CS 267: Applications of Parallel Computers
 Graph Partitioning

Laura Grigori and James Demmel www.cs.berkeley.edu/~demmel/cs267_Spr15

Definition of Graph Partitioning

- Given a graph $\mathbf{G}=\left(\mathrm{N}, \mathrm{E}, \mathrm{W}_{\mathrm{N}}, \mathrm{W}_{\mathrm{E}}\right)$
- $\mathrm{N}=$ nodes (or vertices),
- $\mathrm{W}_{\mathrm{N}}=$ node weights
- $\mathrm{E}=$ edges
- $\mathrm{W}_{\mathrm{E}}=$ edge weights

- Ex: $\mathbf{N}=\{$ tasks $\}, W_{N}=\{$ task costs $\}$, edge (\mathbf{j}, k) in E means task \mathbf{j} sends $\mathrm{W}_{\mathrm{E}}(\mathrm{j}, \mathrm{k})$ words to task k
- Choose a partition $N=N_{1} U N_{2} U \ldots U N_{P}$ such that
- The sum of the node weights in each N_{j} is "about the same"
- The sum of all edge weights of edges connecting all different pairs N_{j} and N_{k} is minimized
- Ex: balance the work load, while minimizing communication
- Special case of $N=N_{1} \cup N_{2}$: Graph Bisection

03/05/2015
CS267 Lecture 14 3

Outline of Graph Partitioning Lecture

- Review definition of Graph Partitioning problem
- Overview of heuristics
- Partitioning with Nodal Coordinates
- Ex: In finite element models, node at point in (x, y) or (x, y, z) space
- Partitioning without Nodal Coordinates
- Ex: In model of WWW, nodes are web pages
- Multilevel Acceleration
- BIG IDEA, appears often in scientific computing
- Comparison of Methods and Applications
- Beyond Graph Partitioning: Hypergraphs

03/05/2015
CS267 Lecture 14

Definition of Graph Partitioning

- Given a graph $G=\left(N, E, W_{N}, W_{E}\right)$
- $\mathrm{N}=$ nodes (or vertices),
- $W_{N}=$ node weights
- $E=$ edges
- $\mathrm{W}_{\mathrm{E}}=$ edge weights

- Ex: $\mathbf{N}=\{$ tasks $\}, W_{N}=\{$ task costs $\}$, edge (\mathbf{j}, k) in E means task \mathbf{j} sends $W_{E}(j, k)$ words to task k
- Choose a partition $N=N_{1} U N_{2} U \ldots$ U N_{P} such that
- The sum of the node weights in each N_{j} is "about the same"
- The sum of all edge weights of edges connecting all different pairs N_{j} and N_{k} is minimized (shown in black)
- Ex: balance the work load, while minimizing communication
- Special case of $N=N_{1} \cup N_{2}$: Graph Bisection

03/05/2015 CS267 Lecture 14
4

Some Applications

- Telephone network design

- Original application, algorithm due to Kernighan
- Load Balancing while Minimizing Communication
- Sparse Matrix times Vector Multiplication (SpMV)
- Solving PDEs
- $\mathrm{N}=\{1, \ldots, \mathrm{n}\}, \quad(\mathrm{j}, \mathrm{k})$ in E if $\mathrm{A}(\mathrm{j}, \mathrm{k})$ nonzero,
- $\mathrm{W}_{\mathrm{N}}(\mathrm{j})=$ \#nonzeros in row $\mathrm{j}, \mathrm{W}_{\mathrm{E}}(\mathrm{j}, \mathrm{k})=1$
- VLSI Layout
- $\mathrm{N}=\{$ units on chip $\}, \mathrm{E}=\{$ wires $\}, \mathrm{W}_{\mathrm{E}}(\mathrm{j}, \mathrm{k})=$ wire length
- Sparse Gaussian Elimination

Used to reorder rows and columns to increase parallelism, and to decrease "fill-in"

- Data mining and clustering
- Physical Mapping of DNA
- Image Segmentation

Cost of Graph Partitioning

- Many possible partitionings to search
- Just to divide in 2 parts there are n choose $\mathrm{n} / 2=\mathrm{n}!/((\mathrm{n} / 2)!)^{2} \sim$ $(2 /(\mathrm{n} \pi))^{1 / 2}$ * 2^{n} possibilities

- Choosing optimal partitioning is NP-complete
- (NP-complete = we can prove it is a hard as other well-known
hard problems in a class Nondeterministic Polynomial time)
- Only known exact algorithms have cost = exponential(n)
- We need good heuristics

03/05/2015
CS267 Lecture 14 7

Outline of Graph Partitioning Lectures

Sparse Matrix Vector Multiplication y = y + $A^{*} x$

Partitioning a Sparse Symmetric Matrix

.. declare A_local, A_remote(1:num_procs), x_{-}local, x_{-}remote, y_{-}local y_local $=y$ _local $+A _$local $* x$ local
or all procs P that need part of x _local
send(needed part of x local P)
for all procs P owning needed part of x remote
receive(x_remote, P)
y_local = y_local + A_remote(P)**_remote
03/05/2015
CS267 Lecture 14

- Review definition of Graph Partitioning problem
- Overview of heuristics
- Partitioning with Nodal Coordinates
- Ex: In finite element models, node at point in (x, y) or (x, y, z) space
- Partitioning without Nodal Coordinates
- Ex: In model of WWW, nodes are web pages
- Multilevel Acceleration
- BIG IDEA, appears often in scientific computing
- Comparison of Methods and Applications
- Beyond Graph Partitioning: Hypergraphs

03/05/2015
CS267 Lecture 14

First Heuristic: Repeated Graph Bisection

- To partition N into 2^{k} parts
- bisect graph recursively k times
- Henceforth discuss mostly graph bisection

58 cutagase
03/05/2015
CS267 Lecture 14

Edge Separators vs. Vertex Separators

- Edge Separator: E_{s} (subset of E) separates G if removing E_{s} from E leaves two \sim equal-sized, disconnected components of $N: N_{1}$ and N_{2}
- Vertex Separator: N_{s} (subset of N) separates G if removing N_{s} and all incident edges leaves two ~equal-sized, disconnected components of N : N_{1} and N_{2}

$\mathbf{G}=(\mathbf{N}, \mathrm{E})$, Nodes \mathbf{N} and Edges E
 $E_{s}=$ green edges or blue edges

$\mathbf{N}_{\mathrm{s}}=$ red vertices

- Making an N_{s} from an E_{s} : pick one endpoint of each edge in E_{s} - $\left|N_{\mathrm{s}}\right| \leq\left|E_{\mathrm{s}}\right|$
- Making an E_{s} from an N_{s} : pick all edges incident on N_{s}
- $\left|E_{s}\right| \leq d$ * $\left|N_{s}\right|$ where d is the maximum degree of the graph
- We will find Edge or Vertex Separators, as convenient 03/05/2015 CS267 Lecture 14

Outline of Graph Partitioning Lectures

- Review definition of Graph Partitioning problem
- Overview of heuristics
- Partitioning with Nodal Coordinates
- Ex: In finite element models, node at point in (x, y) or (x, y, z) space
- Partitioning without Nodal Coordinates
- Ex: In model of WWW, nodes are web pages
- Multilevel Acceleration
- BIG IDEA, appears often in scientific computing
- Comparison of Methods and Applications
- Beyond Graph Partitioning: Hypergraphs

03/05/2015
CS267 Lecture 14

Nodal Coordinates: How Well Can We Do?

- A planar graph can be drawn in plane without edge crossings
- Ex: $m \times m$ grid of m^{2} nodes: \exists vertex separator N_{s} with $\left|\mathrm{N}_{\mathrm{s}}\right|=\mathrm{m}=\mid \mathrm{NI}^{1 / 2} \quad$ (see earlier slide for $\mathrm{m}=5$)
- Theorem (Tarjan, Lipton, 1979): If G is planar, $\exists N_{S}$ such that
- $\mathrm{N}=\mathrm{N}_{1} \cup \mathrm{~N}_{\mathrm{S}} \cup \mathrm{N}_{2}$ is a partition,
- $\left|N_{1}\right|<=2 / 3|N|$ and $\left|N_{2}\right|<=2 / 3|N|$
- $\left|N_{s}\right|<=\left(8^{*}|\mathbb{N}|\right)^{1 / 2}$
- Theorem motivates intuition of following algorithms

Nodal Coordinates: Inertial Partitioning

- For a graph in 2D, choose line with half the nodes on one side and half on the other
- In 3D, choose a plane, but consider 2D for simplicity
- Choose a line L , and then choose a line L^{\perp} perpendicular to it, with half the nodes on either side

1. Choose a line L through the points L given by $a^{*}(x-x b a r)+b^{*}(y-y b a r)=0$ with $a^{2}+b^{2}=1 ;(a, b)$ is unit vector \perp to L
2. Project each point to the line For each $\mathrm{nj}=(\mathrm{xj}, \mathrm{yj})$, compute coordinate $\mathrm{S}_{\mathrm{j}}=-\mathrm{b}^{*}\left(\mathrm{x}_{\mathrm{j}}\right.$-xbar $)+\mathrm{a}^{*}\left(\mathrm{y}_{\mathrm{j}}\right.$-ybar) along L
3. Compute the median

Let Sbar $=\mathbf{m e d i a n}\left(\mathbf{S}_{1}, \ldots, \mathbf{S}_{\mathrm{n}}\right)$
4. Use median to partition the nodes Let nodes with $\mathrm{S}_{\mathrm{j}}<$ Sbar be in N_{1}, rest in N_{2} 03/05/2015

CS267 Lecture 14

Inertial Partitioning: choosing L (continued)

(a,b) is unit vector
perpendicular to L

Minimized by choosing

(xbar , ybar) $=\left(\Sigma_{j} x_{j}, \Sigma_{j} y_{j}\right) / n=$ center of mass $(a, b)=$ eigenvector of smallest eigenvalue of $\left.\quad \begin{array}{ll}x_{1} & x_{2} \\ 2\end{array}\right]$
33/05/2015 CS267 Lecture 14 $\begin{array}{ll}\text { X1 } & \text { X2 } \\ \text { X2 } & \text { X3 }\end{array}$

16

Nodal Coordinates: Random Spheres

- Generalize nearest neighbor idea of a planar graph to higher dimensions
- Any graph can fit in 3D without edge crossings
- Capture intuition of planar graphs of being connected to "nearest neighbors" but in higher than 2 dimensions
- For intuition, consider graph defined by a regular 3D mesh
- An n by n by n mesh of $\mathrm{INI}=\mathrm{n}^{3}$ nodes
- Edges to 6 nearest neighbors
- Partition by taking plane parallel to 2 axes
- Cuts $n^{2}=\mid N^{2 / 3}=O\left(|E|^{2 / 3}\right)$ edges
- For the general graphs
- Need a notion of "well-shaped" like mesh

Random Spheres: Well Shaped Graphs

- Approach due to Miller, Teng, Thurston, Vavasis
- Def: A k-ply neighborhood system in d dimensions is a set $\left\{\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{n}}\right\}$ of closed disks in R^{d} such that no point in R^{d} is strictly interior to more than k disks
- Def: An (α, k) overlap graph is a graph defined in terms of $\alpha \geq 1$ and a k-ply neighborhood system $\left\{\mathrm{D}_{1}, \ldots, \mathrm{D}_{\mathrm{n}}\right\}$: There is a node for each D_{j}, and an edge from j to i if expanding the radius of the smaller of D_{j} and D_{i} by $>\alpha$ causes the two disks to overlap

Ex: n-by-n mesh is a $(1,1)$ overlap graph Ex: Any planar graph is (α, k) overlap for some α, k

03/05/2015
CS267 Lecture 14

Generalizing Lipton/Tarjan to Higher Dimensions

- Theorem (Miller, Teng, Thurston, Vavasis, 1993):

Let $\mathrm{G}=(\mathrm{N}, \mathrm{E})$ be an (α, k) overlap graph in dimensions with $n=\mid N I$. Then there is a vertex separator N_{s} such that

- $N=N_{1} \cup N_{s} \cup N_{2}$ and
- N_{1} and N_{2} each has at most $n^{*}(d+1) /(d+2)$ nodes
- N_{s} has at most $O\left(\alpha^{*} k^{1 / d}{ }^{*} n^{(d-1) / d}\right)$ nodes
- When $\mathrm{d}=2$, similar to Lipton/Tarjan
- Algorithm:
- Choose a sphere S in R^{d}
- Edges that S "cuts" form edge separator E_{S}
- Build N_{s} from E_{S}
- Choose S "randomly", so that it satisfies Theorem with high probability

Stereographic Projection

- Stereographic projection from plane to sphere
- In $d=2$, draw line from p to North Pole, projection p^{\prime} of p is where the line and sphere intersec

- Similar in higher dimensions

03/05/2015
CS267 Lecture 14

Choosing a Random Sphere

- Do stereographic projection from R^{d} to sphere S in $\mathrm{R}^{\mathrm{d}+1}$
- Find centerpoint of projected points
- Any plane through centerpoint divides points ~evenly
- There is a linear programming algorithm, cheaper heuristics
- Conformally map points on sphere
- Rotate points around origin so centerpoint at $(0, \ldots 0, r)$ for some r
- Dilate points (unproject, multiply by $((1-r) /(1+r))^{1 / 2}$, project)
- this maps centerpoint to origin $(0, \ldots, 0)$, spreads points around S
- Pick a random plane through origin
- Intersection of plane and sphere S is "circle"
- Unproject circle
- yields desired circle C in R^{d}
- Create N_{S} : j belongs to N_{S} if $\alpha^{*} D_{j}$ intersects C 03/05/2015 CS267 Lecture 14

Random Sphere Algorithm (Gilbert)
Pont Projected ato the Shase

Figure 3: Projected meah painta. The lange dot is the centerpoint
03/05/2015
24

Random Sphere Algorithm (Gilbert)

\qquad Nodal Coordinates: Summary

- Other variations on these algorithms
- Algorithms are efficient
- Rely on graphs having nodes connected (mostly) to "nearest neighbors" in space
algorithm does not depend on where actual edges are!
- Common when graph arises from physical model
- Ignores edges, but can be used as good starting guess for subsequent partitioners that do examine edges
- Can do poorly if graph connectivity is not spatial
- Details at
- www.cs.berkeley.edu/~demmel/cs267/lecture18/lecture18.html
- www.cs.ucsb.edu/~gilbert
- www-bcf.usc edu/~shanghua

03/05/2015
CS267 Lecture 14

Outline of Graph Partitioning Lectures

- Review definition of Graph Partitioning problem
- Overview of heuristics
- Partitioning with Nodal Coordinates
- Ex: In finite element models, node at point in (x, y) or ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) space
- Partitioning without Nodal Coordinates
- Ex: In model of WWW, nodes are web pages
- Multilevel Acceleration
- BIG IDEA, appears often in scientific computing
- Comparison of Methods and Applications
- Beyond Graph Partitioning: Hypergraphs

Breadth First Search (details)

- Queue (First In First Out, or FIFO)
- Enqueue (x, Q) adds x to back of Q
- $x=$ Dequeue (Q) removes x from front of Q
- Compute Tree $\mathrm{T}\left(\mathrm{N}_{\mathrm{T}}, \mathrm{E}_{\mathrm{T}}\right)$

Initially $\mathrm{T}=$ root r , which is at level 0
.. Put root on initially empty Queue Q
$\begin{aligned} & \text { Mark root as having been processed } \\ & \text { While nodes remain to be processed }\end{aligned}$
Get a node to process
... Add child c to N_{T}
$\begin{aligned} & \text {... Add edge }(\mathrm{n}, \mathrm{c}) \text { to } \mathrm{E}_{\mathrm{T}} \\ & \text {... Add child } \mathrm{c} \text { to } Q \text { for processing }\end{aligned}$
$\begin{aligned} & \text {.. Add child } \mathrm{c} \text { to } \mathrm{Q} \text { for pr } \\ & \text {.. Mark } \mathrm{c} \text { as processed }\end{aligned}$
Endwhile

03/05/2015
CS267 Lecture 14
31

Coordinate-Free: Breadth First Search (BFS)

- Given $G(N, E)$ and a root node r in N, BFS produces
- A subgraph T of G (same nodes, subset of edges)
- T is a tree rooted at r
- Each node assigned a level = distance from r

Tree edges -
Horizontal edges Inter-level edges

03/05/2015
CS267 Lecture 14
30

Partitioning via Breadth First Search

- BFS identifies 3 kinds of edges
- Tree Edges - part of T
- Horizontal Edges - connect nodes at same level
- Interlevel Edges - connect nodes at adjacent levels
- No edges connect nodes in levels
differing by more than 1 (why?)
- BFS partioning heuristic
- $N=N_{1} \cup N_{2}$, where
- $\mathrm{N}_{1}=\{$ nodes at level $<=\mathrm{L}\}$,
- $\mathrm{N}_{2}=\{$ nodes at level $>\mathrm{L}\}$
- Choose L so $I N_{1} I$ close to $I N_{2} \mid$

> | BFS partition of a 2D Mesh |
| :--- |
| using center as root: |
| $\begin{array}{l}\text { N1 }=\text { levels } 0,1,2,3 \\ \text { N2 }=\text { levels } 4,5,6\end{array}$ |
| CS267 Lecture 14 |

03/05/2015

Coordinate-Free: Kernighan/Lin

- Take a initial partition and iteratively improve it
- Kernighan/Lin (1970), cost = $\mathrm{O}\left(\left.\mathrm{IN}\right|^{3}\right)$ but easy to understand
- Fiduccia/Mattheyses (1982), cost = O(IEI), much better, but more complicated
- Given $G=\left(N, E, W_{E}\right)$ and a partitioning $N=A \cup B$, where $|\mathrm{Al}=|\mathrm{B}|$
- $T=\operatorname{cost}(A, B)=\Sigma\{W(e)$ where e connects nodes in A and $B\}$
- Find subsets X of A and Y of B with $\mathrm{IXI}=|\mathrm{Y}|$
- Consider swapping X and Y if it decreases cost:
- newA $=(A-X) \cup Y$ and new $B=(B-Y) \cup X$
- new $=\operatorname{cost}($ new $A, n e w B)<T=\operatorname{cost}(A, B)$
- Need to compute newT efficiently for many possible X and Y, choose smallest (best)

Kerniqhan/Lin: Preliminary Definitions

- $T=\operatorname{cost}(A, B), n e w T=\operatorname{cost}(n e w A$, newB)
- Need an efficient formula for newT; will use
- $E(a)=$ external cost of a in $A=\Sigma\{W(a, b)$ for b in $B\}$
- $\mathrm{I}(\mathrm{a})=$ internal cost of a in $\mathrm{A}=\Sigma\left\{\mathrm{W}\left(\mathrm{a}, \mathrm{a}^{\prime}\right)\right.$ for other a^{\prime} in A$\}$
- $\mathrm{D}(\mathrm{a})=$ cost of a in $\mathrm{A} \quad=\mathrm{E}(\mathrm{a})-\mathrm{I}(\mathrm{a})$
- $E(b), l(b)$ and $D(b)$ defined analogously for b in B
- Consider swapping $X=\{a\}$ and $Y=\{b\}$
- new $A=(A-\{a\}) \cup\{b\}$, new $B=(B-\{b\}) \cup\{a\}$
- newT $=T-\left(D(a)+D(b)-2^{*} w(a, b)\right) \equiv T-$ gain (a, b)
- gain(a, b) measures improvement gotten by swapping a and b
- Update formulas
- newD $\left(a^{\prime}\right)=D\left(a^{\prime}\right)+2^{*} w\left(a^{\prime}, a\right)-2^{*} w\left(a^{\prime}, b\right)$ for a^{\prime} in $A, a^{\prime} \neq a$
- newD(b') = D(b') + $2^{*} w\left(b^{\prime}, b\right)-2^{*} w\left(b^{\prime}, a\right)$ for b^{\prime} in $B, b^{\prime} \neq b$

03/05/2015
CS267 Lecture 14
34

Comments on Kernighan/Lin Algorithm

- Most expensive line shown in red, $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Some gain(k) may be negative, but if later gains are large, then final Gain may be positive
- can escape "local minima" where switching no pair helps
- How many times do we Repeat?
- K/L tested on very small graphs ($|\mathrm{N}|<=360$) and got convergence after 2-4 sweeps
- For random graphs (of theoretical interest) the probability of convergence in one step appears to drop like $2^{-1 \mathrm{~N} / 30}$

35
… (a1,b1), \ldots, , (ak,bk) and gains gain(1),...., gain(k)
... where $k=|N| / 2$, numbered in the order in which we marked them Pick \mathbf{m} maximizing Gain $=\Sigma_{\mathbf{k}=1 \text { to } m \text { gain(} \mathbf{k}) \quad \ldots \text { cost }=0(|N|)}$ \ldots Gain is reduction in cost from swapping ($\mathrm{a} 1, \mathrm{~b} 1$) through (am,bm)
If Gain >0 then \ldots it is worth swapping Gain >0 then \ldots it is worth swapping
pdate newA $=A-\{a 1, \ldots, a m\} \cup\{b 1, \ldots, b m\}$
Update newB $=\mathrm{B}-\{\mathrm{b} 1, \ldots, \mathrm{bm}\} \cup\{\mathrm{a} 1, \ldots, \mathrm{am}\}$$\quad \ldots$ cost $=O(|N|)$ $\begin{array}{ll}\text { Update new }=\mathrm{B}-\{\mathrm{b} 1, \ldots, \mathrm{bm}\} \cup\{\mathrm{a} 1, \ldots, \mathrm{am}\} & \ldots \text { cost } \\ \text { Update } \mathrm{T}=\mathrm{T}-\mathrm{Gain} & \ldots(\mathbb{N})\end{array}$ endif
Until Gain <=0
03/05/2015
CS267 Lecture 14

Kernighan/Lin Algorithm

Compute $\mathrm{T}=\boldsymbol{\operatorname { c o s t } (\mathrm { A } , \mathrm { B }) \text { for initial } \mathrm { A } , \mathrm { B }}$ Repeat

IN $/ 2$ possible X, Y to swap, picks best Compute costs $\mathrm{D}(\mathrm{n})$ for all \mathbf{n} in \mathbf{N}

While there are unmarked nodes
Find an unmarked pair (a, b) maximizing gain(a, b Mark a and b (but do not swap them) pdate $D(n)$ for all unmarked n,
$\mathrm{gh} a$ and b had been swapped
while .. cost $=0(1)$
... cost $=\mathrm{O}\left(\mathrm{N}^{2}{ }^{2}\right.$
$\cdots . . \mathrm{cost}=\mathrm{O}(|\mathrm{N}|)$
.. cost $=\mathrm{O}(|\mathrm{N}|)$ $\mathrm{N} / \mathrm{N} / 2$ iterations
$\ldots \cos =\mathrm{O}\left(|\mathrm{N}|^{2}\right)$ \ldots cost $=O\left(\mid N^{2}{ }^{2}\right)$... cost $=0(1)$... cost $=\mathrm{O}(|\mathrm{N}|)$

Coordinate-Free: Spectral Bisection

- Based on theory of Fiedler (1970s), popularized by Pothen, Simon, Liou (1990)
- Motivation, by analogy to a vibrating string
- Basic definitions
- Vibrating string, revisited
- Implementation via the Lanczos Algorithm
- To optimize sparse-matrix-vector multiply, we graph partition
- To graph partition, we find an eigenvector of a matrix
associated with the graph
- To find an eigenvector, we do sparse-matrix vector multiply
- No free lunch ...
\qquad

Motivation for Spectral Bisection

- Vibrating string
- Think of $\mathrm{G}=1 \mathrm{D}$ mesh as masses (nodes) connected by springs (edges), i.e. a string that can vibrate
- Vibrating string has modes of vibration, or harmonics
- Label nodes by whether mode - or + to partition into N - and $\mathrm{N}+$
- Same idea for other graphs (eg planar graph \sim trampoline)

Modes of a Vibrating String

03/05/2015
CS267 Lecture 14

Example of $\ln (G)$ and $L(G)$ for Simple Meshes

Incidence and Laplacian Matrices

- Definition: The incidence matrix $\operatorname{In}(\mathrm{G})$ of a graph $\mathrm{G}(\mathrm{N}, \mathrm{E})$ is an INI by IEI matrix, with one row for each node and one column for each edge. If edge $e=(i, j)$ then column e of $\ln (G)$ is zero except for the i-th and j-th entries, which are +1 and -1 , respectively.
- Slightly ambiguous definition because multiplying column e of $\ln (\mathrm{G})$ by -1 still satisfies the definition, but this won' matter ..
- Definition: The Laplacian matrix $L(G)$ of a graph $G(N, E)$ is an $I N I$ by $I N I$ symmetric matrix, with one row and column for each node. It is defined by
- $L(G)(i, i)=$ degree of node i (number of incident edges)
- L(G) $(\mathrm{i}, \mathrm{j})=-1$ if $\mathrm{i} \neq \mathrm{j}$ and there is an edge (i, j)
- L(G) (i,j) $=0$ otherwise

03/05/2015
CS267 Lecture 14
40

Properties of Laplacian Matrix

- Theorem 1: Given $\mathrm{G}, \mathrm{L}(\mathrm{G})$ has the following properties (proot on 1996 CS267 web page)
- $\mathrm{L}(\mathrm{G})$ is symmetric.
- This means the eigenvalues of $L(G)$ are real and its eigenvectors are real and orthogonal.
- $\ln (\mathrm{G})^{*}(\ln (\mathrm{G}))^{\top}=\mathrm{L}(\mathrm{G})$
- The eigenvalues of $\mathrm{L}(\mathrm{G})$ are nonnegative:

$$
\text { - } 0=\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}
$$

- The number of connected components of G is equal to the number of λ_{i} equal to 0 .
- Definition: $\lambda_{2}(\mathrm{~L}(\mathrm{G}))$ is the algebraic connectivity of G
- The magnitude of λ_{2} measures connectivity
- In particular, $\lambda_{2} \neq 0$ if and only if G is connected.

Spectral Bisection Algorithm

- Spectral Bisection Algorithm:
- Compute eigenvector v_{2} corresponding to $\lambda_{2}(\mathrm{~L}(\mathrm{G}))$
- For each node n of G
- if $\mathrm{v}_{2}(\mathrm{n})<0$ put node n in partition N -
- else put node n in partition N_{+}
- Why does this make sense? First reasons...
- Theorem 2 (Fiedler, 1975): Let G be connected, and N- and N+ defined as above. Then N - is connected. If no $v_{2}(n)=0$, then
$\mathrm{N}+$ is also connected. (proof on 1996 CS267 web page)
- Recall $\lambda_{2}(\mathrm{~L}(\mathrm{G}))$ is the algebraic connectivity of G
- Theorem 3 (Fiedler): Let $\mathrm{G}_{1}\left(\mathrm{~N}, \mathrm{E}_{1}\right)$ be a subgraph of $\mathrm{G}(\mathrm{N}, \mathrm{E})$, so that G_{1} is "less connected" than G. Then $\lambda_{2}\left(L\left(G_{1}\right)\right) \leq \lambda_{2}(L(G))$, i.e. the algebraic connectivity of G_{1} is less than or equal to the algebraic connectivity of G. (proof on 1996 CS267 web page)

03/05/2015
CS267 Lecture 14
42

Spectral Bisection Algorithm

- Spectral Bisection Algorithm:
- Compute eigenvector v_{2} corresponding to $\lambda_{2}(\mathrm{~L}(\mathrm{G}))$
- For each node n of G
- if $\mathrm{v}_{2}(\mathrm{n})<0$ put node n in partition N -
- else put node n in partition N_{+}
- Why does this make sense? More reasons...
- Theorem 4 (Fiedler, 1975): Let G be connected, and N1 and N2 be any partition into part of equal size $\mathrm{IN} / / 2$. Then the number of $\underset{\text { (proof on } 1996 \text { CS267 web page) }}{\text { edges connecting } \mathrm{N} 1}$ and N 2 is at least $.25^{*} \mathrm{INI}{ }^{*} \lambda_{2}(\mathrm{~L}(\mathrm{G}))$.

Motivation for Spectral Bisection (recap)

- Vibrating string has modes of vibration, or harmonics
- Modes computable as follows
- Model string as masses connected by springs (a 1D mesh)
- Write down F=ma for coupled system, get matrix A
- Eigenvalues and eigenvectors of A are frequencies and shapes of modes
- Label nodes by whether mode - or + to get N - and N_{+}
- Same idea for other graphs (eg planar graph ~ trampoline)
Modes of a Vibrating String

$$
\begin{aligned}
& \text { Details for Vibrating String Analogy } \\
& \text { - Force on mass } j=k^{*}[x(j-1)-x(j)]+k^{*}[x(j+1)-x(j)] \\
& =-k^{*}\left[-x(j-1)+2^{*} x(j)-x(j+1)\right] \\
& \text { - } \mathrm{F}=\mathrm{ma} \text { yields } \mathrm{m}^{*} \mathrm{x}^{\prime \prime}(\mathrm{j})=-\mathrm{k}^{*}\left[-\mathrm{x}(\mathrm{j}-1)+2^{*} x(\mathrm{j})-\mathrm{x}(\mathrm{j}+1)\right] \quad\left(^{*}\right) \\
& \text { - Writing (*) for } j=1,2, \ldots, n \text { yields } \\
& (-m / k) x^{\prime \prime}=L^{*} x \\
& \text { Vibrating Mass Spring System } \\
& \text { 03/05/201 }
\end{aligned}
$$

Details for Vibrating String (continued)

- -(m/k) $x^{\prime \prime}=L^{*} x$, where $x=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{\top}$
- Seek solution of form $x(t)=\sin \left(\alpha^{*} t\right)^{*} x_{0}$
- $L^{*} x_{0}=(\mathrm{m} / \mathrm{k})^{*} \alpha^{2}{ }^{*} \times 0=\lambda^{*} x_{0}$
- For each integer i, get $\lambda=2^{*}\left(1-\cos \left(i^{*} \pi /(n+1)\right), x_{0}=\sin \left(1^{*} i^{*} \pi /(n+1)\right)\right)$ $\left(\begin{array}{c}\sin \left(2^{\star} i^{*} \pi /(n+1)\right. \\ \cdots \\ \sin \left(n^{*} i^{*} \pi /(n+1)\right)\end{array}\right)$
- Thus x_{0} is a sine curve with frequency proportional to i
- Thus $\alpha^{2}=2^{*} k / m^{*}\left(1-\cos \left(i^{*} \pi /(n+1)\right)\right.$ or $\alpha \sim(k / m)^{1 / 2}{ }^{*} \pi^{*} i /(n+1)$

$$
\cdot L=\left(\begin{array}{cccc}
2 & -1 & & \\
-1 & 2 & -1 & \\
& \cdots & & \\
& & -1 & 2
\end{array}\right)
$$

not quite Laplacian of 1D mesh
but we can fix that ...

03/05/2015
CS267 Lecture 14
46

Details for Vibrating String (continued)

- Write down F=ma for "vibrating string" below
- Get Graph Laplacian of 1D mesh
"Vibrating String" for Spectral Bisection

03/05/201
CS267 Lecture 14

Eigenvectors of L(1D mesh)

2nd eigenvector of L (planar mesh)

Computing v_{2} and λ_{2} of $L(G)$ using Lanczos

- Given any n-by-n symmetric matrix A (such as L(G)) Lanczos computes a k-by-k "approximation" T by doing k matrix-vector products, $\mathrm{k} \ll \mathrm{n}$

```
Choose an arbitrary starting vector
    \(\underset{j=0}{b(0)}=\|r\|\)
    \(\underset{\substack{\text { repeat } \\ j=i+1}}{j=0}\)
        \(\mathrm{q}(\mathrm{j})=\mathrm{rlb}(\mathrm{j}-1)\)
        \(r=A^{*} q(j)\)
```



```
        \(a(j)=v(j) * r\)
\(r=r-a(j) v(j)\)
    \(r=r-a(j) * v(i)\)
    \(\mathrm{b}(\mathrm{j})=\|\mathrm{rl}\|\)
until convergenc
        matrix vector multiplication, the most expensive ste
        "axpy", or scalar*vector + the most exp
            dot product (BLAS1)
            "axpy" (BLAS1)
            .. compute vector norm (BLAS
```

$$
T=\left(\begin{array}{llllll}
a(1) & b(1) & & & & \\
b(1) & a(2) & b(2) & & & \\
& b(2) & a(3) & b(3) & & \\
& \ldots & \ldots(& \ldots & \\
& & & b(k-2) & \\
& & & & \\
b(k-1) & b(k-1) & a(k)
\end{array}\right)
$$

- Approximate A's eigenvalues/vectors using T's 03/05/2015

CS267 Lecture 14
51

4th eigenvector of L(planar mesh)

Plot of va from above

Spectral Bisection: Summary

- Laplacian matrix represents graph connectivity
- Second eigenvector gives a graph bisection
- Roughly equal "weights" in two parts
- Weak connection in the graph will be separator
- Implementation via the Lanczos Algorithm
- To optimize sparse-matrix-vector multiply, we graph partition
- To graph partition, we find an eigenvector of a matrix associated with the graph
- To find an eigenvector, we do sparse-matrix vector multiply
- Have we made progress?
- The first matrix-vector multiplies are slow, but use them to learn how to make the rest faster

03/05/2015
CS267 Lecture 14
52

Outline of Graph Partitioning Lectures

- Review definition of Graph Partitioning problem
- Overview of heuristics
- Partitioning with Nodal Coordinates
- Ex: In finite element models, node at point in (x, y) or ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) space
- Partitioning without Nodal Coordinates
- Ex: In model of WWW, nodes are web pages

- Multilevel Acceleration

- BIG IDEA, appears often in scientific computing
- Comparison of Methods and Applications
- Beyond Graph Partitioning: Hypergraphs

Introduction to Multilevel Partitioning

- If we want to partition $\mathrm{G}(\mathrm{N}, \mathrm{E})$, but it is too big to do efficiently, what can we do?
- 1) Replace $G(N, E)$ by a coarse approximation $\mathrm{G}_{\mathrm{C}}\left(\mathrm{N}_{\mathrm{C}}, \mathrm{E}_{\mathrm{C}}\right)$, and partition G_{C} instead
- 2) Use partition of G_{c} to get a rough partitioning of G, and then iteratively improve it
- What if G_{C} still too big?
- Apply same idea recursively

Multilevel Partitioning - High Level Algorithm

($\mathrm{N}+, \mathrm{N}-$) $=$ Multilevel_Partition (N, E)
... recursive partitioning routine returns $\mathrm{N}+$ and N - where $\mathrm{N}=\mathrm{N}+\mathrm{UN}$ -
if $|\mathrm{N}|$ is small
(1) Partition $\mathbf{G}=(\mathbf{N}, \mathrm{E})$ directly to get $\mathrm{N}=\mathrm{N}+\mathbf{U N}$ Return ($\mathrm{N}+\mathrm{N}^{-}$)
else
Coarsen G to get an approximation $\mathrm{G}_{\mathrm{C}}=\left(\mathrm{N}_{\mathrm{c}}, \mathrm{E}_{\mathrm{C}}\right)$
$\left(\mathrm{N}_{\mathrm{c}}{ }^{+}, \mathrm{N}_{\mathrm{c}}{ }^{-}\right)=$Multilevel_Partition($\left.\mathrm{N}_{\mathrm{c}}, \mathrm{E}_{\mathrm{c}}\right)$ Expand ($\mathrm{N}_{\mathrm{c}}{ }^{+}, \mathrm{N}_{\mathrm{c}}$) to a partition ($\mathrm{N}+, \mathrm{N}$-) of N Return ($\mathrm{N}+, \mathrm{N}$-)
endif
"V-cycle:"
How do we Coarsen? Expand? Improve?

03/05/2015

55

Multilevel Kernighan-Lin

- Coarsen graph and expand partition using maximal matchings
- Improve partition using Kernighan-Lin

Maximal Matching

Maximal Matching: Example

- Definition: A matching of a graph $\mathrm{G}(\mathrm{N}, \mathrm{E})$ is a subset E_{m} of E such that no two edges in E_{m} share an endpoint
- Definition: A maximal matching of a graph $\mathrm{G}(\mathrm{N}, \mathrm{E})$ is a matching E_{m} to which no more edges can be added and remain a matching
- A simple greedy algorithm computes a maximal matching: let E_{m} be empty
mark all nodes in N as unmatched
for $\mathrm{i}=1$ to $|\mathrm{N}| \quad \ldots$ visit the nodes in any order
if i has not been matched
mark i as matched
if there is an edge $e=(i, j)$ where j is also unmatched, adde to E_{m} mark j as matched

en

endfor
03/05/2015
CS267 Lecture 14

Example of Coarsening

How to coarsen a graph using a maximal matching
 59

Coarsening using a maximal matching (details)

1) Construct a maximal matching E_{m} of $\mathrm{G}(\mathrm{N}, \mathrm{E})$
for all edges $\mathbf{e}=(\mathbf{j}, \mathbf{k})$ in $\mathbf{E}_{\boldsymbol{m}} \quad$ 2) collapse matched nodes into a single one Put node $\mathbf{n}(\mathrm{e})$ in $\mathbf{N}_{\mathbf{c}}$
$W(n(e))=W(j)+W(k) \quad \ldots$ gray statements update node/edge weights
for all nodes \boldsymbol{n} in \mathbf{N} not incident on an edge in $\mathbf{E}_{\mathbf{m}}$ 3) add unmatched nodes Put \mathbf{n} in $\mathbf{N}_{\mathbf{c}} \quad$... do not change W(n)
. Now each node r in N is "inside" a unique node $n(r)$ in N_{c}
.. 4) Connect two nodes in Nc if nodes inside them are connected in E for all edges $\mathrm{e}=(\mathrm{j}, \mathrm{k})$ in E_{m}
for each other edge $e^{\prime}=(j, r)$ or (k, r) in E
Put edge $e=(n(e), n(r))$ in E_{c}
$\mathrm{W}(\mathrm{ee})=\mathrm{W}\left(\mathrm{e}^{\prime}\right)$
If there are multiple edges connecting two nodes in N_{c}, collapse them, adding edge weights

Expanding a partition of G_{c} to a partition of \mathbf{G}

Converting a coarse partition to a fine partition

Partition shown in green

03/05/2015
CS267 Lecture 14

Multilevel Spectral Bisection

- Coarsen graph and expand partition using maximal independent sets
- Improve partition using Rayleigh Quotient Iteration

Maximal Independent Sets

- Definition: An independent set of a graph $G(N, E)$ is a subset N_{i} of N such that no two nodes in N_{i} are connected by an edge
- Definition: A maximal independent set of a graph $G(N, E)$ is an independent set N_{i} to which no more nodes can be added and remain an independent set
- A simple greedy algorithm computes a maximal independent set:

$$
\text { let } N_{i} \text { be empty }
$$

for $k=1$ to $|N|$
visit the nodes in any order node k is not adjacent to any node already in N_{i} add
endif
endfor

$$
\text { Maximal Independent Subset } \mathrm{N}_{\mathrm{i}} \text { of } \mathrm{I}
$$

- and - - nodes of N
- - nodes of N_{i}

03/05/201
CS267 Lecture 14
63

Example of Coarsening

Computing $\mathbf{G}_{\mathbf{c}}$ from \mathbf{G}

- and - - nodes of N
- - nodes of N_{i}
- - edges in E
$\square \quad-\quad$ edges in $\mathbf{E}_{\mathbf{c}}$

- encloses domain $D_{k}=$ node of N_{c}

03/05/2015
CS267 Lecture 14

```
Coarsening using Maximal Independent Sets (details)
    ... Build "domains" D(k) around each node k in Nit to get nodes in N
    Add an edge to E}\mp@subsup{E}{c}{}\mathrm{ whenever it would connect two such domains
    E
    D(k)=({k}, empty set)
        .first set contains nodes in D(k), second set contains edges in D(k)
    unmark all edges in E
    repeat
        choose an unmarked edge e=(k,j) from E
            exactly one of k and j(say k) is in some D(m)
            mactly one of k and 
            sif k and j are in two different D(m)'s (say D(mk) and D(mj)
            mark e
            add edge (mk, mj) to E E 
            else if both k and
            marke
            adde to D(m
        else
            unmarked
    endif
    until no unmarked edges
03/05/2015

\section*{Expanding a partition of \(\mathbf{G}_{c}\) to a partition of \(\mathbf{G}\)}
- Need to convert an eigenvector \(\mathrm{v}_{\mathrm{C}}\) of \(\mathrm{L}\left(\mathrm{G}_{\mathrm{C}}\right)\) to an approximate eigenvector \(v\) of \(L(G)\)
- Use interpolation:

For each node \(\mathbf{j}\) in N
if j is also a node in \(\mathbf{N}_{\mathbf{c}}\), then
\(\mathbf{v}(\mathrm{j})=\mathbf{v}_{\mathbf{c}}(\mathbf{j}) \quad\)... use same eigenvector component
else
\(\mathbf{v}(\mathrm{j})=\) average of \(\mathbf{v}_{\mathbf{c}}(\mathrm{k})\) for all neighbors k of j in \(\mathrm{N}_{\mathrm{c}}\) end endif

Example of cubic convergence for 1D mesh


03/05/2015
Iteration Number
69

\section*{Outline of Graph Partitioning Lectures}
- Review definition of Graph Partitioning problem
- Overview of heuristics
- Partitioning with Nodal Coordinates
- Ex: In finite element models, node at point in \((x, y)\) or \((x, y, z)\) space
- Partitioning without Nodal Coordinates
- Ex: In model of WWW, nodes are web pages
- Multilevel Acceleration
- BIG IDEA, appears often in scientific computing
- Comparison of Methods and Applications
- Beyond Graph Partitioning: Hypergraphs
\[
03 / 05 / 2015 \quad \text { CS267 Lecture } 14
\]

\section*{Comparison of methods}
- Compare only methods that use edges, not nodal coordinates - CS267 webpage and KK95a (see below) have other comparisons - Metrics
- Speed of partitioning
- Number of edge cuts
- Other application dependent metrics
- Summary
- No one method best
- Multi-level Kernighan/Lin fastest by far, comparable to Spectral in the number of edge cuts
- www-users.cs.umn.edu/~karypis/metis/publications/main.html
- Spectral give much better cuts for some applications
- Ex: image segmentation
- See "Normalized Cuts and Image Segmentation" by J. Malik, J. Shi

03/05/2015
CS267 Lecture 14

Number of edges cut for a 64-way partition, by METIS
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{For Multilevel Kernighan/Lin, as implemented in METIS (see Kk95a)} \\
\hline Graph & \[
\begin{gathered}
\text { \# of } \\
\text { Nodes }
\end{gathered}
\] & \[
\begin{gathered}
\text { \# of } \\
\text { Edges }
\end{gathered}
\] & \# Edges cut for 64-way partition & Expected \# cuts for 2D mesh & Expected \# cuts for 3D mesh & Description \\
\hline 144 & 144649 & 1074393 & 88806 & 6427 & 31805 & 3D FE Mesh \\
\hline 4ELT & 15606 & 45878 & 2965 & 2111 & 7208 & 2D FE Mesh \\
\hline ADD32 & 4960 & 9462 & 675 & 1190 & 3357 & 32 bit adder \\
\hline AUTO & 448695 & 3314611 & 194436 & 11320 & 67647 & 3D FE Mesh \\
\hline BBMAT & 38744 & 993481 & 55753 & 3326 & 13215 & 2D Stiffness M. \\
\hline FINAN512 & 74752 & 261120 & 11388 & 4620 & 20481 & Lin. Prog. \\
\hline LHR10 & 10672 & 209093 & 58784 & 1746 & 5595 & Chem. Eng. \\
\hline MAP1 & 267241 & 334931 & 1388 & 8736 & 47887 & Highway Net. \\
\hline MEMPLUS & 17758 & 54196 & 17894 & 2252 & 7856 & Memory circuit \\
\hline SHYY161 & 76480 & 152002 & 4365 & 4674 & 20796 & Navier-Stokes \\
\hline TORSO & 201142 & 1479989 & 117997 & 7579 & 39623 & 3D FE Mesh \\
\hline
\end{tabular}

Expected \# cuts for 64 -way partition of 2D mesh of n nodes \(n^{1 / 2}+2^{*}(n / 2)^{1 / 2}+4^{*}(n / 4)^{1 / 2}+\ldots+32^{*}(n / 32)^{1 / 2} \sim 17^{*} n^{1 / 2}\)

Expected \# cuts for 64-way partition of 3D mesh of \(\mathbf{n}\) nodes \(=\) \(n^{2 / 3}+2^{*}(n / 2)^{2 / 3}+4^{*}(n / 4)^{2 / 3}+\ldots+32^{*}(n / 32)^{2 / 3} \sim 11.5^{*} n^{2 / 3}\) 03/05/2015

Speed of 256-way partitioning (from KK95a)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Partitioning time in seconds} \\
\hline Graph & \[
\begin{gathered}
\text { \# of } \\
\text { Nodes }
\end{gathered}
\] & \[
\begin{gathered}
\text { \# of } \\
\text { Edges }
\end{gathered}
\] & \begin{tabular}{l}
Multilevel \\
Spectral Bisection
\end{tabular} & Multilevel Kernighan/ Lin & Description \\
\hline 144 & 144649 & 1074393 & 607.3 & 48.1 & 3D FE Mesh \\
\hline 4ELT & 15606 & 45878 & 25.0 & 3.1 & 2D FE Mesh \\
\hline ADD32 & 4960 & 9462 & 18.7 & 1.6 & 32 bit adder \\
\hline AUTO & 448695 & 3314611 & 2214.2 & 179.2 & 3D FE Mesh \\
\hline BBMAT & 38744 & 993481 & 474.2 & 25.5 & 2D Stiffness M. \\
\hline FINAN512 & 74752 & 261120 & 311.0 & 18.0 & Lin. Prog. \\
\hline LHR10 & 10672 & 209093 & 142.6 & 8.1 & Chem. Eng. \\
\hline MAP1 & 267241 & 334931 & 850.2 & 44.8 & Highway Net. \\
\hline MEMPLUS & 17758 & 54196 & 117.9 & 4.3 & Memory circuit \\
\hline SHYY161 & 76480 & 152002 & 130.0 & 10.1 & Navier-Stokes \\
\hline TORSO & 201142 & 1479989 & 1053.4 & 63.9 & 3D FE Mesh \\
\hline
\end{tabular}

Kernighan/Lin much faster than Spectral Bisection!

03/05/2015
CS267 Lecture 14
74

\section*{Outline of Graph Partitioning Lectures}

Beyond simple graph partitioning:
- Review definition of Graph Partitioning problem
- Overview of heuristics
- Partitioning with Nodal Coordinates
- Ex: In finite element models, node at point in ( \(\mathrm{x}, \mathrm{y}\) ) or ( \(\mathrm{x}, \mathrm{y}, \mathrm{z}\) ) space
- Partitioning without Nodal Coordinates
- Ex: In model of WWW, nodes are web pages
- Multilevel Acceleration
- BIG IDEA, appears often in scientific computing
- Comparison of Methods and Applications
- Beyond Graph Partitioning: Hypergraphs

Representing a sparse matrix as a hypergraph
\(\left[\begin{array}{cccc}\times & 0 & \times & 0 \\ 0 & \times & \times & 0 \\ 0 & \times & \times & 0 \\ 0 & \times & 0 & \times\end{array}\right]\)


03/05/2015
CS267 Lecture 14
76


For NxN mesh on PxP processor grid： Usual Cartesian partitioning costs \(\sim 4 N P\) words moved MeshPart costs \(\sim 3 N P\) words moved， \(25 \%\) savings
\(\qquad\)

Two Different 2D Mesh Partitioning Strategies
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Graph：} \\
\hline \multicolumn{2}{|l|}{tesian Partitioning} \\
\hline \multicolumn{2}{|l|}{－－－－－．} \\
\hline \multicolumn{2}{|l|}{． \(0 \cdot 0 \cdot 0\)} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{－＊＊＊＊．}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{． \(0 \cdot 0 \cdot\)} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\(\bullet \bullet \bullet \bullet \bullet \bullet \bullet\) ००००००००} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\bullet \bullet \bullet \bullet \bullet \bullet\) ¢ ¢ ७७०००}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{\(\bullet \bullet \bullet \bullet \bullet \bullet \bullet\) e．\(\bullet \bullet \bullet \bullet \bullet \bullet\) \(\bullet \bullet \bullet \bullet \bullet \bullet \bullet\) ゃ०००००००} \\
\hline
\end{tabular}

Hypergraph：
MeshPart Algorithm［Ucar Catalyurek， 2010 ］ MeshPart Algorithm［Ucar，Catalyurek， 201
 －००००००＊） －0 © ©




 40000000000 －0－00．民 \(\bullet \bullet \bullet \bullet \bullet\) © \(\bullet \bullet \bullet \bullet\) ह०००००००
\(\bullet \bullet \bullet \bullet\) ゃ०००७७००००

Total SpMV communication volume \(=64\)
Total SpMV communication volume \(=58\)

CS267 Lecture 14
78

Experimental Results：Hypergraph vs．Graph Partitioning


> ~8\% reduction in total communication volume using hypergraph partitioning (PaToH) versus graph partitioning (METIS)

Further Benefits of Hypergraph Model: Nonsymmetric Matrices
- Graph model of matrix has edge \((\mathrm{i}, \mathrm{j})\) if either \(\mathrm{A}(\mathrm{i}, \mathrm{j})\) or \(\mathrm{A}(\mathrm{j}, \mathrm{i})\) nonzero
- Same graph for A as \(|\mathrm{A}|+\left|\mathrm{A}^{\mathrm{T}}\right|\)
- Ok for symmetric matrices, what about nonsymmetric?
- Try A upper triangular


Graph Partitioning (Metis)
Total Communication Volume \(=254\)
Load imbalance ratio \(=6 \%\)
03/05/2015
CS267 Lecture 14

\section*{Summary: Graphs versus Hypergraphs}
- Pros and cons
- When matrix is non-symmetric, the graph partitioning model (using \(\mathrm{A}+\mathrm{A}^{\mathrm{T}}\) ) loses information, resulting in suboptimal partitioning in terms of communication and load balance.
- Even when matrix is symmetric, graph cut size is not an accurate measurement of communication volume
- Hypergraph partitioning model solves both these problems
- However, hypergraph partitioning ( PaToH ) can be much more expensive than graph partitioning (METIS)
- Hypergraph partitioners: PaToH, HMETIS, ZOLTAN
- For more see Bruce Hendrickson' s web page
- www.cs.sandia.gov/~bahendr/partitioning.html
- "Load Balancing Fictions, Falsehoods and Fallacies"

03/05/2015
CS267 Lecture 14

\section*{Motivation for Spectral Bisection}
- Vibrating string has modes of vibration, or harmonics
- Modes computable as follows
- Model string as masses connected by springs (a 1D mesh)
- Write down F=ma for coupled system, get matrix A
- Eigenvalues and eigenvectors of \(A\) are frequencies and shapes of modes
- Label nodes by whether mode - or + to get N - and \(\mathrm{N}+\)
- Same idea for other graphs (eg planar graph \(\sim\) trampoline)

\section*{"Vibrating String" for Spectral Bisection}


\section*{Beyond Simple Graph Partitioning}
- Undirected graphs model symmetric matrices, not unsymmetric ones

\section*{- More general graph models include:}
- Hypergraph: nodes are computation, edges are communication,
but connected to a set (>= 2 ) of nodes
- HMETIS, PATOH, ZOLTAN packages
- Bipartite model: use bipartite graph for directed graph
- Multi-object, Multi-Constraint model: use when single structure may involve multiple computations with differing costs
- For more see Bruce Hendrickson's web page
- www.cs.sandia.gov/~bahendr/partitioning.html
- "Load Balancing Myths, Fictions \& Legends"

\section*{Graph vs. Hypergraph Partitioning}

Consider a 2-way partition of a 2D mesh:


The cost of communicating vertex \(A\) is \(1-\) we can send the value in one message to the other processor

According to the graph model, however the vertex A contributes 2 to the total communication volume, since
2 edges are cut.
Result: Unlike graph partitioning model, the hypergraph partitioning model gives exact communication volume (minimizing cut \(=\) minimizing communication)

Therefore, we expect that hypergraph partitioning approach can do a better job at minimizing total communication. Let's look at a simple example...

\section*{Further Benefits of Hypergraph Model: Nonsymmetric Matrices}
- Graph model of matrix has edge ( \(\mathrm{i}, \mathrm{j}\) ) if either \(\mathrm{A}(\mathrm{i}, \mathrm{j})\) or \(\mathrm{A}(\mathrm{j}, \mathrm{i})\) nonzero
- Same graph for A as \(|\mathrm{A}|+\left|\mathrm{A}^{\mathrm{T}}\right|\)
- Ok for symmetric matrices, what about nonsymmetric? Illustrative Bad Example: triangular matrix

Whereas the hypergraph model can capture nonsymmetry, the graph partitioning model deals with nonsymmetry by partitioning the graph of \(\mathrm{A}+\mathrm{A}^{\mathrm{T}}\) (which in this case is a dense matrix).


This results in a suboptimal partition in terms of both communication and load balancing. In this case,
Total Communication Volume \(=60\) (optimal is \(\sim 12\) in this case, subject to load balancing) Proc 1: 76 nonzeros, Proc \(2: 60\) nonzeros ( \(\sim 26 \%\) imbalance ratio)


\section*{Coordinate-Free Partitioning: Summary}
- Several techniques for partitioning without coordinates
- Breadth-First Search - simple, but not great partition
- Kernighan-Lin - good corrector given reasonable partition
- Spectral Method - good partitions, but slow
- Multilevel methods
- Used to speed up problems that are too large/slow
- Coarsen, partition, expand, improve
- Can be used with K-L and Spectral methods and others

\section*{- Speed/quality}
- For load balancing of grids, multi-level K-L probably best
- For other partitioning problems (vision, clustering, etc.) spectral may be better
- Good software available

03/09/2009
CS267 Lecture 13
90

\section*{Is Graph Partitioning a Solved Problem?}
- Myths of partitioning due to Bruce Hendrickson
\(\Rightarrow 1\). Edge cut = communication cost
\(\Rightarrow\) 2. Simple graphs are sufficient
\(\Rightarrow\) 3. Edge cut is the right metric
4. Existing tools solve the problem
5. Key is finding the right partition
6. Graph partitioning is a solved problem
- Slides and myths based on Bruce Hendrickson' s:
"Load Balancing Myths, Fictions \& Legends"

\section*{Myth 1: Edge Cut = Communication Cost}
- Myth1: The edge-cut deceit
edge-cut \(=\) communication cost
- Not quite true:
- \#vertices on boundary is actual communication volume
- Do not communicate same node value twice
- Cost of communication depends on \# of messages too ( \(\alpha\) term)
- Congestion may also affect communication cost
- Why is this OK for most applications?
- Mesh-based problems match the model: cost is ~ edge cuts
- Other problems (data mining, etc.) do not

\section*{Myth 2: Simple Graphs are Sufficient}
- Graphs often used to encode data dependencies
- Do \(X\) before doing \(Y\)
- Graph partitioning determines data partitioning
- Assumes graph nodes can be evaluated in parallel
- Communication on edges can also be done in parallel
- Only dependence is between sweeps over the graph

\section*{- More general graph models include:}
- Hypergraph: nodes are computation, edges are communication, but connected to a set (>=2) of nodes
- Bipartite model: use bipartite graph for directed graph
- Multi-object, Multi-Constraint model: use when single structure may involve multiple computations with differing costs

\section*{Myth 3: Partition Quality is Paramount}
-When structure are changing dynamically during a simulation, need to partition dynamically
- Speed may be more important than quality
- Partitioner must run fast in parallel
- Partition should be incremental
- Change minimally relative to prior one
- Must not use too much memory
- Example from Touheed, Selwood, Jimack and Bersins
- 1 M elements with adaptive refinement on SGI Origin
- Timing data for different partitioning algorithms:
- Repartition time from 3.0 to 15.2 secs
- Migration time : 17.8 to 37.8 secs
- Solve time: 2.54 to 3.11 secs

03/09/2009
CS267 Lecture 13
94

\section*{Summary}
- Partitioning with nodal coordinates:
- Inertial method
- Projection onto a sphere
- Algorithms are efficient
- Rely on graphs having nodes connected (mostly) to "nearest neighbors" in space
- Partitioning without nodal coordinates:
- Breadth-First Search - simple, but not great partition
- Kernighan-Lin - good corrector given reasonable partition
- Spectral Method - good partitions, but slow
- Today:
- Spectral methods revisited
- Multilevel methods

03/109/2009
CS267 Lecture 13

\section*{Another Example}
- Definition: The Laplacian matrix \(L(G)\) of a graph \(G(N, E)\)

Properties of Incidence and Laplacian matrices
is an INI by INI symmetric matrix, with one row and (proof on Demmel's 1996 CS267 web page)
\(L(G)\) is symmetric. (This means the eigenvalues of \(L(G)\) are real and its eigenvectors are real and orthogonal.)
- \(\mathrm{L}(\mathrm{G})(\mathrm{i}, \mathrm{i})=\) degree of node I (number of incident edges)
- L(G) \((\mathrm{i}, \mathrm{j})=-1\) if i != j and there is an edge ( \(\mathrm{i}, \mathrm{j})\)
- \(\mathrm{L}(\mathrm{G})(\mathrm{i}, \mathrm{j})=0\) otherwise

\(\mathbf{L}(\mathbf{G})=\left(\begin{array}{ccccc}2 & -1 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 & 0 \\ -1 & -1 & 4 & -1 & -1 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & -1 & 2\end{array}\right)\)
Hidden slide
- Let \(e=[1, \ldots, 1]^{\top}\), i.e. the column vector of all ones. Then \(L(G)^{*} e=0\).
- \(\operatorname{In}(G)^{*}(\ln (G))^{\top}=L(G)\). This is independent of the signs chosen for each column of \(\ln (G)\).
- Suppose \(L(G)^{*} v=\lambda^{*} v, v \neq 0\), so that \(v\) is an eigenvector and \(\lambda\) an eigenvalue of \(\mathrm{L}(\mathrm{G})\). Then
\(\lambda=\left\|\ln (\mathbf{G})^{\mathrm{T}} * \mathrm{v}\right\|^{2} /\|\mathrm{v}\|^{2}\)
\(=\Sigma\left\{(\mathrm{v}(\mathrm{i})-\mathrm{v}(\mathrm{j}))^{2}\right.\) for all edges \(\left.\mathrm{e}=(\mathrm{i}, \mathrm{j})\right\} / \Sigma_{\mathrm{i}} \mathrm{v}(\mathrm{i})^{2}\)
\(\ldots\|x\|^{2}=\Sigma_{k} x_{k}{ }^{2}\)
The eigenvalues of \(L(G)\) are nonnegative: \(0=\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}\)
- The number of connected components of \(G\) is equal to the number of \(\lambda_{i}\) equal to 0 . In particular, \(\lambda_{2} \neq 0\) if and only if \(G\) is connected.
- Definition: \(\lambda_{2}(\mathrm{~L}(\mathrm{G}))\) is the algebraic connectivity of G

\footnotetext{
02/28/2012
}

CS267 Lecture 13
98```

