CS 267 Dense Linear Algebra: History and Structure, Parallel Matrix Multiplication

James Demmel

www.cs.berkeley.edu/~demmel/cs267_Spr15

02/26/2015

CS267 Lecture 12

1

Quick review of earlier lecture

- · What do you call
 - A program written in PyGAS, a Global Address Space language based on Python...
 - That uses a Monte Carlo simulation algorithm to approximate π ...
 - That has a race condition, so that it gives you a different funny answer every time you run it?

Monte - π - thon

2

02/26/2015 CS267 Lecture 12

Outline

- History and motivation
 - What is dense linear algebra?
 - Why minimize communication?
 - · Lower bound on communication
- · Structure of the Dense Linear Algebra motif
 - What does A\b do?
- Parallel Matrix-matrix multiplication
 - · Attaining the lower bound
- Other Parallel Algorithms (next lecture)

02/26/2015

CS267 Lecture 12

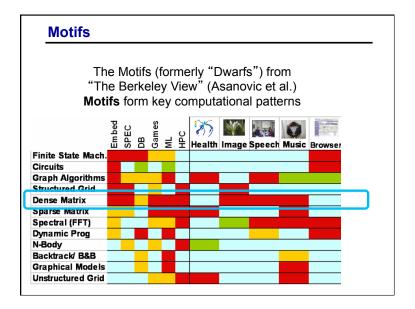
3

Outline

- History and motivation
 - What is dense linear algebra?
 - Why minimize communication?
 - · Lower bound on communication
- · Structure of the Dense Linear Algebra motif
 - What does A\b do?
- Parallel Matrix-matrix multiplication
 - · Attaining the lower bound
- Other Parallel Algorithms (next lecture)

02/26/2015

CS267 Lecture 12



A brief history of (Dense) Linear Algebra software (1/7)

- In the beginning was the do-loop...
 - Libraries like EISPACK (for eigenvalue problems)
- Then the BLAS (1) were invented (1973-1977)
 - Standard library of 15 operations (mostly) on vectors
 - "AXPY" ($y = \alpha \cdot x + y$), dot product, scale ($x = \alpha \cdot x$), etc
 - Up to 4 versions of each (S/D/C/Z), 46 routines, 3300 LOC
 - Goals
 - · Common "pattern" to ease programming, readability
 - Robustness, via careful coding (avoiding over/underflow)
 - Portability + Efficiency via machine specific implementations
 - Why BLAS 1? They do O(n1) ops on O(n1) data
 - Used in libraries like LINPACK (for linear systems)
 - Source of the name "LINPACK Benchmark" (not the code!)

02/26/2015 CS267 Lecture 12 7

What is dense linear algebra?

- · Not just matmul!
- · Linear Systems: Ax=b
- Least Squares: choose x to minimize ||Ax-b||₂
 - · Overdetermined or underdetermined
 - · Unconstrained, constrained, weighted
- Eigenvalues and vectors of Symmetric Matrices
 - Standard (Ax = λ x), Generalized (Ax= λ Bx)
- · Eigenvalues and vectors of Unsymmetric matrices
 - Eigenvalues, Schur form, eigenvectors, invariant subspaces
 - · Standard, Generalized
- Singular Values and vectors (SVD)
 - Standard, Generalized
- Different matrix structures
 - Real, complex; Symmetric, Hermitian, positive definite; dense, triangular, banded ...
- · Level of detail
 - Simple Driver ("x=A\b")
 - · Expert Drivers with error bounds, extra-precision, other options
- Lower level routines ("apply certain kind of orthogonal transformation", matmul...)
 02/26/2015 CS267 Lecture 13
 6

Current Records for Solving Dense Systems (11/2014)

- Linpack Benchmark
- Fastest machine overall (www.top500.org)
 - Tianhe-2 (Guangzhou, China)
 - 33.9 Petaflops out of 54.9 Petaflops peak (n=10M)
 - 3.1M cores, of which 2.7M are accelerator cores
 - Intel Xeon E5-2692 (Ivy Bridge) and Xeon Phi 31S1P
 - 1 Pbyte memory
 - 17.8 MWatts of power, 1.9 Gflops/Watt
- Historical data (www.netlib.org/performance)
 - Palm Pilot III
 - 1.69 Kiloflops
 - n = 100

02/26/2015 CS267 Lecture 12 8

A brief history of (Dense) Linear Algebra software (2/7)

- But the BLAS-1 weren't enough
 - Consider AXPY ($y = \alpha \cdot x + y$): 2n flops on 3n read/writes
 - Computational intensity = (2n)/(3n) = 2/3
 - Too low to run near peak speed (read/write dominates)
 - Hard to vectorize ("SIMD' ize") on supercomputers of the day (1980s)
- So the BLAS-2 were invented (1984-1986)
 - Standard library of 25 operations (mostly) on matrix/ vector pairs
 - "GEMV": $y = \alpha \cdot A \cdot x + \beta \cdot x$, "GER": $A = A + \alpha \cdot x \cdot y^T$, $x = T^{-1} \cdot x$
 - Up to 4 versions of each (S/D/C/Z), 66 routines, 18K LOC
 - Why BLAS 2? They do O(n2) ops on O(n2) data
 - So computational intensity still just $\sim (2n^2)/(n^2) = 2$
 - OK for vector machines, but not for machine with caches
 CS267 Lecture 12

```
| Devol 1 BLAS | Section vector vecto
```

A brief history of (Dense) Linear Algebra software (3/7)

- The next step: BLAS-3 (1987-1988)
 - Standard library of 9 operations (mostly) on matrix/matrix pairs
 - "GEMM": $C = \alpha \cdot A \cdot B + \beta \cdot C$. $C = \alpha \cdot A \cdot A^T + \beta \cdot C$. $B = T^{-1} \cdot B$
 - Up to 4 versions of each (S/D/C/Z), 30 routines, 10K LOC
 - Why BLAS 3? They do O(n3) ops on O(n2) data
 - So computational intensity $(2n^3)/(4n^2) = n/2 big$ at last!
 - · Good for machines with caches, other mem. hierarchy levels
- How much BLAS1/2/3 code so far (all at www.netlib.org/blas)
 - Source: 142 routines, 31K LOC, Testing: 28K LOC
 - · Reference (unoptimized) implementation only
 - Ex: 3 nested loops for GEMM
 - Lots more optimized code (eg Homework 1)
 - · Motivates "automatic tuning" of the BLAS
 - Part of standard math libraries (eg AMD ACML, Intel MKL)

02/26/2015 CS267 Lecture 12 10

A brief history of (Dense) Linear Algebra software (4/7)

- LAPACK "Linear Algebra PACKage" uses BLAS-3 (1989 now)
 - Ex: Obvious way to express Gaussian Elimination (GE) is adding multiples of one row to other rows – BLAS-1
 - How do we reorganize GE to use BLAS-3 ? (details later)
 - Contents of LAPACK (summary)
 - Algorithms that are (nearly) 100% BLAS 3
 - Linear Systems: solve Ax=b for x
 - Least Squares: choose x to minimize ||Ax-b||₂
 - Algorithms that are only ≈50% BLAS 3
 - Eigenproblems: Find λ and x where $Ax = \lambda x$
 - Singular Value Decomposition (SVD)
 - Generalized problems (eg $Ax = \lambda Bx$)
 - Error bounds for everything
 - Lots of variants depending on A's structure (banded, A=A^T, etc)
 - How much code? (Release 3.5.0, Nov 2013) (www.netlib.org/lapack)
 - Source: 1740 routines, 704K LOC, Testing: 1096 routines, 467K LOC
 - Ongoing development (at UCB and elsewhere) (class projects!)
 - Next planned release June 2015

12

A brief history of (Dense) Linear Algebra software (5/7)

- Is LAPACK parallel?
 - Only if the BLAS are parallel (possible in shared memory)
- ScaLAPACK "Scalable LAPACK" (1995 now)
 - For distributed memory uses MPI
 - More complex data structures, algorithms than LAPACK
 - · Only (small) subset of LAPACK's functionality available
 - · Details later (class projects!)
 - · All at www.netlib.org/scalapack

02/26/2015 CS267 Lecture 12

Success Stories for Sca/LAPACK (6/7)

- · Widely used
 - Adopted by Mathworks, Cray, Fujitsu, HP, IBM, IMSL, Intel, NAG, NEC, SGI, ...
 - 7.5M webhits/year @ Netlib (incl. CLAPACK, LAPACK95)
- New Science discovered through the solution of dense matrix systems
 - Nature article on the flat universe used ScaLAPACK
 - Other articles in Physics Review B that also use it
 - 1998 Gordon Bell Prize
 - www.nersc.gov/news/reports/ newNERSCresults050703.pdf

02/26/2015 CS267 Lecture 12

Cosmic Microwave Background Analysis, BOOMERanG collaboration, MADCAP code (Apr. 27, 2000).

14

13

A brief future look at (Dense) Linear Algebra software (7/7)

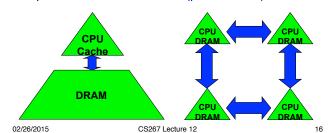
- PLASMA, DPLASMA and MAGMA (now)
 - Ongoing extensions to Multicore/GPU/Heterogeneous
 - Can one software infrastructure accommodate all algorithms and platforms of current (future) interest?
 - How much code generation and tuning can we automate?
 - Details later (Class projects!) (icl.cs.utk.edu/{{d}plasma,magma})
- Other related projects
 - Elemental (libelemental.org)
 - · Distributed memory dense linear algebra
 - · "Balance ease of use and high performance"
 - FLAME (z.cs.utexas.edu/wiki/flame.wiki/FrontPage)
 - · Formal Linear Algebra Method Environment
 - · Attempt to automate code generation across multiple platforms
 - BLAST Forum (www.netlib.org/blas/blast-forum)
 - Attempt to extend BLAS, add new functions, extra-precision, \dots

Back to basics:

Why avoiding communication is important (1/3)

Algorithms have two costs:

- 1.Arithmetic (FLOPS)
- 2. Communication: moving data between
 - levels of a memory hierarchy (sequential case)
 - processors over a network (parallel case).



Why avoiding communication is important (2/3)

- Running time of an algorithm is sum of 3 terms:
 - # flops * time per flop
 - # words moved / bandwidth

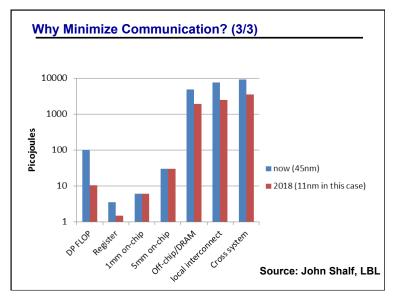
communication

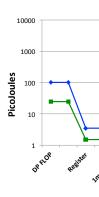
- # messages * latency
- Time_per_flop << 1/ bandwidth << latency
 - · Gaps growing exponentially with time

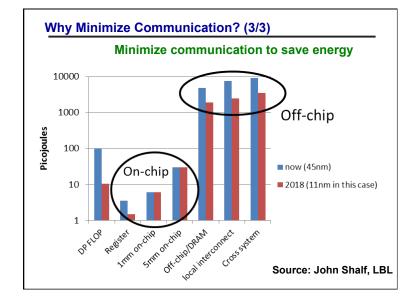
Annual improvements										
Time_per_flop		Bandwidth	Latency							
F00/	DRAM	26%	15%							
59%	Network	23%	5%							

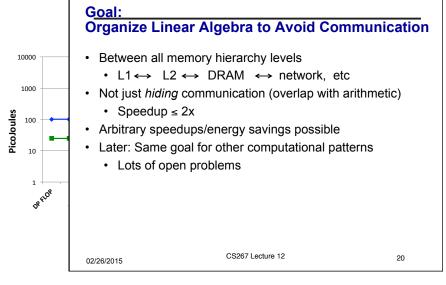
Minimize communication to save time

02/26/2015 CS267 Lecture 12 17









Review: Blocked Matrix Multiply

 Blocked Matmul C = A·B breaks A, B and C into blocks with dimensions that depend on cache size

- When b=1, get "naïve" algorithm, want b larger ...
- $(n/b)^3 \cdot 4b^2 = 4n^3/b$ reads/writes altogether
- Minimized when $3b^2$ = cache size = M, yielding $O(n^3/M^{1/2})$ reads/writes
- What if we had more levels of memory? (L1, L2, cache etc)?
 - · Would need 3 more nested loops per level
 - Recursive (cache-oblivious algorithm) also possible

02/26/2015 CS267 Lecture 12 21

Communication Lower Bounds: Prior Work on Matmul

- Assume n³ algorithm (i.e. not Strassen-like)
- Sequential case, with fast memory of size M
 - Lower bound on #words moved to/from slow memory = Ω (n³ / M^{1/2}) [Hong, Kung, 81]
 - Attained using blocked or cache-oblivious algorithms
- Parallel case on P processors:
 - · Let M be memory per processor; assume load balanced
 - Lower bound on #words moved
 - = Ω (n³/(p · M^{1/2})) [Irony, Tiskin, Toledo, 04]
 - If M = $3n^2/p$ (one copy of each matrix), then lower bound = Ω ($n^2/p^{1/2}$)
 - · Attained by SUMMA, Cannon's algorithm

02/26/2015 CS267 Lecture 12 22

New lower bound for all "direct" linear algebra

Let M = "fast" memory size per processor = cache size (sequential case) or O(n²/p) (parallel case) #flops = number of flops done per processor

#words_moved per processor = $\Omega(\text{#flops / M}^{1/2})$

#messages sent per processor = Ω (#flops / M^{3/2})

- · Holds for
 - · Matmul, BLAS, LU, QR, eig, SVD, tensor contractions, ...
 - Some whole programs (sequences of these operations, no matter how they are interleaved, eg computing A^k)
 - Dense and sparse matrices (where #flops << n³)
 - Sequential and parallel algorithms
 - Some graph-theoretic algorithms (eg Floyd-Warshall)
- Generalizations later (Strassen-like algorithms, loops accessing arrays)
 02/26/2015
 CS267 Lecture 12
 23

New lower bound for all "direct" linear algebra

```
Let M = "fast" memory size per processor
```

= cache size (sequential case) or O(n²/p) (parallel case) #flops = number of flops done per processor

#words_moved per processor = $\Omega(\text{#flops / M}^{1/2})$

#messages_sent per processor = Ω (#flops / M^{3/2})

- Sequential case, dense n x n matrices, so O(n3) flops
 - #words moved = $\Omega(n^3/M^{1/2})$
 - #messages_sent = $\Omega(n^3/M^{3/2})$
- · Parallel case, dense n x n matrices
 - · Load balanced, so O(n3/p) flops processor
 - One copy of data, load balanced, so $M = O(n^2/p)$ per processor
 - #words_moved = $\Omega(n^2/p^{1/2})$ • #messages sent = $\Omega(p^{1/2})$

SIAM Linear Algebra Prize, 2012

6

02/26/2015 CS267 Lecture 12

Can we attain these lower bounds?

- Do conventional dense algorithms as implemented in LAPACK and ScaLAPACK attain these bounds?
 - · Mostly not yet, work in progress
- · If not, are there other algorithms that do?
 - Yes
- · Goals for algorithms:
 - · Minimize #words moved
 - Minimize #messages_sent
 - · Need new data structures
 - · Minimize for multiple memory hierarchy levels
 - · Cache-oblivious algorithms would be simplest
 - · Fewest flops when matrix fits in fastest memory
 - · Cache-oblivious algorithms don't always attain this
- · Attainable for nearly all dense linear algebra
 - Just a few prototype implementations so far (class projects!)
 - Only a few sparse algorithms so far (eg Cholesky)

02/26/2015

CS267 Lecture 12

25

Outline

- · History and motivation
 - What is dense linear algebra?
 - Why minimize communication?
 - · Lower bound on communication
- · Structure of the Dense Linear Algebra motif
 - What does A\b do?
- Parallel Matrix-matrix multiplication
 - · Attaining the lower bound
 - Proof of the lower bound (if time)
- Other Parallel Algorithms (next lecture)

02/26/2015 CS267 Lecture 12

What could go into the linear algebra motif(s)?

For all linear algebra problems

For all matrix/problem structures

For all data types

For all architectures and networks

For all programming interfaces

Produce best algorithm(s) w.r.t. performance and/or accuracy (including error bounds, etc)

Need to prioritize, automate!

02/26/2015

CS267 Lecture 12

27

For all linear algebra problems: Ex: LAPACK Table of Contents

- · Linear Systems
- · Least Squares
 - · Overdetermined, underdetermined
 - · Unconstrained, constrained, weighted
- · Eigenvalues and vectors of Symmetric Matrices
 - Standard (Ax = λx), Generalized (Ax=λBx)
- Eigenvalues and vectors of Unsymmetric matrices
 - Eigenvalues, Schur form, eigenvectors, invariant subspaces
 - · Standard, Generalized
- · Singular Values and vectors (SVD)
 - Standard, Generalized
- · Level of detail
 - Simple Driver
 - · Expert Drivers with error bounds, extra-precision, other options
 - Lower level routines ("apply certain kind of orthogonal transformation")

02/26/2015

CS267 Lecture 12

28

26

What does A\b do? What could it do? Ex: LAPACK Table of Contents

- BD bidiagonal
- · GB general banded
- GE general
- GG general , pair
- GT tridiagonal
- HB Hermitian banded
- HE Hermitian
- HG upper Hessenberg, pair
- HP Hermitian, packed
- HS upper Hessenberg
- OR (real) orthogonal
- OP (real) orthogonal, packed
- PB positive definite, banded
- PO positive definite
- PP positive definite, packed
- PT positive definite, tridiagonal

- · SB symmetric, banded
- SP symmetric, packed
- ST symmetric, tridiagonal
- SY symmetric
- TB triangular, banded
- TG triangular, pair
- TP triangular, packed
- TR triangular
- TZ trapezoidal
- UN unitary
- UP unitary packed

02/26/2015 CS267 Lecture 12 29

What does A\b do? What could it do? Ex: LAPACK Table of Contents

- BD bidiagonal
- GB general banded
- GE general
- GG general , pair
- GT tridiagonal HB – Hermitian banded
- HE Hermitian
- HG upper Hessenberg, pair
- HP Hermitian, packed
- HS upper Hessenberg
- OR (real) orthogonal
- OP (real) orthogonal, packed
- PB positive definite, banded
- PO positive definite
- PP positive definite, packed
- PT positive definite, tridiagonal

- · SB symmetric, banded
- SP symmetric, packed
- ST symmetric, tridiagonal
- SY symmetric
- TB triangular, banded
- TG triangular, pair
- TP triangular, packed
- TR triangular
- TZ trapezoidal
- UN unitary
- UP unitary packed

02/26/2015 CS267 Lecture 12

What does A\b do? What could it do? **Ex: LAPACK Table of Contents**

- · BD bidiagonal
- GB general banded
- GE general
- GG general, pair
- GT tridiagonal
- HB Hermitian banded
- · HE Hermitian
- HG upper Hessenberg, pair
- HP Hermitian, packed
- HS upper Hessenberg
- OR (real) orthogonal
- OP (real) orthogonal, packed
- PB positive definite, banded
- PO positive definite

02/26/2015

- PP positive definite, packed
- PT positive definite, tridiagonal

- SB symmetric, banded
- SP symmetric, packed
- ST symmetric, tridiagonal
- SY symmetric
- TB triangular, banded
- TG triangular, pair
- TP triangular, packed
- TR triangular TZ – trapezoidal
- UN unitary
- UP unitary packed

CS267 Lecture 12 31

What does A\b do? What could it do? **Ex: LAPACK Table of Contents**

- BD bidiagonal
- GB general banded
- GE general
- GG general, pair
- GT tridiagonal
- · HB Hermitian banded
- HE Hermitian
- · HG upper Hessenberg, pair
- HP Hermitian, packed
- HS upper Hessenberg
- OR (real) orthogonal
- OP (real) orthogonal, packed
- PB positive definite, banded
- PO positive definite
- PP positive definite, packed
- PT positive definite, tridiagonal

- SB symmetric, banded
- SP symmetric, packed
- ST symmetric, tridiagonal

30

32

- SY symmetric
- TB triangular, banded
- TG triangular, pair
- TP triangular, packed
- TR triangular
- TZ trapezoidal
- UN unitary
- UP unitary packed

02/26/2015 CS267 Lecture 12

What does A\b do? What could it do? Ex: LAPACK Table of Contents

- BD bidiagonal
- GB general banded
- GE general
- GG general, pair
- GT tridiagonal
- HB Hermitian banded
- HE Hermitian
- HG upper Hessenberg, pair
- HP Hermitian, packed
- HS upper Hessenberg
- OR (real) orthogonal
- OP (real) orthogonal, packed
- PB positive definite, banded
- PO positive definite
- PP positive definite, packed
- PT positive definite, tridiagonal

- · SB symmetric, banded
- SP symmetric, packed
- ST symmetric, tridiagonal
- SY symmetric
- TB triangular, banded
- TG triangular, pair
- TP triangular, packed

33

- TR triangular
- · TZ trapezoidal
- UN unitary
- UP unitary packed

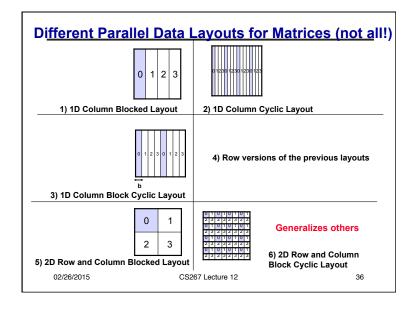
02/26/2015 CS267 Lecture 12

Organizing Linear Algebra – in books ScalAPACK Users Guide NUMERICAL LAPACK LA

Outline

- History and motivation
 - What is dense linear algebra?
 - Why minimize communication?
 - Lower bound on communication
- · Structure of the Dense Linear Algebra motif
 - What does A\b do?
- Parallel Matrix-matrix multiplication
 - · Attaining the lower bound
- Other Parallel Algorithms (next lecture)

02/26/2015 CS267 Lecture 12 35



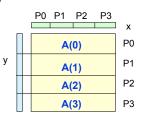
Parallel Matrix-Vector Product

- Compute $y = y + A^*x$, where A is a dense matrix
- Layout:
 - 1D row blocked
- A(i) refers to the n by n/p block row that processor i owns,
- x(i) and y(i) similarly refer to segments of x,y owned by i
- Algorithm:
 - · Foreach processor i
 - Broadcast x(i)
 - Compute y(i) = A(i)*x
- · Algorithm uses the formula

$$y(i) = y(i) + A(i)*x = y(i) + \sum_{i} A(i,j)*x(j)$$

02/26/2015

CS267 Lecture 12

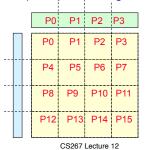


37

39

Matrix-Vector Product y = y + A*x

- A column layout of the matrix eliminates the broadcast of x
 - But adds a reduction to update the destination y
- A 2D blocked layout uses a broadcast and reduction, both on a subset of processors
 - sqrt(p) for square processor grid



02/26/2015

38

Parallel Matrix Multiply

- Computing C=C+A*B
- Using basic algorithm: 2*n3 Flops
- Variables are:
 - Data layout: 1D? 2D? Other?
 - Topology of machine: Ring? Torus?
 - Scheduling communication
- Use of performance models for algorithm design
 - · Message Time = "latency" + #words * time-per-word
 - $= \alpha + n*\beta$
- · Efficiency (in any model):
 - serial time / (p * parallel time)
 - perfect (linear) speedup
 ⇔ efficiency = 1

02/26/2015

CS267 Lecture 12

Matrix Multiply with 1D Column Layout

Assume matrices are n x n and n is divisible by p

May be a reasonable assumption for analysis, not for code

- A(i) refers to the n by n/p block column that processor i owns (similiarly for B(i) and C(i))
- B(i,j) is the n/p by n/p sublock of B(i)
 - in rows j*n/p through (j+1)*n/p 1
- Algorithm uses the formula

$$C(i) = C(i) + A*B(i) = C(i) + \sum_{i} A(j)*B(j,i)$$

02/26/2015

CS267 Lecture 12

40

Matrix Multiply: 1D Layout on Bus or Ring

· Algorithm uses the formula

$$C(i) = C(i) + A*B(i) = C(i) + \Sigma_i A(j)*B(j,i)$$

- First consider a bus-connected machine without broadcast: only one pair of processors can communicate at a time (ethernet)
- Second consider a machine with processors on a ring: all processors may communicate with nearest neighbors simultaneously

02/26/2015 CS267 Lecture 12

MatMul: 1D layout on Bus without Broadcast

Naïve algorithm:

```
C(myproc) = C(myproc) + A(myproc)*B(myproc,myproc)
for i = 0 to p-1
for j = 0 to p-1 except i
    if (myproc == i) send A(i) to processor j
    if (myproc == j)
        receive A(i) from processor i
        C(myproc) = C(myproc) + A(i)*B(i,myproc)
barrier
```

Cost of inner loop:

```
computation: 2*n*(n/p)^2 = 2*n^3/p^2
communication: \alpha + \beta*n^2/p
```

02/26/2015 CS267 Lecture 12

Naïve MatMul (continued)

Cost of inner loop:

```
computation: 2^*n^*(n/p)^2 = 2^*n^3/p^2
communication: \alpha + \beta^*n^2/p ... approximately
```

Only 1 pair of processors (i and j) are active on any iteration, and of those, only i is doing computation

=> the algorithm is almost entirely serial

Running time:

```
= (p^*(p-1) + 1)^*computation + p^*(p-1)^*communication \approx 2^*n^3 + p^{2*}\alpha + p^*n^{2*}\beta
```

This is worse than the serial time and grows with p.

02/26/2015 CS267 Lecture 12 43

Matmul for 1D layout on a Processor Ring

42

· Pairs of adjacent processors can communicate simultaneously

```
Copy A(myproc) into Tmp

C(myproc) = C(myproc) + Tmp*B(myproc, myproc)

for j = 1 to p-1

Send Tmp to processor myproc+1 mod p

Receive Tmp from processor myproc-1 mod p

C(myproc) = C(myproc) + Tmp*B( myproc-j mod p, myproc)
```

- Same idea as for gravity in simple sharks and fish algorithm
 - May want double buffering in practice for overlap
 - · Ignoring deadlock details in code
- Time of inner loop = $2*(\alpha + \beta*n^2/p) + 2*n*(n/p)^2$

02/26/2015 CS267 Lecture 12 44

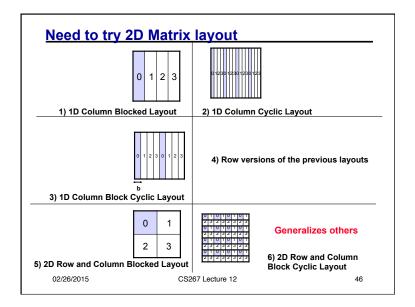
CS267 Lecture 2

41

Matmul for 1D layout on a Processor Ring

- Time of inner loop = $2*(\alpha + \beta*n^2/p) + 2*n*(n/p)^2$
- Total Time = 2*n* (n/p)2 + (p-1) * Time of inner loop
- $\approx 2*n^3/p + 2*p*\alpha + 2*\beta*n^2$
- (Nearly) Optimal for 1D layout on Ring or Bus, even with Broadcast:
 - · Perfect speedup for arithmetic
 - A(myproc) must move to each other processor, costs at least (p-1)*cost of sending n*(n/p) words
- Parallel Efficiency = $2*n^3 / (p * Total Time)$ = $1/(1 + \alpha * p^2/(2*n^3) + \beta * p/(2*n))$
 - = 1/(1 + O(p/n))
- Grows to 1 as n/p increases (or α and β shrink)
- · But far from communication lower bound

02/26/2015 CS267 Lecture 12



Summary of Parallel Matrix Multiply

- SUMMA
 - Scalable Universal Matrix Multiply Algorithm
 - Attains communication lower bounds (within log p)
- Cannon
 - · Historically first, attains lower bounds
 - More assumptions
 - · A and B square
 - P a perfect square
- 2.5D SUMMA
 - Uses more memory to communicate even less
- · Parallel Strassen
 - · Attains different, even lower bounds

02/26/2015 CS267 Lecture 12 47

SUMMA Algorithm

- SUMMA = Scalable Universal Matrix Multiply
- Presentation from van de Geijn and Watts
 - www.netlib.org/lapack/lawns/lawn96.ps
 - Similar ideas appeared many times
- Used in practice in PBLAS = Parallel BLAS
 - www.netlib.org/lapack/lawns/lawn100.ps

02/26/2015 CS267 Lecture 12 48

CS267 Lecture 2 12

45

SUMMA uses Outer Product form of MatMul

- C = A*B means $C(i,j) = \Sigma_k A(i,k)*B(k,j)$
- Column-wise outer product:

$$C = A*B$$

=
$$\Sigma_k A(:,k)^*B(k,:)$$

= Σ_k (k-th col of A)*(k-th row of B)

• Block column-wise outer product

(block size = 4 for illustration)

$$C = A*B$$

$$= A(:,1:4)*B(1:4,:) + A(:,5:8)*B(5:8,:) + ...$$

= Σ_k (k-th block of 4 cols of A)*

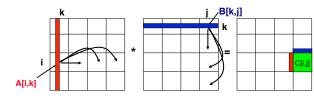
(k-th block of 4 rows of B)

02/26/2015

CS267 Lecture 12

49

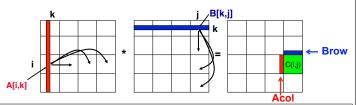
SUMMA – n x n matmul on $P^{1/2}$ x $P^{1/2}$ grid



- C[i, j] is $n/P^{1/2} \times n/P^{1/2}$ submatrix of C on processor P_{ii}
- A[i,k] is n/P^{1/2} x b submatrix of A
- B[k,j] is b x n/P^{1/2} submatrix of B
- $C[i,j] = C[i,j] + \Sigma_k A[i,k]^*B[k,j]$
 - · summation over submatrices
- · Need not be square processor grid

02/26/2015 CS267 Lecture 12

SUMMA- n x n matmul on $P^{1/2}$ x $P^{1/2}$ grid



For k=0 to n/b-1

for all i = 1 to $P^{1/2}$

owner of A[i,k] broadcasts it to whole processor row (using binary tree) for all i=1 to $P^{1/2}$

owner of B[k,j] broadcasts it to whole processor column (using bin. tree)

Receive A[i,k] into Acol

Receive B[k,j] into Brow

C_myproc = C_myproc + Acol * Brow

02/26/2015

CS267 Lecture 12

51

SUMMA Costs

```
For k=0 to n/b-1
```

for all i = 1 to $P^{1/2}$

owner of A[i,k] broadcasts it to whole processor row (using binary tree)

... #words = $\log P^{1/2} *b*n/P^{1/2}$, #messages = $\log P^{1/2}$

all j = 1 to $P^{1/2}$

owner of B[k,j] broadcasts it to whole processor column (using bin. tree)

... same #words and #messages

Receive A[i,k] into Acol

Receive B[k,j] into Brow

C_myproc = C_myproc + Acol * Brow ... #flops = 2n²*b/P

- Total #words = $log P * n^2/P^{1/2}$
- Within factor of log P of lower bound
- ° (more complicated implementation removes log P factor)
- ° Total #messages = log P * n/b
 - Choose b close to maximum, n/P^{1/2}, to approach lower bound P^{1/2}
- o Total #flops = 2n³/P

52

50

	Speed in Mflops of PDGEMM						
	Machine	Proc	s Block		N		
	.		Size	2000	4000	1000	10
PDGEMM = PBLAS routine	Cray T3E	4=2x		1055			0
for matrix multiply		16=4x	4	3630			92
		64=8x		13456			
Observations:	IBM SP2		4 50				0
For fixed N, as P increases			6	2514			0
Mflops increases, but			4	6205			
less than 100% efficiency	Intel XP/S M		4 32	330			0
For fixed P, as N increases,	Paragon		6	1233			0
Mflops (efficiency) rises	73 1 1 3701		4 32	4496 463			
	Berkeley NOV	32=4x		2490			0
			4	4130			
GEMM = BLAS routine	Efficiency = M Machine	Peak/ I	GEMM			- "	
for matrix multiply		proc	Mflops		2000	4000	10000
Maximum speed for PDGEMM	Cray T3E	600	360	4	.73	.74	
				16 64	.63 .58	.70 .62	.75 .73
	IBM SP2	000	200	4	.58	02	.73
= # Procs * speed of DGEMM				1		.89	
	1DM 21.5	266		16			
bservations (same as above):	1BM \$1-2	206	-44	16 64	.79 .48		.84
Observations (same as above): Efficiency always at least 48%		100	90	16 64 4	.79 .48	.68	.84
Observations (same as above): Efficiency always at least 48% For fixed N, as P increases,	Intel XP/S MP Paragon			64	.48		.84
bbservations (same as above): Efficiency always at least 48% For fixed N, as P increases, efficiency drops	Intel XP/S MP			64 4	.48	.68	.84
observations (same as above): Efficiency always at least 48% For fixed N, as P increases, efficiency drops For fixed P, as N increases,	Intel XP/S MP			64 4 16	.48 .92 .86	.68	
Observations (same as above): Efficiency always at least 48% For fixed N, as P increases, efficiency drops	Intel XP/S MP Paragon	100	90	64 4 16 64	.48 .92 .86 .78	.68 .89 .84	

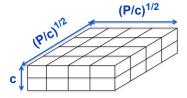
Can we do better?

- Lower bound assumed 1 copy of data: $M = O(n^2/P)$ per proc.
- What if matrix small enough to fit c>1 copies, so $M = cn^2/P$?
 - #words moved = Ω (#flops / M^{1/2}) = Ω (n² / (c^{1/2} P^{1/2}))
 - #messages = Ω (#flops / M^{3/2}) = Ω (P^{1/2} /c^{3/2})
- Can we attain new lower bound?
 - Special case: "3D Matmul": c = P1/3
 - Bernsten 89, Agarwal, Chandra, Snir 90, Aggarwal 95
 - Processors arranged in P^{1/3} x P^{1/3} x P^{1/3} grid
 - Processor (i,j,k) performs C(i,j) = C(i,j) + A(i,k)*B(k,j), where each submatrix is n/P^{1/3} x n/P^{1/3}
 - Not always that much memory available...

02/26/2015 CS267 Lecture 12

2.5D Matrix Multiplication

- Assume can fit cn²/P data per processor, c > 1
- Processors form (P/c)^{1/2} x (P/c)^{1/2} x c grid

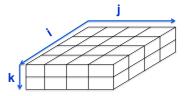


Example: P = 32, c = 2

02/26/2015 CS267 Lecture 12

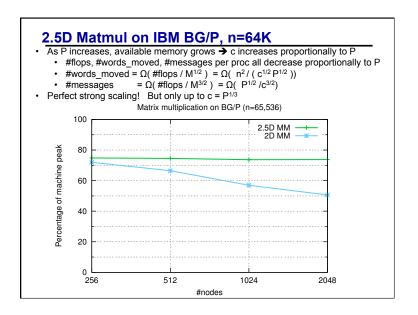
2.5D Matrix Multiplication

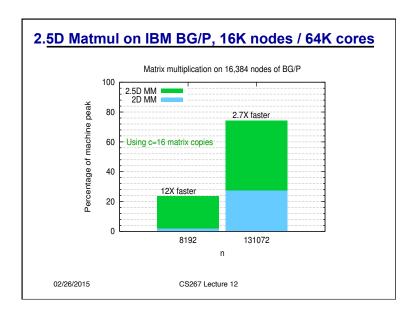
- Assume can fit cn²/P data per processor, c > 1
- Processors form $(P/c)^{1/2}$ x $(P/c)^{1/2}$ x c grid

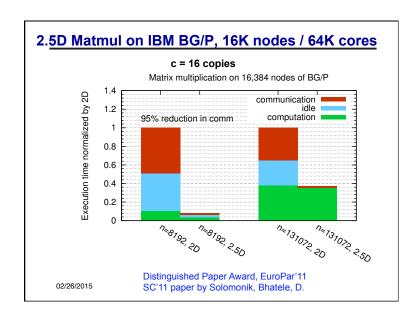


Initially P(i,j,0) owns A(i,j) and B(i,j) each of size $n(c/P)^{1/2} \times n(c/P)^{1/2}$

- (1) P(i,j,0) broadcasts A(i,j) and B(i,j) to P(i,j,k)
- (2) Processors at level k perform 1/c-th of SUMMA, i.e. 1/c-th of $\Sigma_m A(i,m)^*B(m,j)$
- (3) Sum-reduce partial sums $\Sigma_m A(i,m)^*B(m,j)$ along k-axis so P(i,j,0) owns C(i,j)







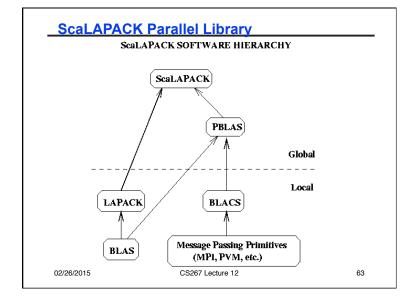
Perfect Strong Scaling – in Time and Energy

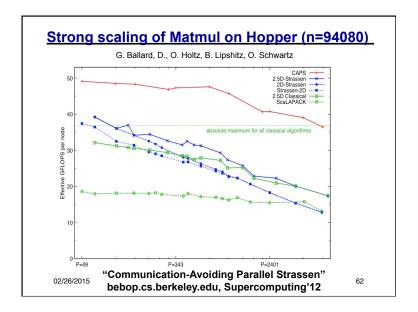
- Every time you add a processor, you should use its memory M too
- Start with minimal number of procs: PM = 3n²
- Increase P by a factor of c → total memory increases by a factor of c
- Notation for timing model:
- γ_T , β_T , α_T = secs per flop, per word_moved, per message of size m T(cP) = $n^3/(cP)$ [$\gamma_T + \beta_T/M^{1/2} + \alpha_T/(mM^{1/2})$]
- $\Gamma(cP) = n^3/(cP) [\gamma_T + \beta_T/M^{1/2} + \alpha_T/(mM^{1/2})]$ = $\Gamma(P)/c$
- Notation for energy model:
 - γ_E , β_E , α_E = joules for same operations
 - $\delta_{\rm F}$ = joules per word of memory used per sec
 - ε_E = joules per sec for leakage, etc.
- E(cP) = cP { $n^3/(cP)$ [γ_E + $\beta_E/(M^{1/2} + \alpha_E/(mM^{1/2})$] + $\delta_E MT(cP)$ + $\epsilon_E T(cP)$ } = E(P)
- c cannot increase forever: c <= P^{1/3} (3D algorithm)
 - Corresponds to lower bound on #messages hitting 1
- Perfect scaling extends to Strassen's matmul, direct N-body, ...
 - "Perfect Strong Scaling Using No Additional Energy"
 - "Strong Scaling of Matmul and Memory-Indep. Comm. Lower Bounds"
 - · Both at bebop.cs.berkeley.edu

Classical Matmul

- Complexity of classical Matmul
- Flops: O(n³/p)
- Communication lower bound on #words: $\Omega((n^3/p)/M^{1/2}) = \Omega(M(n/M^{1/2})^3/p)$
- Communication lower bound on #messages: $\Omega((n^3/p)/M^{3/2}) = \Omega((n/M^{1/2})^3/p)$
- All attainable as M increases past $O(n^2/p)$, up to a limit: can increase M by factor up to $p^{1/3}$ #words as low as $\Omega(n/p^{2/3})$

02/27/2014 CS267 Lecture 12 61





Extensions of Lower Bound and Optimal Algorithms

- For each processor that does G flops with fast memory of size M #words_moved = $\Omega(G/M^{1/2})$
- Extension: for any program that "smells like"
 - Nested loops ...
 - That access arrays ...
 - Where array subscripts are linear functions of loop indices
 - Ex: A(i,j), B(3*i-4*k+5*j, i-j, 2*k, ...), ...
 - There is a constant s such that

#words moved = $\Omega(G/M^{s-1})$

- s comes from recent generalization of Loomis-Whitney (s=3/2)
- Ex: linear algebra, n-body, database join, ...
- Lots of open questions: deriving s, optimal algorithms ...

02/26/2015 CS267 Lecture 12 64