
Sparse linear solvers: iterative methods, sparse
matrix-vector multiplication, and preconditioning

L. Grigori

ALPINES
INRIA and LJLL, UPMC

On sabbatical at UC Berkeley

March 2015



Plan

Krylov subspace methods
Conjugate gradient method

Tuning sparse matrix-vector product
Sequential performance optimization
Tuning on multicore

Iterative solvers that reduce communication
CA solvers based on s-step methods
Enlarged Krylov methods

Preconditioners
One level preconditioners: CA-ILU0
Two level preconditioners

Extra slides: one level preconditioners
One level preconditioners: examples

2 of 54



Plan

Krylov subspace methods
Conjugate gradient method

Tuning sparse matrix-vector product

Iterative solvers that reduce communication

Preconditioners

Extra slides: one level preconditioners

3 of 54



Krylov subspace methods

Solve Ax = b by finding a sequence x1, x2, ..., xk that minimizes some
measure of error over the corresponding spaces

x0 +K
i

(A, r0), i = 1, ..., k

.

They are defined by two conditions:

1. Subspace condition: x
k

2 x0 +K
k

(A, r0)

2. Petrov-Galerkin condition: r
k

? L
k

() (r
k

)ty = 0, 8 y 2 L
k

where
⌅

x0 is the initial iterate, r0 is the initial residual,

⌅ K
k

(A, r0) = span{r0,Ar0,A2
r0, ...,Ak�1

r0} is the Krylov subspace of dimension k,

⌅ L
k

is a well-defined subspace of dimension k.

4 of 54



One of Top Ten Algorithms of the 20th Century

From SIAM News, Volume 33, Number 4:
Magnus Hestenes, Eduard Stiefel, and Cornelius Lanczos, all from the
Institute for Numerical Analysis at the National Bureau of Standards, initiate
the development of Krylov subspace iteration methods.

⌅ Russian mathematician Alexei Krylov writes first paper, 1931.

⌅ Lanczos - introduced an algorithm to generate an orthogonal basis for
such a subspace when the matrix is symmetric.

⌅ Hestenes and Stiefel - introduced CG for SPD matrices.

Other Top Ten Algorithms: Monte Carlo method, decompositional approach to
matrix computations (Householder), Quicksort, Fast multipole, FFT.

5 of 54



Choosing a Krylov method

Source slide: J. Demmel
6 of 54



Conjugate gradient (Hestenes, Stie↵el, 52)

⌅ A Krylov projection method for SPD matrices where L
k

= K
k

(A, r0).

⌅ Finds x⇤ = A�1b by minimizing the quadratic function

�(x) =
1

2
(x)tAx � btx

5�(x) = Ax � b = 0

⌅ After j iterations of CG,

||x⇤ � x
j

||
A

 2||x � x0||A

 p
(A)� 1p
(A) + 1

!
j

,

where x0 is starting vector, ||x ||
A

=
p
x

T

Ax and (A) = |�
max

(A)|/|�
min

(A)|.

7 of 54



Conjugate gradient

⌅ Computes A-orthogonal search directions by conjugation of the residuals
⇢

p1 = r0 = �5 �(x0)
p
k

= r
k�1 + �

k

p
k�1

(1)

⌅ At k-th iteration,

x
k

= x
k�1 + ↵

k

p
k

= argmin
x2x0+K

k

(A,r0)�(x)

where ↵
k

is the step along p
k

.

⌅ CG algorithm obtained by imposing the orthogonality and the conjugacy
conditions

rT
k

r
i

= 0, for all i 6= k ,

pT
k

Ap
i

= 0, for all i 6= k .

8 of 54



CG algorithm

Algorithm 1 The CG Algorithm

1: r0 = b � Ax0, ⇢0 = ||r0||22, p1 = r0, k = 1
2: while (

p
⇢
k

> ✏||b||2 and k < k
max

) do
3: if (k 6= 1) then
4: �

k

= (r
k�1, rk�1)/(rk�2, rk�2)

5: p
k

= r
k�1 + �

k

p
k�1

6: end if
7: ↵

k

= (r
k�1, rk�1)/(Apk , pk)

8: x
k

= x
k�1 + ↵

k

p
k

9: r
k

= r
k�1 � ↵

k

Ap
k

10: ⇢
k

= ||r
k

||22
11: k = k + 1
12: end while

9 of 54



Challenge in getting e�cient and scalable solvers

⌅ A Krylov solver finds x
k+1 from x0 +K

k+1(A, r0) where

K
k+1(A, r0) = span{r0,Ar0,A2r0, ...,A

k r0},

such that the Petrov-Galerkin condition b � Ax
k+1 ? L

k+1 is satisfied.

⌅ Does a sequence of k SpMVs to get vectors [x1, ..., xk ]

⌅ Finds best solution x
k+1 as linear combination of [x1, ..., xk ]

Typically, each iteration requires

⌅ Sparse matrix vector product
! point-to-point communication

⌅ Dot products for orthogonalization
! global communication

10 of 54



Challenge in getting e�cient and scalable solvers

⌅ A Krylov solver finds x
k+1 from x0 +K

k+1(A, r0) where

K
k+1(A, r0) = span{r0,Ar0,A2r0, ...,A

k r0},

such that the Petrov-Galerkin condition b � Ax
k+1 ? L

k+1 is satisfied.

⌅ Does a sequence of k SpMVs to get vectors [x1, ..., xk ]

⌅ Finds best solution x
k+1 as linear combination of [x1, ..., xk ]

Typically, each iteration requires

⌅ Sparse matrix vector product
! point-to-point communication

⌅ Dot products for orthogonalization
! global communication

10 of 54



Ways to improve performance

We will look at three di↵erent approaches:

⌅ Improve the performance of sparse matrix-vector product.

⌅ Change numerics - reformulate or introduce Krylov subspace algorithms
to:
⇤ reduce communication,
⇤ increase arithmetic intensity - compute sparse matrix-set of vectors product.

⌅ Use preconditioners to decrease the number of iterations till convergence.

11 of 54



Plan

Krylov subspace methods

Tuning sparse matrix-vector product
Sequential performance optimization
Tuning on multicore

Iterative solvers that reduce communication

Preconditioners

Extra slides: one level preconditioners

12 of 54



Tuning sparse matrix-vector product

⌅ Slides from J. Demmel, lecture on Automatic Performance Tuning and
Sparse-Matrix-Vector-Multiplication (SpMV)
www.cs.berkeley.edu/

~

demmel/cs267_Spr14

⌅ Sequential performance optimization

⌅ Tuning SpMV on multicores

⌅ Most of the techniques discussed are available in
OSKI and pOSKI: Optimized Sparse Kernel Interface
bebop.cs.berkeley.edu/poski

⇤ Provides sparse kernels automatically tuned for user’s matrix & machine.

13 of 54

www.cs.berkeley.edu/~demmel/cs267_Spr14
bebop.cs.berkeley.edu/poski


Examples of Automatic Performance Tuning (1) 

•  Dense BLAS (PHiPAC-UCB, then ATLAS-UTK), FFTs (FFTw – 
MIT), signal processing(SPIRAL - CMU), MPI reductions  

•  What do they have in common? 
–  Can do the tuning off-line: once per architecture, algorithm 
–  Can take as much time as necessary (hours, a week…) 
–  At run-time, algorithm choice may depend only on few parameters 

•  Matrix dimension, size of FFT, etc. 



Examples of Automatic Performance Tuning (2) 

•  What do dense BLAS, FFTs, signal processing, MPI reductions 
have in common? 
–  Can do the tuning off-line: once per architecture, algorithm 
–  Can take as much time as necessary (hours, a week…) 
–  At run-time, algorithm choice may depend only on few parameters 

•  Matrix dimension, size of FFT, etc. 

•  Can�t always do off-line tuning 
–  Algorithm and implementation may strongly depend on data 

only known at run-time 
–  Ex: Sparse matrix nonzero pattern determines both best 

data structure and implementation of                            
Sparse-matrix-vector-multiplication (SpMV)  

–  Part of search for best algorithm just be done (very quickly!) 
at run-time 



Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)*x(j) 

for each row i 
 for k=ptr[i] to ptr[i+1]-1 do 
  y[i] = y[i] + val[k]*x[ind[k]] 

SpMV with Compressed Sparse Row (CSR) Storage 

Matrix-vector multiply kernel: y(i)  y(i) + A(i,j)*x(j) 

for each row i 
 for k=ptr[i] to ptr[i+1]-1 do 
  y[i] = y[i] + val[k]*x[ind[k]] 



Example: The Difficulty of Tuning 

•  n = 21200 
•  nnz = 1.5 M 
•  kernel: SpMV 

•  Source:  
   FEM discretization   
   NASA structural 

analysis problem 



Example: The Difficulty of Tuning 

•  n = 21200 
•  nnz = 1.5 M 
•  kernel: SpMV 

•  Source: NASA 
structural analysis 
problem 

•  8x8 dense 
substructure 



Taking advantage of block structure in SpMV 

•  Bottleneck is time to get matrix from memory 
–  Only 2 flops for each nonzero in matrix 

•  Don�t store each nonzero with index, instead store 
each nonzero r-by-c block with index 
–  Storage drops by up to 2x, if rc >> 1, all 32-bit quantities 
–  Time to fetch matrix from memory decreases 

•  Change both data structure and algorithm 
–  Need to pick r and c 
–  Need to change algorithm accordingly 

•  In example, is r=c=8 best choice? 
–  Minimizes storage, so looks like a good idea… 



Speedups on Itanium 2: The Need for Search 

Reference 

Best: 4x2 

Mflop/s 

Mflop/s 

Platform: 900 MHz Itanium-2, 3.6 Gflop/s peak speed. 



Register Profile: Itanium 2 

190 Mflop/s 

1190 Mflop/s 

Example of off-line tuning: dense matrix 



Another example of tuning challenges 

•  More complicated 
non-zero structure 
in general 

•  N = 16614 
•  NNZ = 1.1M 
•  FEM fluid flow 

application 



Zoom in to top corner 

•  More complicated 
non-zero structure 
in general 

•  N = 16614 
•  NNZ = 1.1M 



3x3 blocks look natural, but… 

•  More complicated non-zero 
structure in general 

•  Example: 3x3 blocking 
–  Logical grid of 3x3 cells 

•  But would lead to lots of �fill-in� 



Extra Work Can Improve Efficiency! 

•  More complicated non-zero 
structure in general 

•  Example: 3x3 blocking 
–  Logical grid of 3x3 cells 
–  Fill-in explicit zeros 
–  Unroll 3x3 block multiplies 
–  �Fill ratio� = 1.5 

•  On Pentium III: 1.5x speedup! 
–  Actual mflop rate 1.52 = 2.25 

higher 



Automatic Register Block Size Selection 

•  Selecting the r x c block size 
–  Off-line benchmark 

• Precompute Mflops(r,c) using dense A for each r x c 
• Once per machine/architecture 

–  Run-time �search� 
•   Sample A to estimate Fill(r,c) for each r x c 

–  Run-time heuristic model 
• Choose r, c to minimize time ~  Fill(r,c) / Mflops(r,c) 



Accurate and Efficient Adaptive Fill Estimation 

•  Idea: Sample matrix 
–  Fraction of matrix to sample: s ∈ [0,1] 
–  Cost ~ O(s * nnz) 
–  Control cost by controlling s 

• Search at run-time: the constant matters! 
•  Control s  automatically by computing statistical confidence 

intervals 
–  Idea: Monitor variance 

•  Cost of tuning 
–  Lower bound: convert matrix in 5 to 40 unblocked SpMVs 
–  Heuristic: 1 to 11 SpMVs 



Accuracy of the Tuning Heuristics (1/4) 

NOTE: �Fair� flops used (ops on explicit zeros not counted as �work�) 
See p. 375 of Vuduc�s thesis for matrices 



Accuracy of the Tuning Heuristics (2/4) 



Accuracy of the Tuning Heuristics (2/4) 
DGEMV 



Summary of Other Sequential Performance Optimizations 

•  Optimizations for SpMV 
–  Register blocking (RB): up to 4x over CSR 
–  Variable block splitting: 2.1x over CSR, 1.8x over RB 
–  Diagonals: 2x over CSR 
–  Reordering to create dense structure + splitting: 2x over CSR 
–  Symmetry: 2.8x over CSR, 2.6x over RB 
–  Cache blocking: 2.8x over CSR 
–  Multiple vectors (SpMM): 7x over CSR 
–  And combinations… 

•  Sparse triangular solve 
–  Hybrid sparse/dense data structure: 1.8x over CSR 

•  Higher-level kernels 
–  A·AT·x, AT·A·x: 4x over CSR, 1.8x over RB 
–  A2·x: 2x over CSR, 1.5x over RB 
–  [A·x, A2·x, A3·x, .. , Ak·x]  



19 

Tuning SpMV on Multicore 



20 

Multicore SMPs Used 
AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 

Source: Sam Williams 



27 

Multicore SMPs Used 
(Conventional cache-based memory hierarchy) 

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

Sun T2+ T5140 (Victoria Falls) IBM QS20 Cell Blade 

Source: Sam Williams 
2 such Control processors PPEs on Cell 



 22 

Multicore SMPs Used 
(Local store-based memory hierarchy) 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

Source: Sam Williams 
Explicit load and stores (special subroutines) for 16 SPEs 
To move data between local memory/DRAM  



23 

Multicore SMPs Used 
(CMT = Chip-MultiThreading) 

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

IBM QS20 Cell Blade 
Sun T2+ T5140 (Victoria Falls) 

Source: Sam Williams 
HW switches automatically from thread waiting for memory to another 



24 

Multicore SMPs Used 
(threads) 

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 

8 threads 8 threads 

16* threads 128 threads 

*SPEs only Source: Sam Williams 



25 

Multicore SMPs Used 
(peak double precision flops) 

AMD Opteron 2356 (Barcelona) Intel Xeon E5345 (Clovertown) 

IBM QS20 Cell Blade Sun T2+ T5140 (Victoria Falls) 

75 GFlop/s 74 Gflop/s 

29* GFlop/s 19 GFlop/s 

*SPEs only Source: Sam Williams 



26 

Results from 
�Auto-tuning Sparse Matrix-Vector 
Multiplication (SpMV)� 

Samuel Williams, Leonid Oliker, Richard Vuduc, 
John Shalf, Katherine Yelick, James Demmel, 
"Optimization of Sparse Matrix-Vector 
Multiplication on Emerging Multicore Platforms", 
Supercomputing (SC), 2007.  



27 

Test matrices 

•  Suite of 14 matrices 
•  All bigger than the caches of our SMPs 
•  We�ll also include a median performance number 

Dense 

Protein FEM / 
Spheres 

FEM / 
Cantilever 

Wind 
Tunnel 

FEM / 
Harbor QCD FEM / 

Ship Economics Epidemiology 

FEM / 
Accelerator Circuit webbase 

LP 

2K x 2K Dense matrix 
stored in sparse format 

Well Structured 
(sorted by nonzeros/row) 

Poorly Structured 
hodgepodge 

Extreme Aspect Ratio 
(linear programming) 

Source: Sam Williams 



SpMV Parallelization 

•  How do we parallelize a matrix-vector multiplication ? 
•  By rows blocks, load balance by number of nonzeros 
•  No inter-thread data dependencies, but random access to x 

28 

th
re

ad
 0

 
th

re
ad

 1
 

th
re

ad
 2

 
th

re
ad

 3
 

Source: Sam Williams 



Summary of Multicore Optimizations 

•  NUMA - Non-Uniform Memory Access  
–  pin submatrices to memories close to cores assigned to them 
–  either explicit (malloc, affinity) or implicit (first touch) 

•  Prefetch –  values, indices, and/or vectors 
–  Pragma inserted in C code – special HW instructions 
–  use exhaustive search on prefetch distance  

•  Matrix Compression – not just register blocking (BCSR) 
–  32 or 16-bit indices, Block Coordinate format for submatrices 

•  Cache-blocking 
–  2D partition of matrix, so needed parts of x,y fit in cache 

29 



SpMV Performance 
(Matrix Compression) 

30 

  After maximizing memory 
bandwidth, the only hope is 
to minimize memory traffic. 

  Compression: exploit 
  register blocking 
  other formats 
  smaller indices 

  Use a traffic minimization 
heuristic rather than search 

  Benefit is clearly 
 matrix-dependent. 

  Register blocking enables 
efficient software prefetching 
(one per cache line) 

Source: Sam Williams 



31 

Auto-tuned SpMV Performance 
(cache and TLB blocking) 

•  Fully auto-tuned SpMV 
performance across the suite 
of matrices 

•  Why do some optimizations 
work better on some 
architectures? 

•  matrices with naturally 
small working sets 

•  architectures with giant 
caches 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 

Source: Sam Williams 



32 

Auto-tuned SpMV Performance 
(architecture specific optimizations) 

•  Fully auto-tuned SpMV 
performance across the suite 
of matrices 

•  Included SPE/local store 
optimized version 

•  Why do some optimizations 
work better on some 
architectures? 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 

Source: Sam Williams 



33 

Auto-tuned SpMV Performance 
(max speedup) 

•  Fully auto-tuned SpMV 
performance across the suite 
of matrices 

•  Included SPE/local store 
optimized version 

•  Why do some optimizations 
work better on some 
architectures? 

+Cache/LS/TLB Blocking 

+Matrix Compression 

+SW Prefetching 

+NUMA/Affinity 

Naïve Pthreads 

Naïve 

2.7x 4.0x 

2.9x 35x 

Source: Sam Williams 



Plan

Krylov subspace methods

Tuning sparse matrix-vector product

Iterative solvers that reduce communication
CA solvers based on s-step methods
Enlarged Krylov methods

Preconditioners

Extra slides: one level preconditioners

14 of 54



Iterative solvers that reduce communication

Communication avoiding based on s-step methods

⌅ Unroll k iterations, orthogonalize every k steps.

⌅ A factor of O(k) less messages and bandwidth in sequential.

⌅ A factor of O(k) less messages in parallel (same bandwidth).

Enlarged Krylov methods

⌅ Decrease the number of iterations to decrease the number of global
communications.

⌅ Increase arithmetic intensity.

Other approaches available in the litterature, but not presented here.

15 of 54



CA solvers based on s-step methods: main idea

To avoid communication, unroll k-steps, ghost necessary data,

⌅ generate a set of vectors W for the Krylov subspace K
k

(A, r0),

⌅ (A)-orthogonalize the vectors using a communication avoiding
orthogonalization algorithm (e.g. TSQR(W)).

References
⌅ Van Rosendale ’83, Walker ’85, Chronopoulous and Gear ’89, Erhel ’93, Toledo ’95, Bai, Hu,

Reichel ’91 (Newton basis), Joubert and Carey ’92 (Chebyshev basis), etc.

⌅ Recent references: G. Atenekeng, B. Philippe, E. Kamgnia (to enable multiplicative Schwarz
preconditioner), J. Demmel, M. Hoemmen, M. Mohiyuddin, K. Yellick (to minimize
communication, next slides), Carson, Demmel, Knight (CA and other Krylov solvers,
preconditioners)

16 of 54



CA-GMRES

GMRES: find x in span{b,Ab, ...,Akb} minimizing ||Ax � b||2
Cost of k steps of standard GMRES vs new GMRES

Slide source: J. Demmel

17 of 54



CA-GMRES

GMRES: find x in span{b,Ab, ...,Akb} minimizing ||Ax � b||2
Cost of k steps of standard GMRES vs new GMRES

Slide source: J. Demmel

17 of 54



Matrix Powers Kernel

⌅ Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel
⌅ Ghost necessary data to avoid communication
⌅ Example: A tridiagonal, n = 32, s = 3
⌅ Shaded triangles represent data computed redundantly

Ax =

0

BBBBB@

⇤ ⇤
⇤ ⇤ ⇤

⇤ ⇤ ⇤
⇤ ⇤ ⇤

. . .
. . .

. . .

1

CCCCCA
·

0

BBBBB@

⇤
⇤
⇤
⇤
...

1

CCCCCA
=

0

BBBBB@

⇤
⇤
⇤
⇤
...

1

CCCCCA

18 of 54



Matrix Powers Kernel

⌅ Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel
⌅ Ghost necessary data to avoid communication
⌅ Example: A tridiagonal, n = 32, s = 3
⌅ Shaded triangles represent data computed redundantly

Ax =

0

BBBBB@

⇤ ⇤
⇤ ⇤ ⇤

⇤ ⇤ ⇤
⇤ ⇤ ⇤

. . .
. . .

. . .

1

CCCCCA
·

0

BBBBB@

⇤
⇤
⇤
⇤
...

1

CCCCCA
=

0

BBBBB@

⇤
⇤
⇤
⇤
...

1

CCCCCA

18 of 54



Matrix Powers Kernel

⌅ Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel
⌅ Ghost necessary data to avoid communication
⌅ Example: A tridiagonal, n = 32, s = 3
⌅ Shaded triangles represent data computed redundantly

Ax =

0

BBBBB@

⇤ ⇤
⇤ ⇤ ⇤

⇤ ⇤ ⇤
⇤ ⇤ ⇤

. . .
. . .

. . .

1

CCCCCA
·

0

BBBBB@

⇤
⇤
⇤
⇤
...

1

CCCCCA
=

0

BBBBB@

⇤
⇤
⇤
⇤
...

1

CCCCCA

18 of 54



Matrix Powers Kernel

⌅ Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel
⌅ Ghost necessary data to avoid communication
⌅ Example: A tridiagonal, n = 32, s = 3
⌅ Shaded triangles represent data computed redundantly

Ax =

0

BBBBB@

⇤ ⇤
⇤ ⇤ ⇤

⇤ ⇤ ⇤
⇤ ⇤ ⇤

. . .
. . .

. . .

1

CCCCCA
·

0

BBBBB@

⇤
⇤
⇤
⇤
...

1

CCCCCA
=

0

BBBBB@

⇤
⇤
⇤
⇤
...

1

CCCCCA

18 of 54



Matrix Powers Kernel

⌅ Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel
⌅ Ghost necessary data to avoid communication
⌅ Example: A tridiagonal, n = 32, s = 3
⌅ Shaded triangles represent data computed redundantly

Ax =

0

BBBBB@

⇤ ⇤
⇤ ⇤ ⇤

⇤ ⇤ ⇤
⇤ ⇤ ⇤

. . .
. . .

. . .

1

CCCCCA
·

0

BBBBB@

⇤
⇤
⇤
⇤
...

1

CCCCCA
=

0

BBBBB@

⇤
⇤
⇤
⇤
...

1

CCCCCA

18 of 54



Matrix Powers Kernel

⌅ Generate the set of vectors {Ax ,A2x , . . .Akx} in parallel
⌅ Ghost necessary data to avoid communication
⌅ Example: A tridiagonal, n = 32, s = 3
⌅ Shaded triangles represent data computed redundantly

Ax =

0

BBBBB@

⇤ ⇤
⇤ ⇤ ⇤

⇤ ⇤ ⇤
⇤ ⇤ ⇤

. . .
. . .

. . .

1

CCCCCA
·

0

BBBBB@

⇤
⇤
⇤
⇤
...

1

CCCCCA
=

0

BBBBB@

⇤
⇤
⇤
⇤
...

1

CCCCCA

18 of 54



Matrix Powers Kernel (contd)

Ghosting works for structured or well-partitioned unstructured matrices, with
modest surface-to-volume ratio.

⌅ Parallel: block-row partitioning based on (hyper)graph partitioning,

⌅ Sequential: top-to-bottom processing based on traveling salesman
problem.

19 of 54



Challenges and research opportunities

Length of the basis k is limited by

⌅ Size of ghost data

⌅ Loss of precision

Preconditioners: lots of recent work

⌅ Highly decoupled preconditioners:
Block Jacobi

⌅ Hierarchical, semiseparable matrices
(M. Hoemmen, J. Demmel)

⌅ CA-ILU0 (extra slides), deflation
(Carson, Demmel, Knight)

!A!different!polynomial!basis!does!converge:!
        [p1(A)x,…,pk(A)x] 

20 of 54



Performance

⌅ Speedups on Intel Clovertown (8 cores), data from [Demmel et al., 2009]
⌅ Used both optimizations:

⇤ sequential (moving data from DRAM to chip)
⇤ parallel (moving data between cores on chip)

21 of 54



Performance (contd)

22 of 54



Enlarged Krylov methods [Grigori et al., 2014]

⌅ Partition the matrix into t domains
⌅ At k-th iteration,

⇤ split the residual r
k�1 into t vectors corresponding to the t domains,

r

k�1 ! T (r
k�1) =

2

6666666666664

⇤ 0 0

.

.

.

.

.

.

.

.

.
⇤ 0 0
0 ⇤ 0

.

.

.

.

.

.

.

.

.
0 ⇤ 0

.
.
.

0 0 ⇤
.
.
.

.

.

.

.

.

.
0 0 ⇤

3

7777777777775

,T
s

(r
k�1) = {T (r

k�1)(:, 1), . . .T (r
k�1)(:, t)}

⇤ generate t new basis vectors, obtain an enlarged Krylov subspace

K
t,k(A, r0) = span{T

s

(r0),ATs

(r0),A
2
T

s

(r0), ...,Ak�1
T

s

(r0)}

⇤ search for the solution of the system Ax = b in K
t,k(A, r0)

23 of 54



Properties of enlarged Krylov subspaces

⌅ The Krylov subspace K
k

(A, r0) is a subset of the enlarged one

K
k

(A, r0) ⇢ K
t,k(A, r0)

⌅ For all k < k
max

the dimensions of K
t,k and K

t,k+1 are stricltly
increasing by some number i

k

and i
k+1 respectively, where

t � i
k

� i
k+1 � 1.

⌅ The enlarged subspaces are increasing subspaces, yet bounded.

K
t,1(A, r0) ( ... ( K

t,k
max

�1(A, r0) ( K
t,k

max

(A, r0) = K
t,k

max

+q

(A, r0), 8q > 0

24 of 54



Properties of enlarged Krylov subspaces: stagnation

⌅ Let K
p

max

= K
p

max

+q

and K
t,k

max

= K
t,k

max

+q

for q > 0. Then

k
max

 p
max

.

⌅ The solution of the system Ax = b belongs to the subspace x0 + K
t,k

max

.

25 of 54



Enlarged Krylov subspace methods based on CG

Defined by the subspace K
t,k and the following two conditions:

1. Subspace condition: x
k

2 x0 + K
t,k

2. Orthogonality condition: r
k

? K
t,k

⌅ At each iteration, the new approximate solution x
k

is found by
minimizing �(x) = 1

2 (x)
tAx � btx over x0 + K

t,k :

�(x
k

) = min{�(x), 8x 2 x0 + K
t,k(A, r0)}

26 of 54



Convergence analysis

Given
⌅ A is an SPD matrix, x⇤ is the solution of Ax = b

⌅ ||e
k

||
A

= ||x⇤ � x
k

||
A

is the k th error of CG

⌅ ||e
k

||
A

= ||x⇤ � x
k

||
A

is the k th error of enlarged methods

⌅ CG converges in K iterations

Result
Enlarged Krylov methods converge in K iterations, where K  K  n.

||e
k

||
A

= ||x⇤ � x
k

||
A

 ||e
k

||
A

27 of 54



LRE-CG: Long Recurrence Enlarged CG

⌅ Use the entire basis to approximate the new solution

⌅ Q
k

= [W1W2 . . .Wk

] is an n ⇥ tk matrix containing the basis vectors of
K

t,k

⌅ At each k th iteration, approximate the solution as

x
k

= x
k�1 + Q

k

↵
k

such that
�(x

k

) = min{�(x), 8x 2 x0 + K
t,k}

⌅ Either x
k

is the solution, or t new basis vectors and the new
approximation x

k+1 = x
k

+ Q
k+1↵k+1 are computed.

28 of 54



SRE-CG: Short recurrence enlarged CG

⌅ By A-orthonormalizing the basis vectors Q
k

= [W1,W2, . . .Wk

], we
obtain a short recurrence enlarged CG.

⌅ Given that Qt

k�1rk�1 = 0, we obtain the recurrence relations:

↵
k

= W t

k

r
k�1,

x
k

= x
k�1 +W

k

↵
k

,

r
k

= r
k�1 � AW

k

↵
k

,

⌅ W
k

needs to be A-orthormalized only against W
k�1 and W

k�2.

29 of 54



SRE-CG Algorithm

Algorithm 2 The SRE-CG algorithm
Input: A, b, x0, ✏, kmax

Output: x
k

, the approximate solution of the system Ax = b
1: r0 = b � Ax0, ⇢0 = ||r0||22, k = 1
2: while (

p
⇢
k�1 > ✏||b||2 and k < k

max

) do
3: if k==1 then
4: Let W1 = T (r0), A-orthonormalise its vectors
5: else
6: Let W

k

= AW
k�1

7: A-orthonormalise W
k

against W
k�1 and W

k�2 if k > 2
8: A-orthonormalise the vectors of W

k

9: end if
10: ↵

k

= (W t

k

r
k�1)

11: x
k

= x
k�1 +W

k

↵
k

12: r
k

= r
k�1 � AW

k

↵
k

13: ⇢
k

= ||r
k

||22
14: k = k+1
15: end while30 of 54



SRE-CG: cost on t processors

Cost of k̄ iterations of CG is:

Total Flops ⇡ 2nnz · k̄/t + 4nk̄/t
# words ⇡ O(k̄) (from SpMV)

# messages ⇡ 2 k log(t) + O(k) (from SpMV)

Cost of k iterations of SRE-CG is:

Total Flops ⇡ 2nnz · k + O(ntk)
# words ⇡ kt2log(t) + O(k) (from SpMV)

# messages ⇡ klog(t) + O(k) (from SpMV)

Ideally, SRE-CG converges t times faster (k = k̄/t)
) SRE-CG has a factor of k̄/k less global communication.

31 of 54



Convergence of di↵erent CG versions

CG SRE-CG
Pa Iter Err Iter Err
SKY3D

8 902 1E-5 211 1E-5
16 902 1E-5 119 9E-6
32 902 1E-5 43 4E-6

ANI3D
2 4187 4e-5 875 7e-5
4 4146 4e-5 673 8e-5
8 4146 4e-5 449 1e-4
16 4146 4e-5 253 2e-4
32 4146 4e-5 148 2e-4
64 4146 4e-5 92 1e-4

ELAST3D
2 1098 1e-7 652 1e-7
4 1098 1e-7 445 1e-7
8 1098 1e-7 321 8e-8
16 1098 1e-7 238 4e-8
32 1098 1e-7 168 5e-8
64 1098 1e-7 116 1e-8

32 of 54



Plan

Krylov subspace methods

Tuning sparse matrix-vector product

Iterative solvers that reduce communication

Preconditioners
One level preconditioners: CA-ILU0
Two level preconditioners

Extra slides: one level preconditioners

33 of 54



Preconditioned Krylov subspace methods

⌅ Solve by using iterative methods

Ax = b.

⌅ Convergence depends on (A) and the eigenvalue distribution (for SPD
matrices).

⌅ To accelerate convergence, solve

M�1Ax = M�1b,

where
⇤

M approximates well the inverse of A and/or
⇤ improves (A), the condition number of A.

⌅ Ideally, we would like to bound (A), independently of the size of the
matrix A.

34 of 54



One level preconditioners (two examples)

Incomplete LU factorization

⌅ Computes A = LU + E

⌅ Preconditioner M = LU

⌅ ILU0 does not introduce any fill in the factors

Block Jacobi preconditioner
Given

A =

0

BB@

A11 . . . A1N

.

.

.
. . .

.

.

.
A

N1 . . . A

PP

1

CCA

block Jacobi preconditioner is:

M =

0

BB@

A11

. . .
A

PP

1

CCA =

0

BB@

L11U11

. . .
L

PP

U

PP

1

CCA = LU

35 of 54



The need for two level preconditioners

⌅ When solving complex linear systems arising, e.g. from large discretized
systems of PDEs with strongly heterogeneous coe�cients (high contrast,
multiscale).

⇤ Flow in porous media

⇤ Elasticity problems

⇤ CMB data analysys (no PDE)

⌅ Most of the existing preconditioners lack robustness
⇤ wrt jumps in coe�cients / partitioning into irregular subdomains, e.g. one

level DDM methods (block Jacobi, RAS), incomplete LU
⇤ A few small eigenvalues hinder the convergence of iterative methods

36 of 54



Using deflation to deal with low frequency modes

In the unified framework of [Tang et al., 2009], let :

P := I � AZE�1ZT , E := ZTAZ

where

⌅ Z is the deflation subspace matrix of full rank

⌅ E is the coarse grid correction, a small dense invertible matrix

⌅ P is the deflation matrix, PAZ = 0

Usage in di↵erent classes of preconditioners

⌅ DDM - Z and ZT are the restriction and prolongation operators based on
subdomains, E is a coarse grid, P is a subspace correction

⌅ Deflation - Z contains the vectors to be deflated

⌅ Multigrid - interpretation possible

37 of 54



Using deflation to deal with low frequency modes

In the unified framework of [Tang et al., 2009], let :

P := I � AZE�1ZT , E := ZTAZ

where

⌅ Z is the deflation subspace matrix of full rank

⌅ E is the coarse grid correction, a small dense invertible matrix

⌅ P is the deflation matrix, PAZ = 0

Usage in di↵erent classes of preconditioners

⌅ DDM - Z and ZT are the restriction and prolongation operators based on
subdomains, E is a coarse grid, P is a subspace correction

⌅ Deflation - Z contains the vectors to be deflated

⌅ Multigrid - interpretation possible

37 of 54



Using deflation to deal with low frequency modes

In the unified framework of [Tang et al., 2009], let :

P := I � AZE�1ZT , E := ZTAZ

where
⌅ Z is the deflation subspace matrix of full rank
⌅ E is the coarse grid correction, a small dense invertible matrix
⌅ P is the deflation matrix, PAZ = 0

Example of preconditioner

P�1
2lvl = M�1P + ZE�1ZT ,

where M is the first level preconditioner (eg based on block Jacobi).

⌅ P�1
2lvlAZ = Z

⌅ The small eigenvalues are shifted to 1.

⌅ P2lvl is not SPD, even when A is, better choices available, but more
expensive.

38 of 54



Using deflation to deal with low frequency modes

In the unified framework of [Tang et al., 2009], let :

P := I � AZE�1ZT , E := ZTAZ

where
⌅ Z is the deflation subspace matrix of full rank
⌅ E is the coarse grid correction, a small dense invertible matrix
⌅ P is the deflation matrix, PAZ = 0

Example of preconditioner

P�1
2lvl = M�1P + ZE�1ZT ,

where M is the first level preconditioner (eg based on block Jacobi).

⌅ P�1
2lvlAZ = Z

⌅ The small eigenvalues are shifted to 1.

⌅ P2lvl is not SPD, even when A is, better choices available, but more
expensive.

38 of 54



Two level preconditioners (contd)

Computing the preconditioner requires

⌅ Deflation subspace Z , which can be formed by
⇤ Eigenvectors corresponding to smallest eigenvalues - from previous linear

systems solved with di↵erent right hand sides, etc.
⇤ Using knowledge from the physics, partition of the unity, etc.

⌅ Computing AZ and E = ZTAZ .

Applying the preconditioner at each iteration requires

⌅ Computing y = ZE�1ZT (Ax
i

) = ZE�1ZT v
) involves collective communication when computing Z

T

v ,
) and solving a linear system with E .

39 of 54



Two level preconditioners (contd)

Computing the preconditioner requires

⌅ Deflation subspace Z , which can be formed by
⇤ Eigenvectors corresponding to smallest eigenvalues - from previous linear

systems solved with di↵erent right hand sides, etc.
⇤ Using knowledge from the physics, partition of the unity, etc.

⌅ Computing AZ and E = ZTAZ .

Applying the preconditioner at each iteration requires

⌅ Computing y = ZE�1ZT (Ax
i

) = ZE�1ZT v
) involves collective communication when computing Z

T

v ,
) and solving a linear system with E .

39 of 54



Example of deflation used in CMB data analysis

CMB data analysis
⌅ Study light left over after the ever mysterious Big Bang,

⌅ Produce and analyze multi-frequency 2D images of the universe when it was 5% of its
current age.

⌅ COBE (1989) collected 10 gigabytes of
data, required 1 Teraflop per image
analysis.

⌅ PLANCK (2010) produced 1 terabyte of
data, requires 100 Petaflops per image
analysis.

⌅ Future experiment (2020) estimated to
collect .5 petabytes, require 100 Exaflops
per image analysis.

Source: J. Borrill, LBNL, R. Stompor, Paris 7

Source:
http://www.epm.ornl.gov/chammp/chammp.html

40 of 54



Map-making problem in an (algebraic) nutshell

⌅ Find the best map x from observations d , scanning strategy A, and noise
n
t

d = Ax + n
t

⌅ Assuming the noise properties are Gaussian and piece-wise stationary, the
covariance matrix is N =< n

t

nT
t

>, and N�1 is a block diagonal
symmetric Toeplitz matrix.

⌅ The solution of the generalized least squares problem is found by solving

ATN�1Ax = ATN�1d

Scanning strategy in our experiments:

⌅ 2048 densely crossing circles

⌅ Each circle is scanned 32 times, leading
to 106 samples

⌅ Piece-wise stationary noise, one Toeplitz
block for each circle

41 of 54



Traditional approach used in the CMB community

⌅ Solve the linear system using preconditioned CG:

M
diag

Sx = M
diag

b, where

S := ATN�1A, b := ATN�1d , M
diag

:= (ATdiag(N�1)A)�1

⌅ The diagonal preconditioner M
diag

does not scale numerically.

10-3

10-2

10-1

100

101

102

103

 0  20  40  60  80  100  120  140  160  180

R
e 

|| 
� i 

||

i (index)

No M
No M (�max = 512.225, �min = 0.147, � = 3 484.52 )

Mdiag
Mdiag (�max = 1.018, �min = 0.002, � = 509.00)

Figure : Eigenvalue distribution of S and
M

�1
diag

S (NoM and M

diag

resp. in the plot).

Figure : Convergence of preconditioned CG
when increasing the size of the problem, e.g.
number of circles T

N

.

42 of 54



Two level preconditioner for the map-making problem

⌅ Combine diagonal preconditioner with deflation

M2lvl = M
diag

(I � S(ZE�1ZT )) + ZE�1ZT ,

where M
diag

= (ATdiag(N�1)A)�1, E = ZTSZ

⌅ The e�ciency of the preconditioner depends on the choice of Z
see for more details [Grigori et al., 2012, Szydlarski et al., 2014].

10-3

10-2

10-1

100

101

102

103

 0  20  40  60  80  100  120  140  160  180

R
e 

|| 
� i 

||

i (index)

No M
No M (�max = 512.225, �min = 0.147, � = 3 484.52 )

Mdiag
Mdiag (�max = 1.018, �min = 0.002, � = 509.00)

M2lvl
M2lvl (�max = 1.012, �min = 0.012, � = 84.33)

Figure : Eigenvalue distribution of S ,
M

�1
diag

S , M�1
2lvl S (NoM, M

diag

, M2lvl resp. in

the plot).

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  50  100  150  200  250  300  350

||
 b

 -
 S

x n 
 |
| 2 
  

/ 
 |
| 
b

 |
| 2

Number of iterations

Mdiag (    8 MPI )
Mdiag (   16 MPI )
Mdiag (   32 MPI )
Mdiag (   64 MPI )
Mdiag (  128 MPI )
Mdiag (  256 MPI )
Mdiag (  512 MPI )
Mdiag ( 1024 MPI )
Mdiag ( 2048 MPI )
M2lvl (    8 MPI )
M2lvl (   16 MPI )
M2lvl (   32 MPI )
M2lvl (   64 MPI )
M2lvl (  128 MPI )
M2lvl (  256 MPI )
M2lvl (  512 MPI )
M2lvl ( 1024 MPI )
M2lvl ( 2048 MPI )

Figure : Convergence of preconditioned CG
when increasing the size of the problem,
number of circles = no of MPI processes.

43 of 54



Timings for weak (left) and strong (right) scaling

⌅ 1 or more (for strong scaling) circles per 1 MPI process.

⌅ 1 MPI process mapped on 6 cores of NERSC’s Hopper Cray XE6.

10-1

100

101

102

103

 8  16  32  64  128  256  512  1024  2048

T
im

e
 [
s]

Number of MPI processes

(solver) Mdiag
(construction) Mdiag
(solver) M2lvl
(constructon) M2lvl

0.0

0.0

0.1

1.0

 8  16  32  64  128  256  512  1024  2048

T
im

e
 [
s]

Number of MPI processes

1 It. with Mdiag
1 It. with M2lvl
N-1 x Vi
PT x Vi + (MPI-AllReduce)
P x Vi
E-1 x Vi

10-1

100

101

102

103

104

 32  64  128  256  512  1024

T
im

e
 [
s]

Number of MPI processes

(solver) Mdiag
(construction) Mdiag
(solver) M2lvl
(constructon) M2lvl

10-3

10-2

10-1

100

101

102

 32  64  128  256  512  1024

T
im

e
 [
s]

Number of MPI processes

1 It. with Mdiag
1 It. with M2lvl
N-1 x Vi
PT x Vi + (MPI-AllReduce)
P x Vi
E-1 x Vi

44 of 54



Plan

Krylov subspace methods

Tuning sparse matrix-vector product

Iterative solvers that reduce communication

Preconditioners

Extra slides: one level preconditioners
One level preconditioners: examples

45 of 54



One level preconditioners (two examples)

Incomplete LU factorization

⌅ Computes A = LU + E

⌅ Preconditioner M = LU

⌅ ILU0 does not introduce any fill in the factors

Block Jacobi preconditioner
Given

A =

0

BB@

A11 . . . A1N

.

.

.
. . .

.

.

.
A

N1 . . . A

PP

1

CCA

block Jacobi preconditioner is:

M =

0

BB@

A11

. . .
A

PP

1

CCA =

0

BB@

L11U11

. . .
L

PP

U

PP

1

CCA = LU

46 of 54



Left-preconditioned system

⌅ A preconditioned matrix powers kernel computes the set basis vectors

{M�1Ay0, (M
�1A)2y0, ..., (M

�1A)s�1y0, (M
�1A)sy0}

where y0 is a starting vector and s � 1.

⌅ The i-th iteration of a Krylov subspace solver preconditioned with
M = LU computes y

i

= (LU)�1Ay
i�1 as:

1. Compute f = Ay

i�1

2. Solve LUy

i

= f i.e.

2.1 Solve Lz = f by forward substitution

2.2 Solve Uy

i

= z by backward substitution

47 of 54



ILU0 with nested dissection

Can we compute s iterations with no communication ?

Compute y

i

= (LU)�1
Ay

i�1 using 3 steps:

1. Compute f = Ay

i�1

2. Solve Lz = f by forward substitution

3. Solve Uy

i

= z by backward substitution

0

BBBBBBB@

A11 A13 A17
A22 A23 A27

A31 A32 A33 A37
A44 A46 A47

A55 A56 A57
A64 A65 A66 A67

A71 A72 A73 A74 A75 A76 A77

1

CCCCCCCA

Matrix from 5 point stencil on a 2D grid, reordered with nested dissection

48 of 54



Avoid communication through ghosting

Input: G(A), G(L), G(U),
s, number of steps; ↵0, subset of unknowns

Output: Sets �
j

, �
j

and �
j

for all j = 1 till s
for i = 1 to s

Find �
i

= ReachableVertices(G(U),↵
i�1)

Find �
i

= ReachableVertices(G(L), �
i

)
Find �

i

= Adj(G(A), �
i

)
Set ↵

i

= �
i

end for

Ghost data required for i = 1 : s

x(�
i

),A(�
i

, �
i

)

L(�
i

, �
i

),U(�
i

, �
i

)

current solution vector

146

116

126

136

106

211

245244243

253 254 255 256

246 247

257 260259258

248 249 250

273 274 275 276 277 278 279 280

263 264 265 266 267 268 269 270

378 379 380 381 382 383 384 385

350349348

368

358 359

369 370

360

371

361

351 352

362

372 373 374 375

365364363

353 354 355

295294293292

302 303 304 305 306

296 297

307 311310309308

298 299 300 301

322 323 324 325 326 327 328 329 330 331

312 313 314 315 316 317 318 319 320 321

427 428 429 430 431 432 433 434 435 436

388 389 390

400399398397

407

417 418

408 409

419 420

410

421

411

401

391

402

412

422 423 424 425 426

416415414413

403 404 405 406

396394393392 395387338 339 340 341 344343342 345

443 444 445 446 449448447 450 454 455 456 457 462460459458 461453

261

251

281

271

386

376

366

356

346

451

334

333

336

335

441

440

439

438

437

452

242

252

272

262

377

347

357

367

337

442

14131211

21 22 23 24 25

15 16

26 292827

17 18 19

41 42 43 44 45 46 47 48 49

31 32 33 34 35 36 37 38 39

147 148 149 150 151 152 153 154

119118117

137

127 128

138 139

129

140

130

120 121

131

141 142 143 144

134133132

122 123 124

64636261

71 72 73 74 75

65 66

76 80797877

67 68 69 70

91 92 93 94 95 96 97 98 99 100

81 82 83 84 85 86 87 88 89 90

196 197 198 199 200 201 202 203 204 205

157 158 159

169168167166

176

186 187

177 178

188 189

179

190

180

170

160

171

181

191 192 193 194 195

185184183182

172 173 174 175

165163162161 164156107 108 109 110 113112111 114

212 213 214 215 218217216 219 223 224 225 226 231229228227 230222

30

20

50

40

155

145

135

125

115

220

103

102

105

104

210

209

208

207

206

221

464

465

467

466

473

470

471

472

469

468

233 234 235 236 239238237 240 282 283 284 285 286 291289288287 290241 3322321 2 3 4 5 876 9 51 52 53 54 55 60585756 5910 101 463

Domain 1
for backward substitution

Domain & ghost equations Domain & ghost equations 

for forward substitution

Ghost data from

) Ghosting not su�cient, one processor does half of the work !

49 of 54



CA-ILU0 with AMML(s) reordering and ghosting

⌅ Reduce volume of ghost data by using Alternating Min-Max Layers
(AMML) reordering:
⇤ First number the vertices at odd distance from the separators,
⇤ then number the vertices at even distance from the separators.

⌅ No communication required during the construction and the application
of CA-ILU0 [Grigori and Moufawad, 2014].

81

Domain 1

Domain & ghost zone 

for forward substitution

Ghost Data from

current solution vector

for backward substitution

Domain & ghost zone

164 165

189

1

2

3

4

5 6 7 8 9 10 11

13 14 15 16 17 18 19 20

21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36

100 9594939291908988

51

52

53

54

55 56 57 58 59 60 61 62

63 64 65 66 67 68 69 70

71 72 73 74 76 77 78

79 80 82 83 84 85 86

75

150

149

148

147

124 127

101

102

103

104

105 106 107 108 109 110 111 112

114 115 116 117 118 119 120

123 125 126 128

129 130 131 132 133 134 135 136

200

199

198

197

195194193192191190188

151

152

153

154

155 156 157 158 159 160 161 162

163 166 167 168 169 170

171 172 173 174 175 176 177 178

179 180 181 182 183 184 185 186

47

48

49

4612

503738 39 40 41 42 43 44 45

97

98

99

96

87

146 196

138 139 140 141 142 143 144 145 137 187

121

113

122

5 point stencil on a 2D grid, nested dissection + AMML(1)

50 of 54



E↵ect on the inverse of L and U

Matrix A in natural order and its L�1 and U�1 factors

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

nz = 49600

Matrix A with nested dissection and AMML(1) and its L�1 and U�1 factors

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

nz = 49600
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

nz = 35604
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

nz = 35604

51 of 54



Comparison with block Jacobi

Tests for a boundary value problem (Achdou, Nataf), 40⇥ 40⇥ 40 grid

3D Skyscraper Problem - SKY3D

�div((x)ru) = f in ⌦

u = 0 on @⌦
D

@u

@n

= 0 on @⌦
N

Methods tested:

⌅ Natural ordering NO+ILU0

⌅ CA-ILU0 - kway+AMML(1)+ILU0

⌅ Block Jacobi using LU - BJ+ILU0

⌅ Block Jacobi using ILU0 - BJ-ILU0

52 of 54



Experimental results

Figure : No of iterations for CA-ILU0 and
block Jacobi.

Figure : Speedup with respect to ILU0 from
PETSc

Source: S. Cayrols

53 of 54



References (1)

Demmel, J., Hoemmen, M., Mohiyuddin, M., and Yelick, K. (2009).

Minimizing communication in sparse matrix solvers.
In Proceedings of the ACM/IEEE Supercomputing SC9 Conference.

Grigori, L. and Moufawad, S. (2014).

Communication avoiding incomplete LU0 factorization.
SIAM Journal on Scientific Computing, in press.
Also as INRIA TR 8266.

Grigori, L., Moufawad, S., and Nataf, F. (2014).

Enlarged Krylov Subspace Conjugate Gradient Methods for Reducing Communication.
Technical Report 8597, INRIA.

Grigori, L., Stompor, R., and Szydlarski, M. (2012).

A parallel two-level preconditioner for cosmic microwave background map-making.
Proceedings of the ACM/IEEE Supercomputing SC12 Conference.

Qu, L., Grigori, L., and Nataf, F. (2013).

Parallel design and performance of nested filtering factorization preconditioner.
In Proceedings of the ACM/IEEE Supercomputing SC12 Conference.

Szydlarski, M., Grigori, L., and Stompor, R. (2014).

Accelerating the cosmic microwave background map-making problem through preconditioning.
Astronomy and Astrophysics Journal, Section Numerical methods and codes, 572.

Tang, J. M., Nabben, R., Vuik, C., and Erlangga, Y. A. (2009).

Comparison of two-level preconditioners derived from deflation, domain decomposition and multigrid methods.
J. Sci. Comput., 39:340–370.

54 of 54


	Krylov subspace methods
	Conjugate gradient method

	Tuning sparse matrix-vector product
	Sequential performance optimization
	Tuning on multicore

	Iterative solvers that reduce communication
	CA solvers based on s-step methods
	Enlarged Krylov methods

	Preconditioners
	One level preconditioners: CA-ILU0
	Two level preconditioners

	Extra slides: one level preconditioners
	One level preconditioners: examples


