/download/dist/upcr_preinclude/bupc_collectivev.h

•  UPC also has more general collectives over arrays
•  http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf

Pi in UPC: Data Parallel Style

• The previous version of Pi works, but is not scalable:
- On a large # of threads, the locked region will be a bottleneck

• Use a reduction for better scalability

 #include <bupc_collectivev.h>
 // shared int hits;
 main(int argc, char **argv) {
 ...
 for (i=0; i < my_trials; i++)
 my_hits += hit();
 my_hits = // type, input, thread, op
 bupc_allv_reduce(int, my_hits, 0, UPC_ADD);
 // upc_barrier;
 if (MYTHREAD == 0)
 printf("PI: %f", 4.0*my_hits/trials);
 }

 Berkeley collectives
no shared variables

barrier implied by collective

UPC Collectives in General

•  The UPC collectives interface is in the language spec:
- http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf

•  It contains typical functions:
- Data movement: broadcast, scatter, gather, …
- Computational: reduce, prefix, …

•  Interface has synchronization modes:
- Avoid over-synchronizing (barrier before/after is simplest

semantics, but may be unnecessary)
- Data being collected may be read/written by any thread

simultaneously
•  Simple interface for collecting scalar values (int, double,…)

- Berkeley UPC value-based collectives
- Works with any compiler
- http://upc.lbl.gov/docs/user/README-collectivev.txt

local

shared

Full UPC Collectives
- Value-based collectives pass in and return scalar values
- But sometimes you want to collect over arrays
- When can a collective argument begin executing?

•  Arguments with affinity to thread i are ready when thread i calls the
function; results with affinity to thread i are ready when thread i returns.

•  This is appealing but it is incorrect: In a broadcast, thread 1 does not
know when thread 0 is ready.

0 2 1

dst dst dst

src src src

Slide source: Steve Seidel, MTU

UPC Collective: Sync Flags

•  In full UPC Collectives, blocks of data may be collected
•  A extra argument of each collective function is the sync mode of type

upc_flag_t.
•  Values of sync mode are formed by or-ing together a constant of the form

UPC_IN_XSYNC and a constant of the form UPC_OUT_YSYNC, where X
and Y may be NO, MY, or ALL.

•  If sync_mode is (UPC IN_XSYNC | UPC OUT YSYNC), then if X is:
-  NO the collective function may begin to read or write data when the first thread

has entered the collective function call,
- MY the collective function may begin to read or write only data which has

affinity to threads that have entered the collective function call, and
-  ALL the collective function may begin to read or write data only after all threads

have entered the collective function call
•  and if Y is

-  NO the collective function may read and write data until the last thread has
returned from the collective function call,

- MY the collective function call may return in a thread only after all reads and
writes of data with affinity to the thread are complete3, and

-  ALL the collective function call may return only after all reads and writes of data
are complete.

Work Distribution
Using upc_forall

Example: Vector Addition

 /* vadd.c */
 #include <upc_relaxed.h>
#define N 100*THREADS

shared int v1[N], v2[N], sum[N];
void main() {

 int i;
 for(i=0; i<N; i++)

 if (MYTHREAD == i%THREADS)
 sum[i]=v1[i]+v2[i];

}

• Questions about parallel vector additions: "
• How to layout data (here it is cyclic)"
• Which processor does what (here it is “owner computes”)"

cyclic layout

owner computes

•  A common idiom:
-  Loop over all elements; work on those owned by this thread

•  UPC adds a special type of loop
 upc_forall(init; test; loop; affinity)
 statement;

•  Programmer indicates the iterations are independent
-  Undefined if there are dependencies across threads

•  Affinity expression indicates which iterations to run on each thread.
It may have one of two types:
-  Integer: affinity%THREADS is MYTHREAD
-  Pointer: upc_threadof(affinity) is MYTHREAD

•  Syntactic sugar for:
 for(i=0; i<N; i++) if (MYTHREAD == i%THREADS)

•  Compilers will sometimes do better than this, e.g.,
 for(i=MYTHREAD; i<N; i+=THREADS)

Work Sharing with upc_forall()

Vector Addition with upc_forall

#define N 100*THREADS

shared int v1[N], v2[N], sum[N];

void main() {

 int i;
 upc_forall(i=0; i<N; i++; i)

 sum[i]=v1[i]+v2[i];
}

• Vector addition can be written as follows

Cyclic data
distribution default"

• The code would be correct but slow if the affinity expression
were i+1 rather than i.

• Equivalent code could use “&sum[i]” for affinity and would
still work if you change the layout of sum

Execute iff this is
ith thread (modulo
of threads)"

Distributed Arrays
in UPC"

Blocked Layouts in UPC

#define N 100*THREADS
shared int [*] v1[N], v2[N], sum[N];

void main() {

 int i;
 upc_forall(i=0; i<N; i++; &sum[i])

 sum[i]=v1[i]+v2[i];
}

•  Array layouts are controlled by blocking factors:
Empty (cyclic layout)
[*] (blocked layout)
[b] (fixed block size)
[0] or [] (indefinite layout, all on 1 thread)

•  Vector addition example can be rewritten as follows using a cyclic or
(maximally) blocked layout

blocked layout

Layouts in General

• All non-array objects have affinity with thread zero.
• Array layouts are controlled by layout specifiers:

- Empty (cyclic layout)
- [*] (blocked layout)
- [0] or [] (indefinite layout, all on 1 thread)
- [b] or [b1][b2]…[bn] = [b1*b2*…bn] (fixed block size)

• The affinity of an array element is defined in terms of:
- block size, a compile-time constant
- and THREADS.

• Element i has affinity with thread
 (i / block_size) % THREADS

•  In 2D and higher, linearize the elements as in a C
representation, and then use above mapping

2D Array Layouts in UPC

• Array a1 has a row layout and array a2 has a block row
layout.

 shared [m] int a1 [n][m];
 shared [k*m] int a2 [n][m];

•  If (k + m) % THREADS = = 0 them a3 has a row layout
 shared int a3 [n][m+k];
• To get more general HPF and ScaLAPACK style 2D

blocked layouts, one needs to add dimensions.
• Assume r*c = THREADS;
 shared [b1][b2] int a5 [m][n][r][c][b1][b2];
•  or equivalently
 shared [b1*b2] int a5 [m][n][r][c][b1][b2];

Pointers to Shared vs. Arrays

#define N 100*THREADS
shared int v1[N], v2[N], sum[N];
void main() {

int i;
shared int *p1, *p2;

p1=v1; p2=v2;
for (i=0; i<N; i++, p1++, p2++)

 if (i %THREADS= = MYTHREAD)
 sum[i]= *p1 + *p2;

}

•  In the C tradition, array can be access through pointers"
• Here is the vector addition example using pointers"

v1

p1

UPC Pointers

Local Global (to shared)
Private p1 p2

Shared p3 p4

Where does the pointer point?

Where
does the
pointer
reside?

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to
 shared space */
Shared to local memory (p3) is not recommended.

UPC Pointers

int *p1; /* private pointer to local memory */
shared int *p2; /* private pointer to shared space */
int *shared p3; /* shared pointer to local memory */
shared int *shared p4; /* shared pointer to
 shared space */

Shared

G
lo

ba
l

ad
dr

es
s

sp
ac

e

Private

Thread0 Thread1 Threadn

p2: p2: p2:

p1: p1: p1:

p4: p4: p4:

p3: p3: p3:

Pointers to shared often require more storage and are more costly
to dereference; they may refer to local or remote memory.

Common Uses for UPC Pointer Types

int *p1;
•  These pointers are fast (just like C pointers)
•  Use to access local data in part of code performing local work
•  Often cast a pointer-to-shared to one of these to get faster

access to shared data that is local
shared int *p2;
•  Use to refer to remote data
•  Larger and slower due to test-for-local + possible

communication
int *shared p3;
•  Not recommended
shared int *shared p4;
•  Use to build shared linked structures, e.g., a linked list

UPC Pointers

•  In UPC pointers to shared objects have three fields:
-  thread number
-  local address of block
-  phase (specifies position in the block)

•  Example implementation

Phase Thread Virtual Address

0 37 38 48 49 63

Virtual Address Thread Phase

Phase is
needed to
implement
p++ within/
between
threads

UPC Pointers

•  Pointer arithmetic supports blocked and non-blocked
array distributions

•  Casting of shared to private pointers is allowed but
not vice versa !

•  When casting a pointer-to-shared to a pointer-to-local,
the thread number of the pointer to shared may be
lost

•  Casting of shared to local is well defined only if the
object pointed to by the pointer to shared has affinity
with the thread performing the cast

Special Functions

•  size_t upc_threadof(shared void *ptr);
returns the thread number that has affinity to the pointer
to shared

•  size_t upc_phaseof(shared void *ptr);
returns the index (position within the block)field of the
pointer to shared

•  shared void *upc_resetphase(shared void *ptr); resets
the phase to zero

Global Memory Allocation
shared void *upc_alloc(size_t nbytes);

 nbytes : size of memory in bytes
•  Non-collective: called by one thread
•  The calling thread allocates a contiguous memory space in the shared

space with affinity to itself.
 shared [] double [n] p2 = upc_alloc(n&sizeof(double);

void upc_free(shared void *ptr);
•  Non-collective function; frees the dynamically allocated shared

memory pointed to by ptr

Shared

G
lo

ba
l

ad
dr

es
s

sp
ac

e

Private

Thread0 Thread1 Threadn

p2:

 n doubles

p2:

 n doubles

p2:

 n doubles

Global Memory Allocation
shared void *upc_all_alloc(size_t nblocks, size_t

nbytes);

 nblocks : number of blocks
 nbytes : block size

•  Collective: called by all threads together
•  Allocates a memory space in the shared space with the shape:
 shared [nbytes] char[nblocks * nbytes]
•  All threads get the same pointer

shared void *upc_global_alloc(size_t nblocks,
size_t nbytes);

•  Not collective
•  Each thread allocates its own space and receives a different

pointer (to a different distributed block)
•  (Implementation challenges)

Distributed Arrays Directory Style

• Many UPC programs avoid the UPC style arrays in
factor of directories of objects

typedef shared [] double *sdblptr;
shared sdblptr directory[THREADS];
directory[i]=upc_alloc(local_size*sizeof(double));

directory

• These are also more general:
• Multidimensional, unevenly distributed
• Ghost regions around blocks

physical and
conceptual
3D array
layout

Memory Consistency in UPC

•  The consistency model defines the order in which one thread may
see another threads accesses to memory
- If you write a program with unsychronized accesses, what

happens?
- Does this work?

data = … while (!flag) { };
flag = 1; … = data; // use the data

•  UPC has two types of accesses:
- Strict: will always appear in order
- Relaxed: May appear out of order to other threads

•  There are several ways of designating the type, commonly:
- Use the include file:

#include <upc_relaxed.h>

- Which makes all accesses in the file relaxed by default
- Use strict on variables that are used as synchronization (flag)

Properties of UPC memory model

• Definitions:
- A data race is:

•  Two concurrent memory operations from two different
threads to the same memory location in which at least one
is a write.

- A race-free program is one in which:
•  All executions of the program are free of data races (would

be nice if the user could only worry about naïve
implementations)

• And states that programs will be sequentially consistent
(behave as if all operations from each thread execute in
order) if either of the following holds:
- The program is race-free
- The program contains no relaxed operations

Intuition on Strict Oderings

•  Each thread may “build” its own total order to explain behavior
•  They all agree on the strict ordering shown above in black, but

- Different threads may see relaxed writes in different orders
•  Allows non-blocking writes to be used in implementations

- Each thread sees own dependencies, but not those of
other threads

•  Weak, but otherwise there would place consistency requirements
on some relaxed operations (e.g., local cache control insufficient)

•  Preserving dependencies requires usual compiler/hw analysis

P0

P1

Synchronization- Fence

• Upc provides a fence construct
- Equivalent to a null strict reference, and has the

syntax
•  upc_fence;

- UPC ensures that all shared references issued
before the upc_fence are complete

UPC Performance
Features"

UPC Compiler Implementation

UPC-to-C translator

•  Pros: portable, can use any
backend C compiler

•  Cons: may lose program
information between the two
compilation phases

•  Example: Berkeley UPC

UPC-to-object-code compiler

•  Pros: better for implementing
UPC specific optimizations

•  Cons: less portable
•  Example: GCC UPC and

most vendor UPC compilers

UPC code

UPC source-to-source
translator

C code

UPC code

UPC source-to-object-
code complier

Machine Instr.

Exemplar Programming System Stack on Cray

Cray Communication Libraries (DMAPP/GNI)

Cray MPI /
MPICH2

MPI Apps

GASNet GNI Conduit

BUPC
Runtime

UPC Apps

Cray PGAS Runtime

Cray Networks (Gemini/Aries)

Cray UPC
Compiler

BUPC
Compiler

Chapel
Runtime

Cray CAF
Compiler

CAF
Apps

Chapel
Compiler

Chapel
Apps

Berkeley UPC Software Stack

UPC-to-C Translator

UPC Applications

UPC Runtime

GASNet Communication Library

Network and OS API

C code with Runtime Calls

H
ar

dw
ar

e
D

ep
en

da
nt

Language D

ependant

Tip: you can choose your favorite C compiler (e.g., clang,
icc, gcc, nvcc, xlc) as the backend compiler with BUPC.

GASNet Software Stack

Active
Messages

Low-level communication APIs (e.g., Cray GNI, IBM
PAMI, IB Verbs, Portals 4, UDP, shared-memory)

Interconnect

One-sided
Communication

PGAS Programming Systems (e.g., BUPC, CAF 2.0,
Chapel, OpenSHMEM, Titanium, and DEGAS)

Collective
Communication

GASNet

Implementing UPC Shared Data Access

shared int s;
s= 5;

UPC-to-C Translator

UPCR_PUT_PSHARED_VAL(s, 0, 5, 4);

UPC Runtime

GASNet Local Memory operation

Where is
“s”?

Remote Local

Tip: try “upcc	
 –trans	
 test.upc” to see the
translated C code for Berkeley UPC.

Runtime
Address
Translation
Overheads

When Address Translation Overheads Matter?

Case 1: access local data
1.  Get the partition id of the

global address (1 cycle)
2.  Check if the partition is

local (1 cycle)
3.  Get the local address of

the partition (1 cycle)
4.  Access data through the

local address (1 cycle)

3 CPU cycles for address
translation vs. 1 cycle for
real work
(Bad: 3X overhead)

1.  Get the partition id of the
global address (1 cycle)

2.  Check if the partition is
local (1 cycle)

3.  Get the local address of
the partition (1 cycle)

4.  Access data through the
network (~104 cycles)

3 CPU cycles for address
translation vs. ~104 cycles
for real work
(Good: 0.3% overhead)

Case 2: access remote data

Performance: Pointer-to-local vs. Pointer-to-shared

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

8	
 16	
 32	
 64	
 128	
 256	
 512	

Ti
m
e	

(n
s)
	

Data	
 Size	
 (bytes)	

Shared	
 Data	
 Access	
 Time	
 on	
 32-­‐core	
 AMD	

Local	
 pointer	

Pointer-­‐to-­‐shared	
 Berkeley	
 UPC	

Pointer-­‐to-­‐shared	
 GCCUPC	

0	

100	

200	

300	

400	

500	

600	

700	

800	

8	
 16	
 32	
 64	
 128	
 256	
 512	

Ti
m
e	

(n
s)
	

Data	
 Size	
 (bytes)	

Shared	
 Data	
 Access	
 Time	
 on	
 8-­‐core	
 Intel	
 	

Local	
 pointer	

Pointer-­‐to-­‐shared	
 Berkeley	
 UPC	

Pointer-­‐to-­‐shared	
 GCCUPC	
 G
o
o
d

Tip: Cast a pointer-to-shared to a regular C pointer
for accessing the local portion of a shared object.
E.g., int *p = (int *)pts; p[0] = 1;

• Move data in chunks
upc_mem(cpy|put|get)(…)	

non-­‐blocking	
 upc_mem(cpy|put|get)	
 are	
 even	
 better	

• Cast pointer-to-shared to pointer-to-local
#include<upc_castable.h>	
 //	
 in	
 UPC	
 1.3	

void	
 *upc_cast(const	
 shared	
 void	
 *ptr);	
 	

How to Amortize Address Translation Overheads

Physical Shared-memory Virtual Address Space

int *p1 = (int *)sp1;

shared int *sp1

shared int *sp2

Thread 1’s perspective

int *p2 = upc_cast(sp2);

UPC 1.2

UPC 1.3

Tip: UPC 1.3 enables you to
cast a pointer-to-shared with
affinity to another UPC
thread to a pointer-to-local if
both threads share the same
physical node.

T1 T2

Non-blocking Memcpy is crucial to performance

Hardware can reorder operations to improve
performance (e.g., network adaptive routing),
but possible data dependencies may prohibit it.

put 2 to *p2

put 1 to *p1

Src Node

Dst Node

These two Put operations may be
completed out-of-order iff p1 and
p2 are different addresses.

By using non-blocking memcpy,
the user gives the permission to
complete memory operations in
arbitrary order.

UPC 1.3 Non-blocking Memcpy

#include<upc_nb.h>	
 	

	

upc_handle_t	
 h	
 =	
 	

upc_memcpy_nb(shared	
 void	
 *	
 restrict	
 dst,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 shared	
 const	
 void	
 *	
 restrict	
 src,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 size_t	
 n);	

void	
 upc_sync(upc_handle_t	
 h);	
 	
 	
 	
 	
 	
 	
 	
 //	
 blocking	
 wait	

int	
 upc_sync_attempt(upc_handle_t	
 h);	
 //	
 non-­‐blocking	
 	

	

//	
 Implicit	
 handle	
 version,	
 no	
 handle	
 management	
 by	
 user	

void	
 upc_memcpy_nbi(…);	
 // parameters the same as upc_memcpy
void	
 upc_synci();	
 //	
 sync	
 all	
 issued	
 implicit	
 operations	

int	
 upc_sync_attempti();	
 //	
 test	
 the	
 completion	
 status	
 of	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 //	
 implicit	
 operations	

	

	

	

UPC 1.3 Atomic Operations

• More efficient than using locks when applicable

• Hardware support for atomic operations are available, but

upc_lock();	

update();	

upc_unlock();	

atomic_update();	
 vs

Memory

CPU

GPU

NIC

Memory

Atomic_CAS on uint64_t

Atomic_Add on double

Only support limited operations
on a subset of data types. e.g.,

Atomic ops from different
processors may not be
atomic to each other

UPC 1.3 Atomic Operations (cont.)

• Key new idea: atomicity domain
Users specify the operand data type and the set of
operations over which atomicity is needed

//	
 atomicity	
 domain	
 for	
 incrementing	
 64-­‐bit	
 integers	

upc_atomicdomain_t	
 *domain	
 =	
 	
 	
 	
 	
 	

	
 	
 upc_all_atomicdomain_alloc(UPC_INT64,	
 UPC_INC,	
 0);	

	

	
 	
 	
 upc_atomic_strict(upc_atomicdomain_t	
 *domain,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 void	
 *	
 restrict	
 fetch_ptr,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 upc_op_t	
 op,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 shared	
 void	
 *	
 restrict	
 target,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 const	
 void	
 *	
 restrict	
 operand1,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 const	
 void	
 *	
 restrict	
 operand2);	
 	

	

	
 	
 	
 upc_atomic_relaxed(…);	
 //	
 relaxed	
 consistency	
 version	
 	

	

Performance of
UPC"

Berkeley UPC Compiler "

Compiler-generated C code

UPC Runtime system

GASNet Communication System

Network Hardware

Platform-
independent

Network-
independent

Language-
independent

Compiler-
independent

UPC Code UPC Compiler
Used by bupc and

gcc-upc

Used by Cray
UPC, CAF,

Chapel, Titanium,
and others

PGAS Languages have Performance Advantages
Strategy for acceptance of a new language
• Make it run faster than anything else

Keys to high performance
• Parallelism:

- Scaling the number of processors
• Maximize single node performance

- Generate friendly code or use tuned libraries
(BLAS, FFTW, etc.)

• Avoid (unnecessary) communication cost
- Latency, bandwidth, overhead
- Berkeley UPC and Titanium use GASNet

communication layer
• Avoid unnecessary delays due to dependencies

- Load balance; Pipeline algorithmic dependencies

One-Sided vs Two-Sided

•  A one-sided put/get message can be handled directly by a network
interface with RDMA support
- Avoid interrupting the CPU or storing data from CPU (preposts)

•  A two-sided messages needs to be matched with a receive to
identify memory address to put data
- Offloaded to Network Interface in networks like Quadrics
- Need to download match tables to interface (from host)
- Ordering requirements on messages can also hinder bandwidth

address

message id

data payload

data payload

one-sided put message

two-sided message

network
 interface

memory

host
CPU

Why Should You Care about PGAS?

0

5

10

15

20

25

30

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48

40
96

81

92

La
te

nc
y

(u
s)

Size (bytes)

Latency between Two MICs via
Infiniabnd

MPI_Send/Recv (Intel MPI)

upc_memput

0

1

2

3

4

5

6

7

8

9

10

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48

40
96

81

92

16
38

4
32

76
8

La
te

nc
y

(u
s)

Size of Messages (bytes)

Latency between Two Nodes on Edison
(Cray XC30)

MPI_Send/Recv
upc_memput

b
e
t
t
e
r

71"

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

8 32 128 512 2048 8192 32768 131072 524288 2097152

B
an

dw
id

th
 (M

B
/s

)

Msg. size

Berkeley UPC

Cray UPC

Cray MPI

Bandwidths on Cray XE6 (Hopper)

0

2

4

6

8

10

12

UPC/MPI

One-Sided vs. Two-Sided: Practice

0

100

200

300

400

500

600

700

800

900

10 100 1,000 10,000 100,000 1,000,000

Size (bytes)

Ba
nd

w
id

th
 (M

B/
s)

GASNet put (nonblock)"
MPI Flood

Relative BW (GASNet/MPI)

1.0
1.2

1.4
1.6

1.8
2.0

2.2
2.4

10 1000 100000 10000000

Size (bytes)

•  InfiniBand: GASNet vapi-conduit and OSU MVAPICH 0.9.5
•  Half power point (N ½) differs by one order of magnitude
•  This is not a criticism of the implementation!

Joint work with Paul Hargrove and Dan Bonachea"

(u
p

is
 g

oo
d)

NERSC Jacquard
machine with
Opteron
processors

GASNet: Portability and High-Performance
(d

ow
n

is
 g

oo
d)

GASNet better for latency across machines

8-byte Roundtrip Latency

14.6

6.6

22.1

9.6

6.6

4.5

9.5

18.5

24.2

13.5

17.8

8.3

0

5

10

15

20

25

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

R
ou

nd
tr

ip
 L

at
en

cy
 (u

se
c)

MPI ping-pong

GASNet put+sync

Joint work with UPC Group; GASNet design by Dan Bonachea"

(u
p

is
 g

oo
d)

GASNet at least as high (comparable) for large messages

Flood Bandwidth for 2MB messages

1504

630

244

857
225

610

1490799
255

858 228
795

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

(B
W

 in
 M

B
)

MPI GASNet

GASNet: Portability and High-Performance

Joint work with UPC Group; GASNet design by Dan Bonachea"

(u
p

is
 g

oo
d)

GASNet excels at mid-range sizes: important for overlap

GASNet: Portability and High-Performance

Flood Bandwidth for 4KB messages

547

420

190

702

152

252

750

714231

763
223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed

Pe
rc

en
t H

W
 p

ea
k

MPI

GASNet

Joint work with UPC Group; GASNet design by Dan Bonachea"

Communication Strategies for 3D FFT

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea"

chunk = all rows with same destination

pencil = 1 row

•  Three approaches:
• Chunk:

•  Wait for 2nd dim FFTs to finish
•  Minimize # messages

• Slab:
•  Wait for chunk of rows destined for 1

proc to finish
•  Overlap with computation

• Pencil:
•  Send each row as it completes
•  Maximize overlap and
•  Match natural layout

slab = all rows in a single plane with
same destination

Overlapping Communication
•  Goal: make use of “all the wires all the time”

- Schedule communication to avoid network backup
•  Trade-off: overhead vs. overlap

- Exchange has fewest messages, less message overhead
- Slabs and pencils have more overlap; pencils the most

•  Example: Class D problem on 256 Processors

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea"

Exchange (all data at once) 512 Kbytes
Slabs (contiguous rows that go to 1 processor) 64 Kbytes

Pencils (single row) 16 Kbytes

NAS FT Variants Performance Summary

•  Slab is always best for MPI; small message cost too high
•  Pencil is always best for UPC; more overlap

0

200

400

600

800

1000

Myrinet 64
InfiniBand 256

Elan3 256
Elan3 512

Elan4 256
Elan4 512

M
Fl

op
s

pe
r T

hr
ea

d

Best MFlop rates for all NAS FT Benchmark versions

Best NAS Fortran/MPI
Best MPI
Best UPC

0

100

200

300

400

500

600

700

800

900

1000

1100

Myrinet 64

InfiniBand 256
Elan3 256

Elan3 512
Elan4 256

Elan4 512

M
F

lo
p
s

p
e
r

T
h
re

a
d

Best NAS Fortran/MPI

Best MPI (always Slabs)

Best UPC (always Pencils)

Joint work with Chris Bell, Rajesh Nishtala, Dan Bonachea"

.5 Tflops

FFT Performance on BlueGene/P

HPC Challenge Peak as of July 09 is
~4.5 Tflops on 128k Cores

•  UPC implementation
consistently outperform
MPI

•  Uses highly optimized local
FFT library on each node

•  UPC version avoids send/
receive synchronization

•  Lower overhead
•  Better overlap
•  Better bisection

bandwidth
•  Numbers are getting close

to HPC record on BG/P

0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096 8192 16384 32768

G
Fl

op
s

Num. of Cores

Slabs
Slabs (Collective)
Packed Slabs (Collective)
MPI Packed Slabs

G
O
O
D

FFT Performance on Cray XT4

•  1024 Cores of the Cray XT4
- Uses FFTW for local FFTs
- Larger the problem size the more effective the overlap

G
O
O
D

Event Driven LU in UPC

• DAG Scheduling before it’s time
• Assignment of work is static; schedule is dynamic
• Ordering needs to be imposed on the schedule

- Critical path operation: Panel Factorization
• General issue: dynamic scheduling in partitioned memory

- Can deadlock in memory allocation
- “memory constrained” lookahead

some edges omitted

UPC HPL Performance

•  Comparison to ScaLAPACK on an Altix, a 2 x 4 process grid
- ScaLAPACK (block size 64) 25.25 GFlop/s (tried several block sizes)
- UPC LU (block size 256) - 33.60 GFlop/s, (block size 64) - 26.47 GFlop/s

•  n = 32000 on a 4x4 process grid
- ScaLAPACK - 43.34 GFlop/s (block size = 64)
- UPC - 70.26 Gflop/s (block size = 200)

X1 Linpack Performance

0

200

400

600

800

1000

1200

1400

60 X1/64 X1/128

G
F

lo
p

/s

MPI/HPL

UPC

Opteron Cluster
Linpack

Performance

0

50

100

150

200

Opt/64

G
Fl

op
/s

MPI/HPL

UPC

Altix Linpack
Performance

0

20

40

60

80

100

120

140

160

Alt/32

G
F

lo
p

/s

MPI/HPL

UPC

• MPI HPL numbers
from HPCC
database

• Large scaling:
• 2.2 TFlops on 512p,
• 4.4 TFlops on 1024p
(Thunder)

Joint work with Parry Husbands"

MILC (QCD) Performance in UPC

•  MILC is Lattice Quantum Chromo-Dynamics application
•  UPC scales better than MPI when carefully optimized

0"

100000"

200000"

300000"

400000"

500000"

600000"

700000"

800000"

512" 1024" 2048" 4096" 8192" 16384" 32768"

Si
te
s&
/&
Se
co
nd

&&

Number&of&Cores&

UPC"Opt"

MPI"

UPC"Naïve"

0

10000

20000

30000

40000

50000

60000

SUMMA Cannon TRSM Cholesky

G
flo

ps

Performance results on Cray XE6
(24K cores, 32k × 32k matrices)

2.5D + Overlap
2.5D (Avoiding)
2D + Overlap
2D (Original)

Communication Overlap Complements Avoidance

•  Even with communication-optimal algorithms (minimized bandwidth) there are still
benefits to overlap and other things that speed up networks

•  Communication Avoiding and Overlapping for Numerical Linear Algebra, Georganas et
al, SC12

Summary

• UPC designed to be consistent with C
- Ability to use pointers and arrays interchangeably

• Designed for high performance
- Memory consistency explicit; Small implementation
- Transparent runtime

•  gcc version of UPC:
http://www.gccupc.org/

• Berkeley compiler
http://upc.lbl.gov

•  Language specification and other documents
https://code.google.com/p/upc-specification
https://upc-lang.org

• Vendor compilers: Cray, IBM, HP, SGI,…

Application Development
in UPC"

Topics

• Starting a project
- Choosing the right SDK
- Interoperability with other programming models

•  OpenMP, MPI, CUDA…

• Shared memory programming
-  Data layout and allocation
-  Computational efficiency (“serial” performance
-  Synchronization
-  Managing parallelism – data parallel & dynamic

tasking
-  UPC and OpenMP

Topics (2)

• Distributed memory programming
- UPC and MPI

• Tuning communication performance
• Hybrid parallelism

UPC SDKs

• Multiple SDKs are available
- Portable

•  BUPC provided by LBL is portable – available at
http://upc.lbl.gov

•  GUPC provided by Intrepid, gcc based, portable, uses
BUPC runtime

- Vendor SDKs – Cray UPC XT/XE

v  UPC has been shown to interoperate with
§  MPI, OpenMP, CUDA, Intel TBB, Habanero-C
§  Any pthreads based libray e.g. MKL

•  Some interoperability aspects are implementation
specific, e.g. who owns main()!

§  E.g. http://upc.lbl.gov/docs/user/interoperability.shtml

Shared Memory Programming

Shared Memory Programming

• Performance determined by

- Locality – placement, data initialization
- Computational efficiency
- Synchronization performance
- Management of parallelism

When should memory be shared (shared) ?
When should memory be blocked (shared []) ?

Pointer Arithmetic and Data Placement

• Memory is allocated with upc_alloc, upc_all_alloc with
affinity to a certain thread

• The pointer type determines the address arithmetic rules
and the “locality” of access

shared double *p1;!
shared [*] double *ps;!
shared [] double *pi;!
for(i=0; i < N; i++) {!

!p1[i] = i;!

!ps[i] = i;!

!pi[i] = i;!

} !

1 3 2 4

3 4 1 2
1 2 3 4

2-D Stencil – Laplace Filter – block cyclic

shared double matrix[ROWS][COLS];!
…!
main() {!
 for(i=0; i < ROWS; i++) !
 for(j = 0; ; j < COLS; j++) {!
 up = (i == 0) ? 0 : matrix[i-1][j];!
 down = (i == ROWS-1) ? 0 : matrix[i+1][j]; !
 left = (j == 0) ? 0 : matrix[i][j-1]; !
 right = (j == COLS - 1) ? 0 : matrix[i][j+1];!
 tmp[i][j] = 4 * matrix[i][j] - up - down - left - right; !
 }!
!
!
!

Block cyclic layout easy to choose when porting
codes, bad for locality

2-D Stencil – Laplace Filter – block layout

shared [*] double matrix[ROWS][COLS];!
…!
main() {!
 for(i=0; i < ROWS; i++) !
 for(j = 0; ; j < COLS; j++) {!
 up = (i == 0) ? 0 : matrix[i-1][j];!
 down = (i == ROWS-1) ? 0 : matrix[i+1][j]; !
 left = (j == 0) ? 0 : matrix[i][j-1]; !
 right = (j == COLS - 1) ? 0 : matrix[i][j+1];!
 tmp[i][j] = 4 * matrix[i][j] - up - down - left - right; !
 }!
!
!
!

Blocked layout easy to choose when porting codes,
good for locality,
code not portable

2-D Stencil – Laplace Filter – directory
typedef shared [] double * SDPT;!
shared SDPT matrix[ROWS];!
SDPT local_dir[ROWS];!
…!
main() {!
 ..matrix[my_row] = upc_alloc(..); //allocate ptrs to rows!
 upc_barrier;!
 ..local_dir[i] = matrix[i]; //local copies of dir entries!

!!
 for(i=0; i < ROWS; i++) !
 for(j = 0; ; j < COLS; j++) {!
 up = (i == 0) ? 0 : local_dir[i-1][j];!
 ..right = (j == COLS - 1) ? 0 : local_dir[i][j+1];!
 tmp[i][j] = 4 * local_dir[i][j] - up - down - left - right; !
 }!

Directory based approach provides locality and
portability

Computational Efficiency
(ALWAYS Cast to C)

0	

100	

200	

300	

400	

500	

600	

700	

800	

8	
 16	
 32	
 64	
 128	
 256	
 512	

Ti
m
e	

(n
s)
	

Data	
 Size	
 (bytes)	

Shared	
 Data	
 Access	
 Time	
 on	
 8-­‐core	
 Intel	
 	

Local	
 pointer	

Pointer-­‐to-­‐shared	
 Berkeley	
 UPC	

Pointer-­‐to-­‐shared	
 GCCUPC	

0	

100	

200	

300	

400	

500	

600	

700	

800	

900	

8	
 16	
 32	
 64	
 128	
 256	
 512	

Ti
m
e	

(n
s)
	

Data	
 Size	
 (bytes)	

Shared	
 Data	
 Access	
 Time	
 on	
 32-­‐core	
 AMD	

Local	
 pointer	

Pointer-­‐to-­‐shared	
 Berkeley	
 UPC	

Pointer-­‐to-­‐shared	
 GCCUPC	
 G
o
o
d

Cast a pointer-to-shared to a regular C pointer for
accessing the local portion of a shared object.

 E.g., int *p = (int *)pts; p[0] = 1;

Computational Intensity – ALWAYS cast to C

Application Examples

LULESH - https://codesign.llnl.gov/lulesh.php

• Livermore Unstructured Lagrangian Explicit Shock

Hydrodynamics
• Models explicit hydrodynamics portion of ALE3D
• Particular application is a Sedov blast wave problem
• Used to explore various programming models, e.g. Charm

++, Chapel, Loci, Liszt
• Solves equations on a staggered 3D spatial mesh
• Most communication is nearest neighbor on a hexahedral

3D grid

LULESH OMP

• Doesn’t scale beyond 12 cores (2 NUMA nodes)

LULESH OMP Parallel Initialization

• Parallel initialization helps only slightly
• Still doesn’t scale beyond 18 cores
• Uses temporary arrays with malloc and free in many

calls

LULESH OpenMP to UPC

•  LULESH authors advise:
“Do not make simplifications”

•  None-the-less, I made some simplifications:
-  Primarily for readability and clarity
-  Why follow certain impl. choices? (e.g. temp

arrays)
•  Performance improvements in UPC at scale
-  Primarily due to locality management, not

simplifications
•  UPC with one thread is slower than C++ serial
-  Best UPC 298s, best C++ serial 283s

LULESH Naïve UPC – block cyclic distribution

• Shared arrays distributed cyclically (default)
• Replicate data to make it private where possible
• Poor compared to OMP

LULESH UPC Blocked Memory Layout

• Cyclic layout poor fit for communication pattern
• Contiguous layout (blocked) reduces communication

!shared [*] double x[N * THREADS];!

LULESH UPC Communication

 Cyclic layout Contiguous layout

LULESH UPC Cast Shared to Private

• Use private pointer to the thread block in shared array
 double* my_x = (double*)(x + MYTHREAD * BSIZE)!

XSBench - Embarrassingly parallel

• Monte Carlo simulation of paths of neutrons traveling
across a reactor core
- 85% of runtime in calculation of macroscopic neutron

cross sections

random_sample!
binary_search!
for each nuclide!
 lookup_bounding_micro_xs!
 interpolate!
 accumulate_macro_xs!
!

• Uses a lot of memory

XSBench OMP Doesn’t Scale

• Option to add flops; according to README:
“Adding flops has so far shown to increase scaling,
indicating that there is in fact a bottleneck being
caused by the memory loads”

XSBench OMP Initialization

• But memory locality is the problem (on NUMA)
• Adding parallel initialization makes it scale

XSBench UPC

• Private replication of data
• Except: make largest memory array shared

XSBench UPC No Shared Memory

• Improves if all memory is private
• Can’t do for large problems, e.g. 355 isotopes

requires 60GB for full replication on 48 cores

Synchronization Performance

Barriers, locks, atomics, collectives….

• OpenMP provides an implicit model of synchronization

• The UPC language provides rich synchronization
primitives
- e.g. UPC 1.3 atomics

• Some are well optimized for multicore performance
“Optimizing Collective Communication on Multicore”. Nishtala&Yelick, HotPart’09

•  In general, UPC synchronization performs much better
than OpenMP synchronization or other pthreads based
libraries (implementation does matter)

 #pragma omp critical!
 -> bupc_allv_reduce_all()!

LULESH UPC Procs vs Pthreads

• At 48 cores, pthreads takes 33s, processes only
22s

• Top non-app code functions with pthreads:
- upcr_wait_internal 15% (barrier)!
- gasnete_coll_broadcast 2%!
- gasnete_coll_gather 2%!

• Top non-app code functions with pinned procs:
- gasnete_pshmbarrier_wait 5%!

• For comparison, collectives with pinned procs:
- gasnete_coll_broadcast 0.2% (15x)!
- gasnete_coll_gather 0.04% (75x)!

Lessons Learned

• On a large NUMA system, managing remote memory access is
key
- Good preparation for distributed memory?

• UPC
- Contiguous blocking is effective at reducing communication

- Explicitly cast to private whenever possible

- Procs can be significantly faster than pthreads
Hybrid PGAS Runtime Support for Multicore Nodes
Blagojevic, Hargrove, Iancu, Yelick. PGAS 2010

- Replication to private can help, but limited by available
memory -> replicate fixed amount?

Managing Parallelism

Managing Parallelism

• Data parallel constructs in UPC – upc_forall
- SPMD, shorthand for filtering the computation

performed by a task
- Not real equivalent of #pragma omp for..

• Task parallelism in OMP: #pragma omp task
• UPC tasking library – available at http://upc.lbl.gov
• Written in stock UPC, works on

-  shared memory - comparable to OpenMP tasking
-  distributed memory – akin to Charm++

• Provides:
- Init, termination
- Locality aware distributed work-stealing
- Synchronization for dependent task graphs

Task Library API

taskq_t *taskq_all_alloc(int nFunc, void *func1,
int input_size1, int output_size1, ...);!

int taskq_put(taskq_t *taskq, void *func, void
*in, void *out); !
!

int taskq_execute(taskq_t *taskq); !
int taskq_steal(taskq_t *taskq); !
!
void taskq_wait(taskq_t *taskq); !
void taskq_fence(taskq_t *taskq); !
!
int taskq_all_isEmpty(taskq_t *taskq);!

Hierarchical Work Stealing on Manycore Clusters

Min, Iancu,Yelick. PGAS 2011 !

UPC Task Library – Shared Memory

0

0.5

1

1.5

2

2.5

FIB (47) NQueens(14) UTS(T1L) UTS(T2L) UTS(T3L) SpLU(256,16)

Ex
ec
. T
im

e
N
or
m
al
ize

d
to
 g
cc
‐O
pe

nM
P

(L
ow

er
 th

e
Be

>
er
)

Performance of VicBm SelecBon

Policies on 8 Core Nehalem SMP

gcc‐OpenMP icc‐OpenMP

UPC (Intra‐Socket) UPC (HVS)

UPC (RAND) UPC (RAND+BestChunk)

UPC Task Library – Distributed Memory

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

FIB(56) Nqueens(16) UTS (T1L) UTS (T2L) UTS (T3L) SpLU(200,100)

Sp
ee
du

p
N
or
m
al
iz
ed

 t
o
th
e
R
an

do
m
 P
ol
ic
y

Performance of Vic8m Selec8on Policies on

256 cores on Carver Cluster

INTRA‐NODE HVS RANDOM

Distributed Memory Programming

UPC and MPI

• Send/Recv carry both data and synchronization
• One-sided carries only data
• When porting codes from MPI two-sided to one sided, a

Send/Recv pair needs to be replaced with Put/Get and
producer-consumer semantics

• There are also performance differences
-  UPC can saturate the network with fewer cores

active per node
- It alleviates the need for packing messages

Cray XE6 BW Saturation (hopper @ NERSC)

25.0%

50.0%

87.5%

25.0%
50.0%

75.0%

79.5%

93.2%

65.9%

79.5%

86.4%

96.8% 90.5%

96.8%

96.8% 90.5%

1 2 4 8 16 24
1

4

16

w
in

do
w

 s
iz

e

8B

1 2 4 8 16 24
1

4

16

0.00%

12.5%

25.0%

37.5%

50.0%

62.5%

75.0%

87.5%

100%

1 2 4 8 16 24
1

4

168KB

256 KB

w
in

do
w

 s
iz

e

1 2 4 8 16 24
1

4

16

2 MB

256 KB

8KB

UPC non-shared dest

45.5%

52.3%

59.1%

65.9%

72.7%

79.5%

86.4%

93.2%

100%

UPC shared dest

1 2 4 8 16 24
1

4

16

2 MB

w
in

do
w

 s
iz

e

1 2 4 8 16 24
1

4

16

74.7%

77.8%

81.0%

84.2%

87.3%

90.5%

93.7%

96.8%

100%

1 2 4 8 16 24
1

4

16

8KB

Concurrency

w
in

do
w

 s
iz

e

1 2 4 8 16 24
1

4

16

8B

Concurrency

74.7%

77.8%

81.0%

84.2%

87.3%

90.5%

93.7%

96.8%

100%

25.0%

12.5%

25.0%

53.1% 71.9%

81.3%

34.4%

43.8%

81.3% 43.8%

62.5%

71.9%

71.9%

34.4% 53.1% 71.9%

1 2 4 8 16 24
1

4

16

wi
nd

ow
 s

ize

8B

1 2 4 8 16 24
1

4

16

0.00%

12.5%

25.0%

37.5%

50.0%

62.5%

75.0%

87.5%

100%

1 2 4 8 16 24
1

4

168KB

256 KB

wi
nd

ow
 s

ize

1 2 4 8 16 24
1

4

16

2 MB

256 KB

8KB

MPI buffers (no BTE)

25.0%

34.4%

43.8%

53.1%

62.5%

71.9%

81.3%

90.6%

100%

MPI default

1 2 4 8 16 24
1

4

16

2 MB

wi
nd

ow
 s

ize

1 2 4 8 16 24
1

4

16

25.0%

34.4%

43.8%

53.1%

62.5%

71.9%

81.3%

90.6%

100%

1 2 4 8 16 24
1

4

16

8KB

Concurrency

wi
nd

ow
 s

ize

1 2 4 8 16 24
1

4

16

8B

Concurrency

25.0%

34.4%

43.8%

53.1%

62.5%

71.9%

81.3%

90.6%

100%

Cray XE6 Application Performance

ep ft is lu mg sp bt Harmonic mean
-10%

0%

10%

20%

30%

40%

200%

250%

Pe
rc

en
ta

ge
 U

PC
 o

ve
r M

PI
 s

pe
ed

up

 64 procs
 256 procs

Tuning Communication Performance

UPC Trends

•  In MPI, large messages or large message
concurrency (messages per core, ranks per node) is
required for performance

•  In UPC, communication overlap is beneficial
- with other communication
- with other computation

•  In UPC:
-  Pays to think about increasing the message

concurrency
-  Sometimes need to take care to avoid congestion
Congestion Avoidance on Manycore HPC Systems
Luo, Panda, Ibrahim, Iancu. ICS’12

• Again, avoiding pthreads improves performance

Saturation IB

40%$

50%$

60%$

70%$

80%$

90%$

100%$

1$ 2$ 3$ 4$ 5$ 6$ 7$ 8$

Pe
rc
en

ta
ge
$o
f$P

ea
k$

CoresperNode$

IBPutSaturaAonB2$Nodes$

8$ 16$ 32$ 64$ 128$ 256$ 512$

1024$ 2048$ 4096$ 8192$ 16384$ 32768$

128"

Messages < 1024
 benefit from concurrent
injection

Messages > 8K benefit
from throttling

Throughput and Message Concurrency

!1#

0#

1#

2#

3#

4#

5#

6#

8# 128# 2048# 32768# 524288#

Sp
ee
du

p#
ov
er
#T
(1
28
)#

Size#(B)#

Throughput#Varia?on#with#Msg/Core#!#Gemini#

1# 2# 4#

8# 16# 32#

Cray UPC on Cray XE6 (Gemini)
Limiting the number of outstanding messages
 provides 5X speedup (expected 32X slower)

When To Use It?

• With irregular parallelism with “natural small messages”
• When hybrid parallelism makes packing complex

• Need to mix with pthreads based libraries and want to
perform communication from within pthreads
- Implementation specific, but available

• Do not want to worry about matching communication
concurrency to intra-node concurrency…

• Challenges:
- Exporting data, do not want to modify data structures
- One-sided is different, need to understand it…

Beyond UPC"

DEGAS Programming System: UPC++

DEGAS is a DOE-funded X-Stack project led by Lawrence
Berkeley National Lab (PI: Kathy Yelick), in collaboration
with LLNL, Rice Univ., UC Berkeley, and UT Austin.

A template-based programming
system enabling PGAS features
for C++ applications

C++ is Important in Scientific Computing

Languages use at NERSC: 75% Fortran, 45% C/C++, 10% Python with
C++ at least as important as C

•  DOE’s Exascale Co-Design Centers
–  ExaCT: Combustion simulation

(uniform and adaptive mesh)
–  ExMatEx: Materials (multiple codes)
–  CESAR: Nuclear engineering

(structures, fluids, transport)
–  NNSA Center: umbrella for 3 labs

•  “Proxy apps” to represent them
–  10 codes
–  4 in C++

C++,
4

C, 3

F, 3

Private address
space

Global address
space

UPC++: PGAS with Enhancements

Multi-threading
option

Local
task
queue

Function shipping across nodes Multidimension
al arrays

134"

A “Compiler-Free” Approach for PGAS

• Leverage the C++ standard and compilers
- Implement UPC++ as a C++ template library
- C++ templates can be used as a mini-language to

extend the C++ grammar
• New features in C++ 11 makes UPC++ more powerful

- E.g., async, auto type inference, lambda functions
- C++ 11 is well-supported by major compilers

UPC++ Software Stack

GASNet Communication Library

Network Drivers and OS Libraries

C++ Compiler

C/C++ Apps

UPC++
Runtime

UPC++
Template
Header
Files

UPC
Runtime

UPC
Apps

UPC
Compiler

C11 standard: 701 pages
C++11 standard: 1334 pages

UPC++ Introduction

137"

UPC++ “Language” (no compiler involved)

•  Shared variable
	
 shared_var<int>	
 s;	
 	
 	
 	
 	
 	
 	
 //	
 int	
 in	
 the	
 shared	
 space	

•  Global pointers (to remote data)	

	
 global_ptr<LLNode> g; // pointer to shared space

•  Shared arrays	

shared_array<int>	
 sa(8);	
 	
 //	
 array	
 in	
 shared	
 space	

•  Locks	

	
 shared_lock	
 l; 	
 	
 	
 	
 	
 // lock in shared space

•  Default execution model is SPMD, but with optional async
	
 async(place)(Function	
 f,	
 T1	
 arg1,…);	

	
 wait();	
 	
 	
 	
 	
 //	
 other	
 side	
 does	
 poll()	

UPC++ Translation Example

shared_array	
 <int,	
 1>	
 sa(100);	

sa[0]	
 =	
 1;	
 	
 //	
 “[]”	
 and	
 “=”	
 overloaded	

	

C++	
 Compiler	

UPC++	
 RunMme	

Local	
 Access	

Is	
 tmp_ref	

local?	

Yes No

tmp_ref	
 =	
 sa.operator	
 []	
 (0);	

tmp_ref.operator	
 =	
 (1);	

Remote	
 Access	

Dynamic Global Memory Management

• Global address space pointers (pointer-to-shared)
global_ptr<data_type>	
 ptr;	

	

• Dynamic shared memory allocation
global_ptr<T>	
 allocate<T>(uint32_t	
 where,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 size_t	
 count);	

void	
 deallocate(global_ptr<T>	
 ptr);	

	

Example: allocate space for 512 integers on rank 2
global_ptr<int>	
 p	
 =	
 allocate<int>(2,	
 512);	

Remote memory allocation is not
available in MPI-3, UPC or SHMEM.

139"

Optimization Opportunities for Async_copy

MPI_Put(origin_addr,	
 origin_count,	
 origin_datatype,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 target_rank,	
 target_disp,	
 target_count,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 target_datatype,	
 win)	

upcxx::async_copy<T>(global_ptr<T>	
 src,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 global_ptr<T>	
 dst,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 size_t	
 count);	

Template specialization plus runtime compilation may
translate this into a few load and store instructions!

This would be very difficult to do with a heavy-weight MPI API

140"

One-Sided Data Transfer Functions

//	
 Copy	
 count	
 elements	
 of	
 T	
 from	
 src	
 to	
 dst	

upcxx::copy<T>(global_ptr<T>	
 src,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 global_ptr<T>	
 dst,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 size_t	
 count);	

	

//	
 Non-­‐blocking	
 version	
 of	
 copy	

upcxx::async_copy<T>(global_ptr<T>	
 src,	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 global_ptr<T>	
 dst,	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 size_t	
 count);	

	

//	
 Synchronize	
 all	
 previous	
 asyncs	

upcxx::async_wait();	

Similar to upc_memcpy_nb extension in UPC
1.3 141"

UPC++ Equivalents for UPC Users

UPC UPC++

Num. of threads THREADS THREADS

My ID MYTHREAD MYTHREAD

Shared variable shared Type s shared_var<Type> s

Shared array shared [BS] Type A[sz] shared_array<Type, BS> A(sz)

Pointer-to-shared shared Type *pts global_ptr<Type> pts

Dynamic memory
allocation

shared void *
upc_alloc(nbytes)

global_ptr<Type>
allocate<Type>(place, count)

Bulk data transfer upc_memcpy(dst, src,
 nbytes);

copy<Type>(src, dst, count);

Affinity query upc_threadof(ptr) global_ptr.where()

Synchronization upc_lock_t shared_lock

upc_barrier barrier()

Homework: how to translate upc_forall?

Asynchronous Task Execution

• C++ 11 async function
 std::future<T>	
 handle	
 	

	
 	
 	
 	
 	
 =	
 std::async(Function&&	
 f,	
 Args&&…	
 args);	

handle.wait();	

!

• UPC++ async function
//	
 Remote	
 Procedure	
 Call	

	
 	
 	
 upcxx::async(place)(Function	
 f,	
 T1	
 arg1,	
 T2	
 arg2,…);	

upcxx::wait();	

	

//	
 Explicit	
 task	
 synchronization	

	
 	
 	
 upcxx::event	
 e;	
 	

	
 	
 	
 upcxx::async(place,	
 &e)(Function	
 f,	
 T1	
 arg1,	
 …);	

e.wait();	

!

Async Task Example

#include	
 <upcxx.h>	

#include	
 <forkjoin.h>	
 //	
 using	
 the	
 fork-­‐join	
 execution	
 model	

	

void	
 print_num(int	
 num)	

{	
 	

	
 	
 printf(“myid	
 %u,	
 arg:	
 %d\n”,	
 MYTHREAD,	
 num);	
 	

}	

	

int	
 main(int	
 argc,	
 char	
 **argv)	

{	
 	

	
 	
 upcxx::range	
 tg(1,	
 THREADS,	
 2);	
 //	
 threads	
 1,3,5,…	

	
 	
 //	
 call	
 a	
 function	
 on	
 a	
 group	
 of	
 remote	
 processes	
 	
 	

	
 	
 upcxx::async(tg)(print_num,	
 123);	
 	

	
 	
 upcxx::wait();	
 //	
 wait	
 for	
 the	
 remote	
 tasks	
 to	
 complete	

	
 	
 return	
 0;	

}	

Async with Lambda Function

//	
 Thread	
 0	
 spawns	
 async	
 tasks	

for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 THREADS;	
 i++)	
 {	

	
 	
 //	
 spawn	
 a	
 task	
 at	
 place	
 “i”	

	
 	
 //	
 the	
 task	
 is	
 expressed	
 by	
 a	
 lambda	
 (anonymous)	
 function	

	
 	
 upcxx::async(i)([]	
 (int	
 num)	
 {	
 printf("num:	
 %d\n”,	
 num);	
 },	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 1000+i);	
 //	
 argument	
 to	
 the	
 λ	
 function	

	
 	
 upcxx::wait();	
 //	
 wait	
 for	
 all	
 tasks	
 to	
 finish	

}	

	

mpirun –n 4 ./test_async!
!
Output: !
num: 1000 !
num: 1001 !
num: 1002 !
num: 1003 !

X10-style Finish-Async Programming Idiom

using	
 namespace	
 upcxx;	

	

//	
 Thread	
 0	
 spawns	
 async	
 tasks	

finish	
 {	

	
 	
 for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 THREADS;	
 i++)	
 {	

	
 	
 	
 	
 async(i)([]	
 (int	
 num)	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 {	
 printf("num:	
 %d\n”,	
 num);	
 },	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 1000+i);	

	
 	
 }	

}	
 //	
 All	
 async	
 tasks	
 are	
 completed	

	

How We Did It?

//	
 finish	
 {	
 =>	
 macro	
 expansion	
 =>	

for	
 (f_scope	
 _fs;	
 _fs.done	
 ==	
 0;	
 _fs.done	
 =	
 1)	
 {	

	
 	
 //	
 f_scope	
 constructor	
 call	
 generated	
 by	
 compiler	

	
 	
 //	
 push	
 the	
 current	
 scope	
 in	
 a	
 stack	

	
 	
 f_scope()	
 {	
 push_event(&_fs.e);	
 }	

	

	
 	
 for	
 (int	
 i	
 =	
 0;	
 i	
 <	
 THREADS;	
 i++)	
 {	

	
 	
 	
 	
 //	
 register	
 the	
 async	
 with	
 the	
 current	
 scope	

	
 	
 	
 	
 async(i,	
 e	
 =	
 peek_event())(…);	

	
 	
 }	

	
 	
 //	
 f_scope	
 destructor	
 call	
 generated	
 by	
 compiler	

	
 	
 ~f_scope()	
 {	
 pop_event();	
 	
 _fs.e.wait();	
 }	

	
 	
 //	
 All	
 registered	
 tasks	
 are	
 waited	
 for	
 completion	

}	
 Leverage C++ Programming Idiom Resource

Acquisition Is Initialization (RAII)

Random Access Benchmark (GUPS)

//	
 shared	
 uint64_t	
 Table[TableSize];	
 in	
 UPC	

shared_array<uint64_t>	
 Table(TableSize);	

	

void	
 RandomAccessUpdate()	
 	

{	

	
 	
 uint64_t	
 ran,	
 i;	
 	

	
 	
 ran	
 =	
 starts(NUPDATE	
 /	
 THREADS	
 *	
 MYTHREAD);	

	
 	
 for(i	
 =	
 MYTHREAD;	
 i	
 <	
 NUPDATE;	
 i	
 +=	
 THREADS)	
 {	

	
 	
 	
 	
 ran	
 =	
 (ran	
 <<	
 1)	
 ^	
 ((int64_t)ran	
 <	
 0	
 ?	
 POLY	
 :	
 0);	

	
 	
 	
 	
 Table[ran	
 &	
 (TableSize-­‐1)]	
 ^=	
 ran;	

	
 	
 }	

}

0 4 8 12 1 5 9 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

2 6 10 14 3 7 11 15

Thread 0 Thread 1

Thread 2 Thread 3

Logical data layout

Physical data layout

Main
update
loop

Manycore - A Good Fit for PGAS

61 cores, 30MB aggregate L2
1TFlops, 352GB/s memory bw

L2

Cor
e

TD

L2

Cor
e

TD

L2

Cor
e

TD

L2

Cor
e

TD

L2

Cor
e

TD

L2

Cor
e

TD

L2

Cor
e

TD

L2

Cor
e

TD

MC

MC

MC

MC

PCIe
Client
Logic

Block Diagram of the Intel Knights
Corner (MIC) micro-architecture

PGAS Abstraction

Thread 0 Thread 1 Thread 2 Thread 3

Private
Memory

Shared Memory

Private
Memory

Private
Memory

Private
Memory

GUPS Performance on MIC

Difference between UPC++ and UPC is only
about 0.2 µs (~220 cycles)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 4 8 16 32 60

Ti
m

e
(u

se
c)

Num. of Processes

Random Access Latency

UPC++
UPC

0.00

0.01

0.10

1.00

1 2 4 8 16 32 60

G
U

PS

Num. of Processes

Giga Updates Per Second

UPC++
UPC

GUPS Performance on BlueGene/Q

Difference is negligible at large scale

0

2

4

6

8

10

12

14

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48

40
96

81

92

Ti
m

e
(u

se
c)

Num. of Processes

Random Access Latency

UPC++
UPC

0.00

0.00

0.01

0.10

1.00

1 2 4 8 16

32

64

12
8

25
6

51
2

10
24

20

48

40
96

81

92

G
U

PS

Num. of Processes

Giga Updates Per Second

UPC++
UPC

UPC++ Application: Embree

•  Intel open-source ray tracing toolkit written in C++
• Ported to UPC++ by Michael Driscoll
• Performance scaled on Edison (Cray XC30)

Low resolution High resolution

Embree Performance on Edison

Hybrid UPC++ for internode communication
and OpenMP within a NUMA node

24

48

96

192

384

768

1536

3072

6144

24 48 96 192 384 768 1536 3072 6144

Pe
rf

or
m

an
ce

 S
pe

ed
up

s

Number of Cores

UPC++

LULESH Proxy Application

• Livermore Unstructured Lagrangian Explicit
Shock Hydrodynamics

• Proxy App for UHPC, ExMatEx, and LLNL ASC
• Written in C++ with MPI, OpenMP, and CUDA

versions

https://codesign.llnl.gov/lulesh.php

LULESH 3-D Data Partitioning

LULESH Communication Pattern

26 neighbors
• 6 faces
• 12 edges
• 8 corners

Cross-section view
of the 3-D processor
grid

Data Layout of Each Partition

•  Blue planes are contiguous
•  Green planes are stride-N2 chunks
•  Red planes are stride-N elements

Stride
N2

Stride
N

Stride
N2

•  3-D array A[x][y][z]
•  row-major storage
•  z index goes the

fastest

x

z

y
size:
N3

Convert MPI to UPC++

//	
 Post	
 Non-­‐blocking	
 Recv	

MPI_Irecv(RecvBuf1);	

…	

MPI_Irecv(RecvBufN);	

	

Pack_Data_to_Buf();	

	

//	
 Post	
 Non-­‐bocking	
 Send	

MPI_Isend(SendBuf1);	

…	

MPI_Isend(SendBufN);	

	

MPI_Wait();	

…	

Unpack_Data();	

	

Pack_Data_to_Buf();	

//	
 Get	
 neighbors’	
 RecvBuf	
 addresses	

//	
 Post	
 Non-­‐blocking	
 Copy	

upcxx::async_copy(SendBuf1,	
 RecvBuf1);	

…	

upcxx::async_copy(SendBufN,	
 RecvBufN);	

	

async_copy_fence();	

…	

Unpack_Data();	

	

Pseudo code

LULESH Performance on Cray XC30 (Edison)

1.00E+04	

1.00E+05	

1.00E+06	

1.00E+07	

1.00E+08	

64	
 216	
 512	
 1000	
 4096	
 8000	
 13824	
 32768	

Pe
rf
or
m
an

ce
	
 (F
O
M
	
 z/

s)
	

Number	
 of	
 Cores	

UPC++	

MPI	

G
oo

d

Take advantage of PGAS without the pain
of adopting a new language

Example: Building A Task Graph

using namespace upcxx;
event e1, e2, e3;

t1

e1

t2

t4 t3

t5

e3

e2

t6

async(P1, &e1)(task1);
async(P2, &e1)(task2);
async_after(P3, &e1, &e2)(task3);
async(P4, &e2)(task4);
async_after(P5, &e2, &e3)(task5);
async_after(P6, &e2, &e3)(task6);
async_wait(); // all tasks will be done

160"

Application: Full-Waveform Seismic Imaging
•  Method	
 for	
 developing	
 models	
 of	
 earth	
 structure,	
 applicable	
 to	
 …	

•  basic	
 science:	
 study	
 of	
 interior	
 structure	
 and	
 composiVon	

•  petroleum	
 exploraVon	
 and	
 environmental	
 monitoring	

•  nuclear	
 test-­‐ban	
 treaty	
 verificaVon	

•  Model	
 is	
 trained	
 to	
 predict	
 (via	
 numerical	
 simulaVon)	
 seismograms	

recorded	
 from	
 real	
 earthquakes	
 or	
 controlled	
 sources	

•  Training	
 defines	
 a	
 non-­‐linear	
 regression	
 problem,	
 solved	
 iteraVvely	

1
0

0
0

 k
m

Deep

mantle

Ocean

nPPS

HawaiiMarquesas

Tahiti

Samoa

Pitcairn

Macdonald

Hotspot volcanic islands

North

Seismic shear-wave velocity

CFOFBUI�UIF�DFOUSBM�1BDJmD

low-velocity

mOHFST

low-velocity

plumes

Model Prediction

Observed Data

Time (s)

�(m) =
1

2
kd� g(m)k22

Seismic	

model	

Observed	

waveform

s	

Predicted	

waveform

s	

Above:	
 global	
 full-­‐waveform	
 seismic	
 model	
 SEMum2	

(French	
 et	
 al.,	
 2013,	
 Science)	

Minimize:	

Collaboration with Scott French et al, Berkeley Seismological
Lab

161"

Problem 2: Combining Data Sets

• Merge measurement data into simulation and evaluate fit
• Matrix is too large for single shared memory
• Assembly: Strided writes into a global array
• Goal is scalability in context of full code

Application: Full-Waveform Seismic Imaging

(A) (B) (C)

Re
la

tiv
e

Pa
ra

lle
l

E!
ci

en
cy

 (%
)

Nm = 1.1e5
Nm = 2.2e5
Nm = 8.2e5

4 16 64 254 1024
NUMA Domains

95

90

85

80

75

100

16 64 254 1024
NUMA Domains (64 updates each)

UPC++
MPI-3 RMA

Ti
m

e
to

 so
lu

tio
n

(s
)

4e3

3e3

2e3

1e3

0
16 64 254 1024

NUMA Domains (64 updates each)

other

binning
upcxx::allocate
upcxx::copy

250

200

150

100

50

0

Ti
m

e
in

 c
m

::u
pd

at
e

(s
)

Performance of Convergent Matrix on Cray XC30

New	
 implementaVon	

•  Scales	
 to	
 larger	
 dataset	
 size	
 and	
 matrix	
 dimension	
 (currently	
 ~2x	
 in	

both)	

•  Earlier	
 runs	
 that	
 required	
 4+	
 phases	
 now	
 achieved	
 in	
 a	
 single	
 phase	
 on	

the	
 same	
 aggregate	
 number	
 of	
 cores	
 and	
 with	
 ~40%	
 wallclock	
 Vme	

reducVon	
 163"

UPC++ Arrays Based on Titanium

• Titanium is a PGAS language based on Java
•  Line count comparison of Titanium and other languages:

0

500

1000

1500

2000

NPB-CG NPB-FT NPB-MG

Li
ne

s
of

 C
od

e

NAS Parallel Benchmarks
MPI+Fortran UPC Titanium

AMR Chombo C++/Fortran/MPI Titanium
AMR data structures 35000 2000

AMR operations 6500 1200
Elliptic PDE Solver 4200* 1500

* Somewhat more functionality in PDE part of C++/Fortran
code 164"

UPC++ Multidimensional Arrays

• True multidimensional arrays with sizes specified at
runtime

• Support subviews without copying (e.g. view of interior)

• Can be created over any rectangular index space, with
support for strides
- Striding important for AMR and multigrid applications

•  Local-view representation makes locality explicit and
allows arbitrarily complex distributions
- Each rank creates its own piece of the global data

structure

• Allow fine-grained remote access as well as one-sided
bulk copies

165"

Overview of UPC++ Array Library

• A point is an index, consisting of a tuple of integers

• A rectangular domain is an index space, specified with a
lower bound, upper bound, and optional stride

• An array is defined over a rectangular domain and
indexed with a point

• One-sided copy operation copies all elements in the
intersection of source and destination domains

ndarray<double, 2> A(r); A[lb] = 3.14;

point<2> lb = {{1, 1}}, ub = {{10, 20}};

rectdomain<2> r(lb, ub);

ndarray<double, 2, global> B = ...;
B.async_copy(A); // copy from A to B
async_wait(); // wait for copy completion

166"

Arrays in Adaptive Mesh Refinement

• AMR starts with a coarse grid
over the entire domain

• Progressively finer AMR
levels added as needed over
subsets of the domain

• Finer level composed of
union of regular subgrids,
but union itself is not regular

•  Individual subgrids can be
represented with UPC++
arrays

• Directory structure can be used to represent union of all
subgrids

167"

Example: Ghost Exchange in AMR

foreach (l, my_grids.domain())
 foreach (a, all_grids.domain())

 if (l != a)

 my_grids[l].copy(all_grids[a].shrink(1));

Proc 0 Proc 1
my_grids

all_grids

• Can allocate arrays in a global index space
• Let library compute intersections

"ghost" cells

Avoid null copies"

Copy from interior of other grid"

168"

NAS Benchmarks on One Node of Cray XC30

2

4

8

16

32

64

128

1 2 4 8 16

R
un

ni
ng

 T
im

e
(s

)

Number of Cores

NAS Benchmarks
Titanium CG UPC++ CG
Titanium FT UPC++ FT
Titanium MG UPC++ MG

B
et

te
r

169"

Case Study: miniGMG

• Compact 3D geometric multigrid code
- Can be used to evaluate performance

bottlenecks in MG+Krylov methods and
prototype new algorithms.

- Highly instrumented for detailed timing
analysis

• Can be configured to proxy BoxLib AMR applications
- Finite-volume (cell-centered) multigrid
- 7pt variable-coefficient Helmholtz operator (stencil)
- Cubical domain decomposed into one 1283 subdomain per

socket
- Restriction terminated when subdomains are coarsened to 23

(U-Cycle)
- Gauss Seidel, Red-Black (“GSRB”) smoother
- BiCGStab bottom solver (matrix is never explicitly formed) 170"

miniGMG Communication Paradigms

• One programming system w. three communication
paradigms
- Bulk version that uses manual packing/unpacking with one-

sided puts
- Fine-Grained version that does multiple one-sided puts of

contiguous data
- Array version that logically copies entire ghost zones,

delegating actual procedure to array library

i (unit stride)	

 i (unit stride)	

send
buffers

recv
buffer

box 2
(remote)

box 0
(local)

box 3
(remote)

1 3 2 4 box 1
(remote)

1

2

3

4 recv
buffer

i (unit stride)	

 i (unit stride)	

box 2
(remote)

box 0
(local)

box 3
(remote)

box 1
(remote) 2

1

i (unit stride)	

 i (unit stride)	

box 2
(remote)

box 0
(local)

box 3
(remote)

2 box 1
(remote)

1

171"

miniGMG Results

• Savings of ~200 lines of communication and setup code
over Bulk and Fine-Grained versions

• Performance results on IBM Blue Gene/Q

• Currently working to bridge gap between Array and
Bulk versions

0.00	

2.00	

4.00	

6.00	

8.00	

10.00	

12.00	

14.00	

1	
 8	
 64	
 512	
 4096	

Ru
nn

in
g	

Ti
m
es
	
 (s
)	

No.	
 of	
 Processes	
 (x	
 8	
 OpenMP)	

Fine-­‐Grained	

Array	

Bulk	

MPI	

0.00	

2.00	

4.00	

6.00	

8.00	

10.00	

12.00	

14.00	

8	
 64	
 512	
 4096	
 32768	

Ru
nn

in
g	

Ti
m
es
	
 (s
)	

No.	
 of	
 Processes	
 (x	
 1	
 OpenMP)	

Fine-­‐Grained	

Array	

Bulk	

MPI	

B
et

te
r

B
et

te
r

172"

Performance Results on Cray XC30

• Fine-grained and array versions do much better with
higher injection concurrency
- Array version does not currently parallelize packing/

unpacking, unlike bulk/MPI

B
et

te
r

B
et

te
r

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

8 64 512 4096 32768

R
un

ni
ng

 T
im

es
 (s

)

No. of Processes (x1 OpenMP)

Fine-Grained
Array
Bulk
MPI

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

1 8 64 512 4096

R
un

ni
ng

 T
im

es
 (s

)

No. of Processes (x8 OpenMP)

Fine-Grained
Array
Bulk
MPI

173"

UPC++ HPGMG (work in progress)

• Ghost Exchange
- 380 lines for comm. setup
- same level

• Restriction
- 330 lines for comm. setup
- between two levels
- finer level to coarser level,

1-1 or many-1, different
owner

•  Interpolation
- 330 lines for comm. setup
- between two levels
- coarser level to finer level,

1-1, 1-many, different owner

174"

HPGMG Performance (Box size = 2^7)

0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

1.40#

1.60#

1.80#

8# 16# 32# 64# 128# 256# 512# 1024# 2048# 4096#

Ti
m
e%
(s
ec
on

ds
)%

#Processes%%

Edion%(8%Processes/%Numa,%Box=128^3)%

MPI#
BULK#(Bar)#
Naturally<Grained#

Though the naturally-grained version is about 3X slower but it
saves over 1000 lines of very difficult code (testified by the
original HPGMG developer) and saves auxiliary data structures
for packing and unpacking. Can Interconnect innovations bridge the

performance gap between large and small
messages? 175"

PGAS Summary

• Productivity through shared memory convenience
- Especially for irregular communication

• Ensure scalability through locality control
• Expose lightweight RDMA communication
- Possibly for “PGAS on a chip” systems

• Minimally invasive, interoperable features
• Open source and vendor (e.g., Cray) compilers

http://upc.lbl.gov
http://www.gccupc.org
https://bitbucket.org/upcxx

176"

A Family of PGAS Languages
•  UPC based on C philosophy / history

- http://upc-lang.org
- Free open source compiler: http://upc.lbl.gov
- Also a gcc variant: http://www.gccupc.org

•  Java dialect: Titanium
- http://titanium.cs.berkeley.edu

•  Co-Array Fortran
- Part of Stanford Fortran (subset of features)
- CAF 2.0 from Rice: http://caf.rice.edu

•  Chapel from Cray (own base language better than Java)
- http://chapel.cray.com (open source)

•  X10 from IBM also at Rice (Java, Scala,…)
- http://www.research.ibm.com/x10/

•  Phalanx from Echelon projects at NVIDIA, LBNL,…
- C++ PGAS languages with CUDA-like features for GPU clusters

•  Coming soon…. PGAS for Python, aka PyGAS

Productivity of the Titanium Language

• Titanium is a PGAS language based on Java
•  Line count comparison of Titanium and other languages:

178"

0

500

1000

1500

2000

NPB-CG NPB-FT NPB-MG

Li
ne

s
of

 C
od

e

NAS Parallel Benchmarks
MPI+Fortran UPC Titanium

AMR Chombo C++/Fortran/MPI Titanium
AMR data structures 35000 2000

AMR operations 6500 1200
Elliptic PDE Solver 4200* 1500

* Somewhat more functionality in PDE part of C++/Fortran
code

Productive Features in Titanium

• UPC++ already provides many of Titanium’s productivity
features
- Basic high-level language features (e.g. object

orientation, memory management)
- Templates and operator overloading
- SPMD execution model and PGAS memory model

• Titanium features we want to implement in UPC++
- True multidimensional rectangular arrays

•  Not distributed, but may be located on a remote thread
- Hierarchical teams
- Global object model (future work)

179"

C and UPC Arrays

• C/C++ arrays are limited in many ways
- Multidimensional arrays must specify sizes of all but

first dimension as compile-time constants
•  These sizes are part of the type, which makes it hard to

write generic code
- Easy to get view of contiguous subset of an array,

but non-contiguous view must be handled manually
• UPC shared arrays have their own limitations

- Can only be distributed in one dimension
•  User must manually linearize a multidimensional array,

use a directory structure, or both
- Blocking factor must be a compile-time constant
- upc_memcpy only supports contiguous source and

destination
180"

Example: Ghost Zones

• Copying ghost zones
requires manually packing/
unpacking elements at
source/destination
- In effect, turns one-sided

operation into two-sided
• Strided copy is not enough

for ghost cell thickness > 1
- Need “side factors” to specify how many elements to

skip at end of each dimension

181"

Multidimensional Arrays in Titanium

• True multidimensional arrays
- Supports subarrays without copies

•  Can refer to rows, columns, slabs,
interior, boundary, etc.

- Indexed by Points (tuples of ints)
- Built on a rectangular set of Points, RectDomain
- Points and RectDomains are built-in immutable

classes, with useful literal syntax
• Support for AMR and other grid computations

- domain operations: intersection, shrink, border
• Arrays are located on a single thread, but can be a

remote thread

182"

Points, RectDomains, Arrays in General

• Points specified by a tuple of ints

• RectDomains given by 3 points:
- lower bound, upper bound (and optional stride)

• Array declared by number of dimensions and type

• Array created by passing RectDomain

183"

double [2d] a;

Point<2> lb = [1, 1];
Point<2> ub = [10, 20];

RectDomain<2> r = [lb : ub];

a = new double [r];

Unordered Iteration

• Motivation:
- Memory hierarchy optimizations are essential
- Compilers sometimes do these, but hard in general

• Titanium has explicitly unordered iteration
- Helps the compiler with analysis
- Helps programmer avoid indexing details

 foreach (p in r) { … A[p] … }
•  p is a Point (tuple of ints), can be used as array index
•  r is a RectDomain

• Note: foreach is not a parallelism construct

184"

Simple Array Example

• Matrix sum in Titanium

185"

Point<2> lb = [1,1];
Point<2> ub = [10,20];
RectDomain<2> r = [lb:ub];

double [2d] a = new double [r];
double [2d] b = new double [1:10,1:20];
double [2d] c = new double [lb:ub:[1,1]];

for (int i = 1; i <= 10; i++)
 for (int j = 1; j <= 20; j++)
 c[i,j] = a[i,j] + b[i,j];

foreach (p in c.domain()) { c[p] = a[p] + b[p]; }

No array allocation here"

Syntactic sugar"

Optional stride"

Equivalent loops"

More Array Operations

• Titanium arrays have a rich set of operations

• None of these modify the original array, they just create
another view of the data in that array

• Most important array operation: one line copy between
any two arrays with same element type and arity

 dst.copy(src)
- Copies all elements in intersection of source and

destination domains
- Both source and destination can be located on any

thread
186"

translate restrict slice (n dim to n-1)

Example: Setting Boundary Conditions

187"

foreach (l in local_grids.domain()) {
 foreach (a in all_grids.domain()) {
 local_grids[l].copy(all_grids[a]);
 }
}

Proc 0 Proc 1
local_grids

all_grids

• Can allocate arrays in a global index space
•  Let compiler compute intersections

"ghost" cells

Implementation of Titanium Arrays in UPC++

• UPC++ implementation built using C++ templates and
operator overloading
- Template parameters specify arity and element type
- Overload element access operator []

• Macros provide simple syntax for domain/array literals
- Titanium
 [1, 3]
 RectDomain<3> rd = [[1, 1, 1] : [3, 3, 3]];
 int[3d] local arr = new int[[1, 1, 1] : [3, 3, 3]];

- UPC++
 POINT(1, 3)
 rectdomain<3> rd = RECTDOMAIN((1, 1, 1), (3, 3, 3));
 ndarray<int, 3> arr =
 ARRAY(int, ((1, 1, 1), (3, 3, 3)));

188"

Foreach Implementation

• Macros also allow definition of foreach loops

#define foreach(p, dom) \
 foreach_(p, dom, UNIQUIFYN(foreach_ptr_, p))

#define foreach_(p, dom, ptr_) \
 for (auto ptr_ = (dom).iter(); !ptr_.done; \
 ptr_.done = true) \
 for (auto p = ptr_.start(); ptr_.next(p);)

189"

Preliminary Results

• Currently have full implementation of Titanium-style
domains and arrays in UPC++

• Additionally have ported useful pieces of the Titanium
library to UPC++
- e.g. timers, higher-level collective operations

• Four kernels ported from Titanium to UPC++
- 3D 7-point stencil, NAS conjugate gradient, Fourier

transform, and multigrid
- Minimal porting effort for these examples

•  Less than a day for each kernel
•  Array code only requires change in syntax
•  Most time spent porting Java features to C++

- Larger applications will require global object model to
be defined and implemented in UPC++

190"

Performance Tuning

• Since UPC++ is a library, cannot rely on compiler to
optimize array accesses
- Array library is very general, but generality results in

overhead in simple cases
• Preliminary approach is to provide template

specializations that allow users to bypass inefficient,
general code

•  In the future, we plan to explore automatic dynamic
specialization
- Potentially leverage SEJITS work at UCB

191"

Example: CG SPMV

• Unspecialized local SPMV in conjugate gradient kernel
void multiply(ndarray<double, 1> output,
 ndarray<double, 1> input) {
 double sum = 0;
 foreach (i, lrowRectDomains.domain()) {
 sum = 0;
 foreach (j, lrowRectDomains[i]) {
 sum += la[j] * input[lcolidx[j]];
 }
 output[i] = sum;
 }
}

•  3x slower than hand-tuned code (sequential PGCC on
Cray XE6)

192"

Example: CG SPMV

• Specialized local SPMV
void multiply(ndarray<double, 1, simple> output,
 ndarray<double, 1, simple> input) {
 double sum = 0;
 foreach1 (i, lrowRectDomains.domain()) {
 sum = 0;
 foreach1 (j, lrowRectDomains[i]) {
 sum += la[j] * input[lcolidx[j]];
 }
 output[i] = sum;
 }
}

• Comparable to hand-tuned code (sequential PGCC on
Cray XE6)

193"

Hierarchical Programming

• Applications can reduce communication costs by
adapting to machine hierarchy"

• Applications may also have  
inherent, algorithmic hierarchy"
- Recursive algorithms"
- Composition of multiple algorithms"
- Hierarchical division of data"

194"

4	

5	

6	

7	

0	

1	

2	

3	

Slow,
avoid"

Fast,
allow"

0,	
 1,	
 2,	
 3,	
 4,	
 5	

0,	
 1,	
 2	

0,	
 1	
 2	

0	
 1	

3,	
 4,	
 5	

3,	
 4	
 5	

3	
 4	

Algorithm Example: Merge Sort

• Task parallel
int[] mergeSort(int[] data) {
 int len = data.length;
 if (len < threshold)
 return sequentialSort(data);
 d1 = fork mergeSort(data[0:len/2-1]);
 d2 = mergeSort(data[len/2:len-1]);
 join d1;
 return merge(d1, d2);
}

• Cannot fork threads in SPMD
- Must rewrite to execute over fixed set of threads

195"

Algorithm Example: Merge Sort

• SPMD
int[] mergeSort(int[] data, int[] ids) {
 int len = data.length;
 int threads = ids.length;
 if (threads == 1) return sequentialSort(data);
 if (myId in ids[0:threads/2-1])
 d1 = mergeSort(data[0:len/2-1],
 ids[0:threads/2-1]);
 else
 d2 = mergeSort(data[len/2:len-1],
 ids[threads/2:threads-1]);
 barrier(ids);
 if (myId == ids[0]) return merge(d1, d2);
}

196"

Tea
m"

Team
Collective"

Hierarchical Teams

• Thread teams are basic units of cooperation"
- Groups of threads that cooperatively execute code"
- Collective operations over teams"

• Structured, hierarchical teams provide many benefits
over flat teams"
- Expressive: match structure of algorithms, machines
- Safe: eliminate many sources of deadlock
- Composable: enable existing code to be composed

without being rewritten to explicitly use teams
- Efficient: allow users to take advantage of machine

structure, resulting in performance gains

197"

Team Data Structure

• Threads comprise teams in tree-like structure"

• First-class object to allow easy creation and
manipulation"

• Work in progress: add ability to automatically construct
team hierarchy from machine structure"

198"

0,	
 1,	
 2,	
 3,	
 4,	
 5,	
 6,	
 7,	
 8,	
 9,	
 10,	
 11	

0,	
 1,	
 2,	
 3	
 4,	
 5,	
 6,	
 7	
 8,	
 9,	
 10,	
 11	

1,	
 3,	
 2	
 9,	
 8	
 10,	
 11	
 0	

Team Usage Construct

• Syntactic construct specifies that all enclosed operations
are with respect to the given team
- Collectives and constants such as MYTHREAD are

with respect to currently scoped team
 teamsplit(row_team) {
 Reduce::add(mtmp, myresults, rpivot);
 }

199"

0" 1" 2" 3"

4" 5" 6" 7"

8" 9" 10" 11"

T1"

T2"

T3"

=	

Team Construct Implementation

//	
 teamsplit(row_team)	
 {	
 =>	
 macro	
 expansion	
 =>	

for	
 (ts_scope	
 _ts(row_team);	
 _ts.done	
 ==	
 0;	

	
 	
 	
 	
 	
 _ts.done	
 =	
 1)	
 {	

	
 	
 //	
 ts_scope	
 constructor	
 call	
 generated	
 by	
 compiler	

	
 	
 //	
 descend	
 one	
 level	
 in	
 team	
 hierarchy	

	
 	
 ts_scope(team	
 &t)	
 {	
 descend_team(t-­‐>mychild());	
 }	

	

	
 	
 //	
 collective	
 operation	
 on	
 current	
 team	
 	
 	

	
 	
 Reduce::add(mtmp,	
 myresults,	
 rpivot);	

	

	
 	
 //	
 ts_scope	
 destructor	
 call	
 generated	
 by	
 compiler	

	
 	
 ~ts_scope()	
 {	
 ascend_team();	
 }	

}	

Leverage C++ Programming Idiom
Resource Acquisition Is Initialization
(RAII)

200"

• teamsplit implemented exactly like finish

Merge Sort Team Hierarchy

• Team hierarchy is binary tree
• Trivial construction

• Threads walk down to bottom
of hierarchy, sort, then walk
back up, merging along the way

201"

0,	
 1,	
 2,	
 3,	
 4,	
 5	

0,	
 1,	
 2	

0,	
 1	
 2	

0	
 1	

3,	
 4,	
 5	

3,	
 4	
 5	

3	
 4	

void divide_team(team &t) {
 if (THREADS > 1) {
 t.split(MYTHREAD % 2,
 MYTHREAD / 2);
 teamsplit(t) {

divide_team(t.mychild());
 }
 }
}

Merge Sort Implementation

• Control logic for sorting and merging
 void sort_and_merge(team &t) {
 if (THREADS == 1) {
 allres[myidx] = sequential_sort(mydata);
 } else {
 teamsplit(t) {
 sort_and_merge(t.mychild());
 }
 barrier();
 if (MYTHREAD == 0) {
 int other = myidx + t.mychild().size();
 ndarray<int, 1> myres = allres[myidx];
 ndarray<int, 1> otherres = allres[other];
 ndarray<int, 1> newres = target(depth(t), myres,
 otherres);
 allres[myidx] = merge(myres, otherres, newres);
 }
 }
 }

202"

Walk down
team hierarchy"

Walk up,
merging
along
the way"

Sort at bottom"

Hierarchical Teams Results (Titanium)

• Titanium has full hierarchical team implementation,
including machine model

• Hierarchical sort algorithm has both algorithmic
hierarchy (merge sort) and machine-level hierarchy
(mixed sample sort and merge sort)

203"

0	

5	

10	

15	

20	

25	

1	
 2	
 4	
 8	
 16	
 32	
 64	
 128	
 256	
 512	

Ti
m
e	

(s
)	

NUMA	
 Nodes	
 (6	
 cores/node)	

Distributed	
 Sort	
 (Cray	
 XE6)	

flat	
 (dist)	
 hierarchical	
 (dist)	

flat	
 	
 (sort)	
 hierarchical	
 (sort)	

G
O

O
D

Summary

• Many productive language features can be implemented
in C++ without modifying the compiler
- Macros and template metaprogramming provide a lot

of power for extending the core language
• Many Titanium applications can be ported to UPC++

with little effort
- UPC++ can provide the same productivity gains as

Titanium
• However, analysis and optimization still an open

question
- Can we build a lightweight standalone analyzer/

optimizer for UPC++?
- Can we provide automatic specialization at runtime

in C++?
204"

Future Work

• Arrays
- Investigate dynamic optimization using just-in-time

specialization
- Design and build distributed array library on top of

current library
• Hierarchical teams

- Design hierarchical machine model for UPC++
- Add ability to query machine structure at runtime

• Global object model
- Explore template metaprogramming techniques for

implementing a global object interface
- Build a tool for generating global analogs from local

class definitions
205"

Application Work in PGAS

• Network simulator in UPC (Steve Hofmeyr, LBNL)
• Real-space multigrid (RMG) quantum mechanics

(Shirley Moore, UTK)
•  Landscape analysis, i.e., “Contributing Area

Estimation” in UPC (Brian Kazian, UCB)
• GTS Shifter in CAF (Preissl, Wichmann,
Long, Shalf, Ethier,
Koniges, LBNL,
Cray, PPPL)

Two Distinct Parallel Programming Questions

• What is the parallel control model?

• What is the model for sharing/communication?

 synchronization may be coupled (implicit) or separate (explicit)

data parallel
(singe thread of control)

dynamic
threads

single program
multiple data (SPMD)

shared memory
load
store

send

receive

message passing

PGAS load/store with partitioning for locality,
but need a “signaling store” for producer
consumer parallelism

SPMD “default” plus data parallelism through
collectives and dynamic tasking within nodes
or between nodes through libraries

PyGAS: Combine two popular ideas

• Python
- No. 6 Popular on http://langpop.com and extensive

libraries, e.g., Numpy, Scipy, Matplotlib, NetworkX
- 10% of NERSC projects use Python

• PGAS
- Convenient data and object sharing

• PyGAS : Objects can be shared via Proxies with operations
intercepted and dispatched over the network:

•  Leveraging duck typing:
•  Proxies behave like original objects.
•  Many libraries will automatically work.

num = 1+2*j
 = share(num, from=0)

print pxy.real # shared read
pxy.imag = 3 # shared write
print pxy.conjugate() # invoke

Arrays in a Global Address Space

• Key features of Titanium arrays
- Generality: indices may start/end and any point
- Domain calculus allow for slicing, subarray,

transpose and other operations without data copies
• Use domain calculus to identify ghosts and iterate:

 foreach (p in gridA.shrink(1).domain()) ...

• Array copies automatically work on intersection
 gridB.copy(gridA.shrink(1));

gridA gridB

“restricted” (non-
ghost) cells

ghost
cells

intersection (copied
area)

Joint work with Titanium group"

Useful in grid
computations
including AMR

Languages Support Helps Productivity

C++/Fortran/MPI AMR
•  Chombo package from LBNL
•  Bulk-synchronous comm:

-  Pack boundary data between procs
-  All optimizations done by programmer

Titanium AMR
•  Entirely in Titanium
•  Finer-grained communication

-  No explicit pack/unpack code
-  Automated in runtime system

•  General approach
-  Language allow programmer optimizations
-  Compiler/runtime does some automatically

Work by Tong Wen and Philip Colella; Communication optimizations joint with Jimmy Su"

0

5000

10000

15000

20000

25000

30000

Titanium C++/F/MPI
(Chombo)

Li
ne

s
of

 C
od

e

AMRElliptic

AMRTools

Util

Grid

AMR

Array

Speedup

0
10
20
30
40
50
60
70
80

16 28 36 56 112

#procs

sp
ee
du
p

Ti Chombo

Particle/Mesh Method: Heart Simulation

•  Elastic structures in an incompressible fluid.
- Blood flow, clotting, inner ear, embryo growth, …

•  Complicated parallelization
- Particle/Mesh method, but “Particles” connected

into materials (1D or 2D structures)
- Communication patterns irregular between particles

(structures) and mesh (fluid)

Joint work with Ed Givelberg, Armando Solar-Lezama, Charlie Peskin, Dave McQueen"

2D Dirac Delta Function

Code Size in Lines"
Fortran" Titanium"

8000" 4000"

Note: Fortran code is not parallel

Compiler-free “UPC++” eases interoperability

global_array_t<int, 1> A(10); // shared [1] int A[10];

L-value reference (write/put)
A[1] = 1; // A[1] -> global_ref_t ref(A, 1); ref = 1;

R-value reference (read/get)
int n = A[1] + 1; // A[1] -> global_ref_t ref(A, 1); n = (int)ref + 1;

0.5

2

8

32

128

1 2 4 8 16 32 64 128 256

Sp
ee

du
p

Number of GPUs

Cray XK6 Performance Speedup

Matmul
FFT
SpMV

0.00

0.01

0.10

1 2 4 8 16 32 60

G
U

PS

Num. of Processes

Giga-Updates Per Second on MIC
Cluster

DEGAS C++
UPC

Hierarchical SPMD (demonstrated in Titanium)

• Thread teams may execute distinct tasks
partition(T) {
 { model_fluid(); }
 { model_muscles(); }
 { model_electrical(); }
}

• Hierarchy for machine / tasks
- Nearby: access shared data
- Far away: copy data

• Advantages:
- Provable pointer types
- Mixed data / task style
- Lexical scope prevents some deadlocks

B	

C	

D	

A	
 1	

2	
 3	
 	
 4	

span	
 1	

(core	
 local)	

span	
 2	

(processor	
 local)	

span	
 3	

(node	
 local)	

span	
 4	

(global)	

Single Program Multiple Data
(SPMD) is too restrictive

Hierarchical machines à Hierarchical programs

• Option 1: Dynamic parallelism creation
- Recursively divide until… you run out of work (or hardware)
- Runtime needs to match parallelism to hardware hierarchy

• Option 2: Hierarchical SPMD with “Mix-ins”
- Hardware threads can be grouped into units hierarchically
- Add dynamic parallelism with voluntary tasking on a group
- Add data parallelism with collectives on a group

Option 1 spreads threads, option 2 collecte them together

0	
 3	
 1	
 2	

4	

5	

6	

7	

0	

1	

2	

3	

•  Hierarchical memory
model may be necessary
(what to expose vs hide)

•  Two approaches to
supporting the
hierarchical control

One-sided communication works everywhere

Support for one-sided communication (DMA) appears in:
•  Fast one-sided network communication (RDMA, Remote

DMA)
•  Move data to/from accelerators
•  Move data to/from I/O system (Flash, disks,..)
•  Movement of data in/out of local-store (scratchpad) memory

PGAS programming model

 *p1 = *p2 + 1;
 A[i] = B[i];

 upc_memput(A,B,64);

It is implemented using one-sided
communication: put/get

Vertical PGAS

x: 1
y:

x: 5
y:

x: 7
y: 0

Shared
partitioned
on-chip

l: m: Private on-chip

Shared
off-chip
DRAM or
NVRAM

• New type of wide pointer?
-  Points to slow (offchip memory)
- The type system could get unwieldy quickly

HPC: From Vector Supercomputers to
Massively Parallel Systems

Programmed by
“annotating”
serial programs

Programmed by
completely rethinking
algorithms and
software for parallelism

25% industrial use 50%

PGAS Languages

• Global address space: thread may directly read/write remote data
•  Hides the distinction between shared/distributed memory

• Partitioned: data is designated as local or global
•  Does not hide this: critical for locality and scaling

G
lo

ba
l a

dd
re

ss
 s

pa
ce
"

x: 1
y:

l: l: l:

g: g: g:

x: 5
y:

x: 7
y: 0

p0" p1" pn"
•  UPC, CAF, Titanium: Static parallelism (1 thread per proc)

•  Does not virtualize processors
•  X10, Chapel and Fortress: PGAS,but not static (dynamic threads)

A Brief History of Languages

• When vector machines were king
- Parallel “languages” were loop annotations (IVDEP)
- Performance was fragile, but there was good user support

• When SIMD machines were king
- Data parallel languages popular and successful (CMF, *Lisp, C*, …)
- Quite powerful: can handle irregular data (sparse mat-vec multiply)
- Irregular computation is less clear (multi-physics, adaptive meshes,

backtracking search, sparse matrix factorization)
• When shared memory multiprocessors (SMPs) were king

- Shared memory models, e.g., OpenMP, POSIX Threads, were popular
• When clusters took over

- Message Passing (MPI) became dominant
•  With multicore building blocks for clusters

- Mixed MPI + OpenMP is the preferred choice

