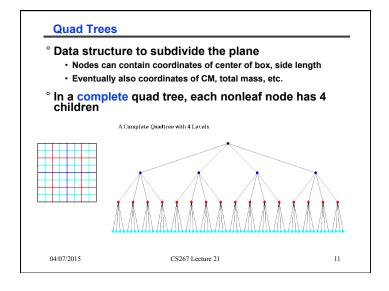
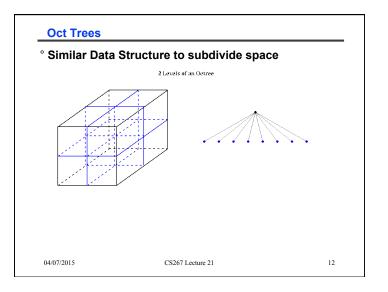
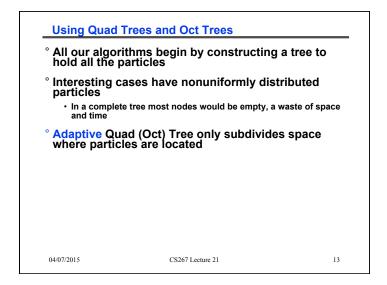
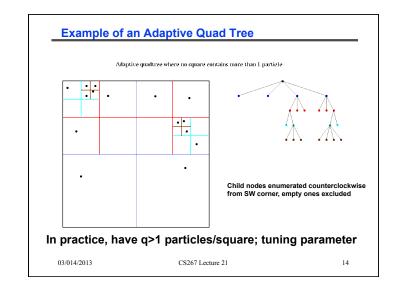
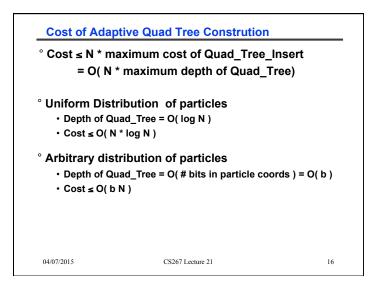

° Hair ...

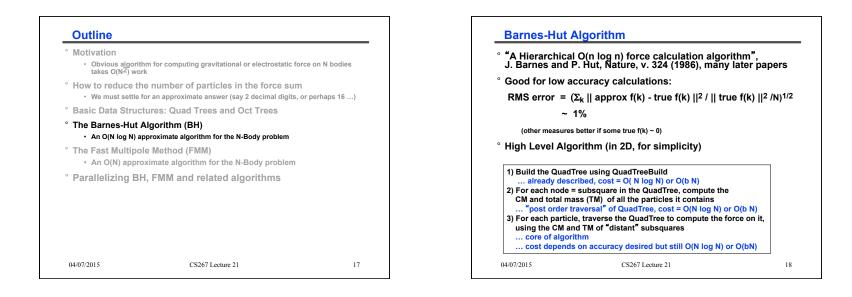


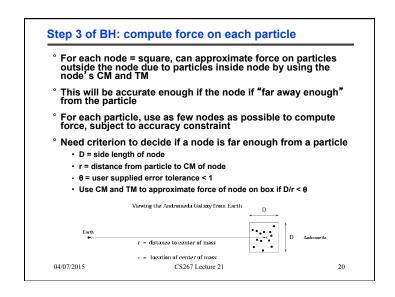

Applications (2/2) ° Molecular Dynamics ° Plasma Simulation ° Electron-Beam Lithography Device Simulation www.fxguide.com/featured/brave-new-hair/ graphics.pixar.com/library/CurlyHairA/paper.pdf 04/07/2015

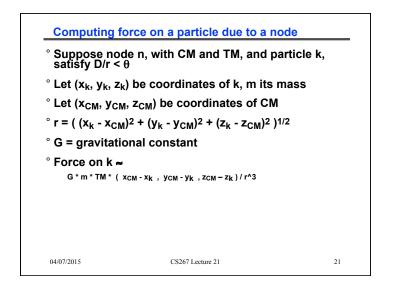


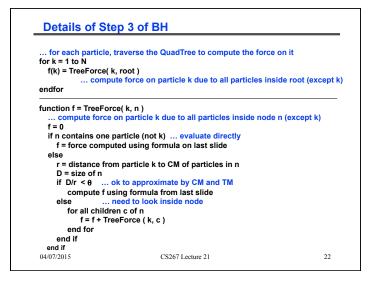


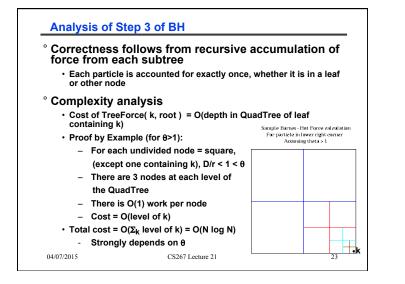


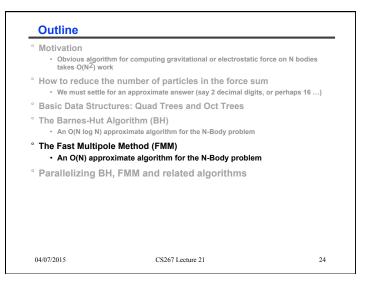


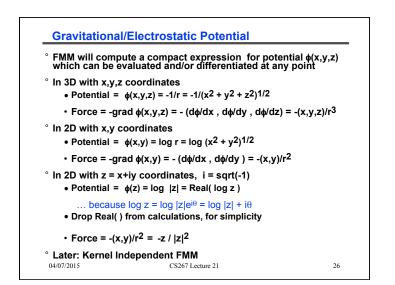


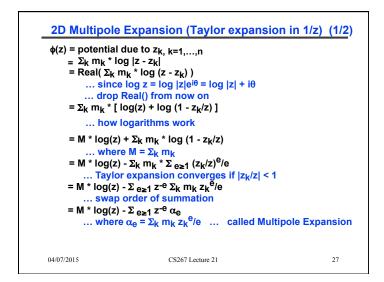

endfor At this point, ea There will be 0		ticles
if n an internal nod determine which Quad_Tree_Inse else if n contains 1 add n' s 4 childre	child c of node n contains particle j t(j, c) particle n is a leaf Easy change for n to the Quad_Tree palready in n into the child containing it of n containing j t(j, c) n empty	-
04/07/2015	CS267 Lecture 21	15

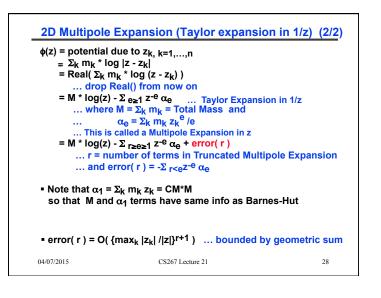


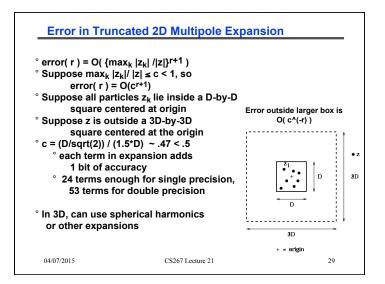


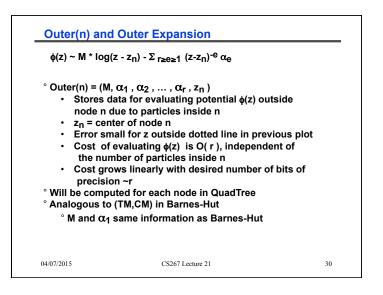

in each node of		I the particles
(TM, CM) = Compu	ite_Mass(root)	
function (TM, CM) if n contains 1 p	= Compute_Mass(n) compute the CM article	and TM of node n
the TM an store (TM, Cl	d CM are identical to the particle's mass an /) at n	d location
return (TM, C else ^e pos	M) t order traversal": process parent after all c	hildron
	in c(j) of n j = $1,2,3,4$	indren
	M(j)) = Compute_Mass(c(j))	
onaroi	TM(2) + TM(3) + TM(4)	
	al mass is the sum of the children's masse	s
CM = (TM(1)	*CM(1) + TM(2)*CM(2) + TM(3)*CM(3) + TM(4) I is the mass-weighted sum of the children' M) at n	*CM(4)) / TM
Cost = O([∉] nodes in QuadTree) = O(N log N)	or O(b N)
4/07/2015	CS267 Lecture 21	19

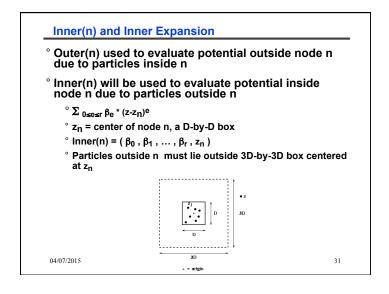


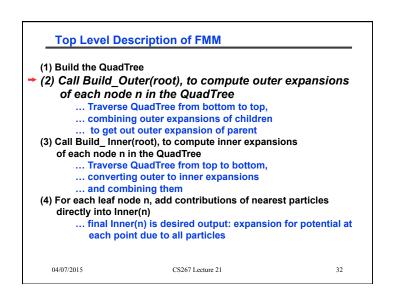


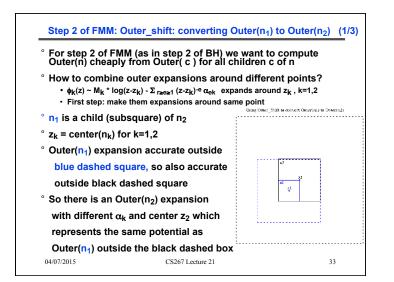

- * "A fast algorithm for particle simulation", L. Greengard and V. Rokhlin, J. Comp. Phys. V. 73, 1987, many later papers
 - Many awards
- ° Differences from Barnes-Hut
 - · FMM computes the potential at every point, not just the force
 - FMM uses more information in each box than the CM and TM, so it is both more accurate and more expensive
 - In compensation, FMM accesses a fixed set of boxes at every level, independent of D/r
 - BH uses fixed information (CM and TM) in every box, but # boxes increases with accuracy. FMM uses a fixed # boxes, but the amount of information per box increase with accuracy.
- ° FMM uses two kinds of expansions
 - Outer expansions represent potential outside node due to particles inside, analogous to (CM,TM)
 - Inner expansions represent potential inside node due to particles outside; Computing this for every leaf node is the computational goal of FMM
- ° First review potential, then return to FMM
- 04/07/2015

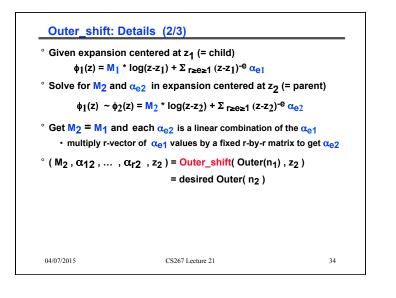

CS267 Lecture 21

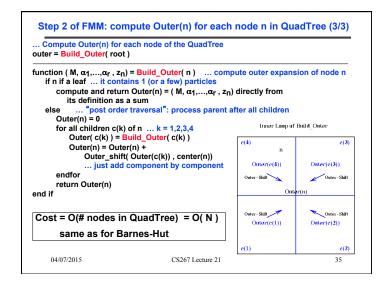

25

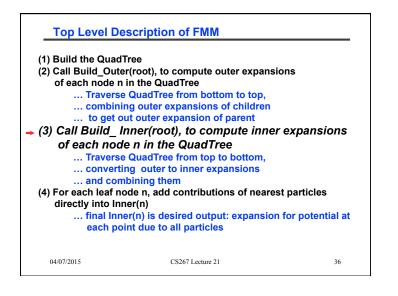


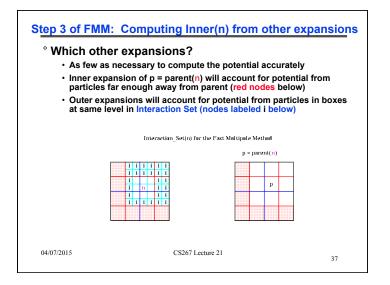


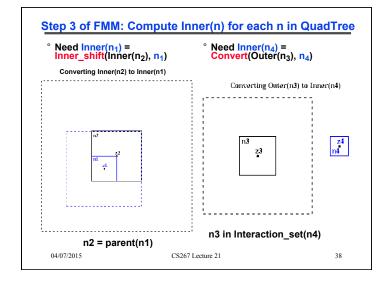


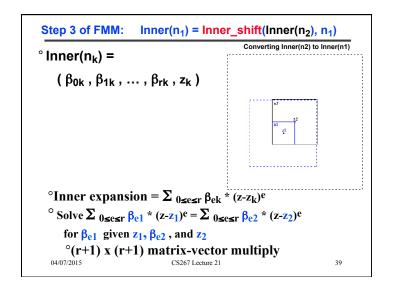


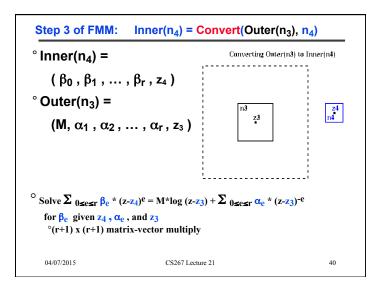


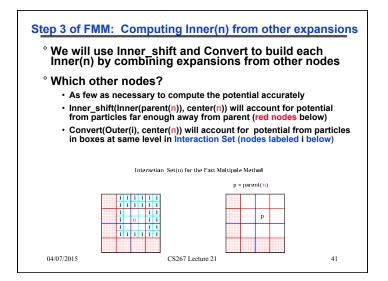


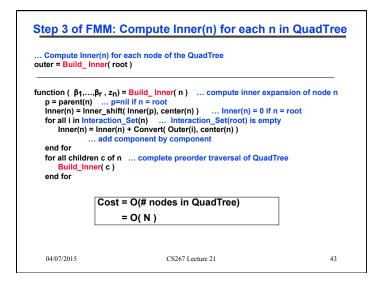


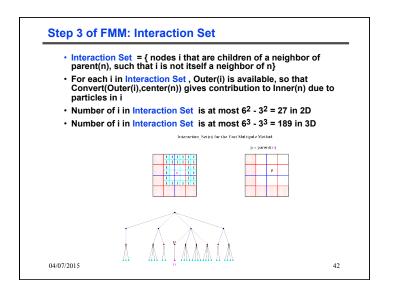


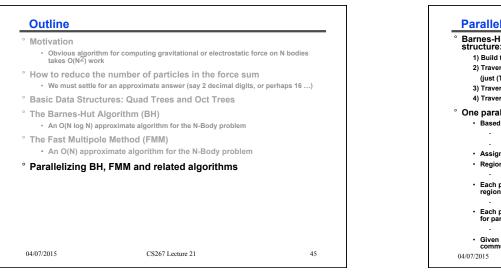


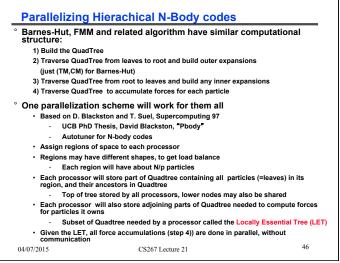


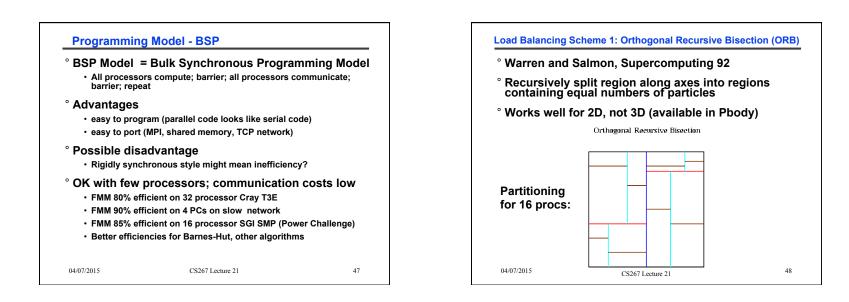


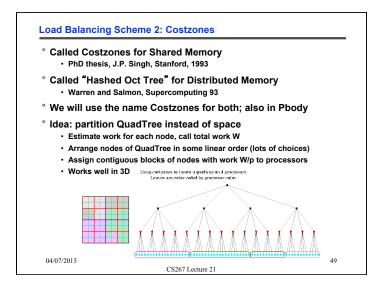


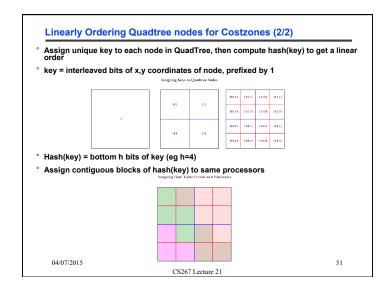


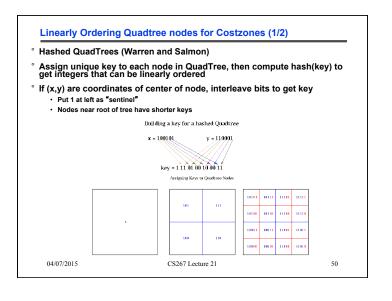


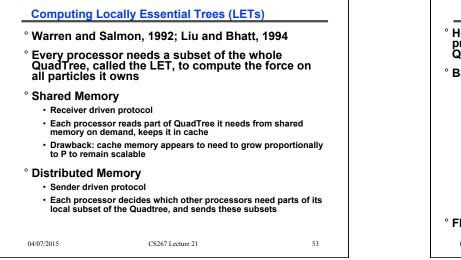


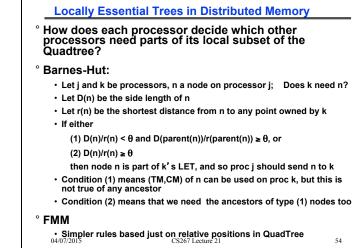




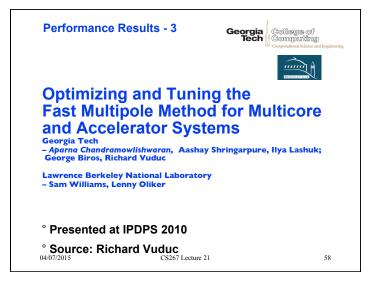

	cription of FMM	
(1) Build the QuadTr	ee	
(2) Call Build Outer(root), to compute outer expansi	ons
of each node n in		
Traverse (QuadTree from bottom to top,	
combining	outer expansions of children	
to get out	outer expansion of parent	
(3) Call Build_Inner(root), to compute inner expansi	ons
of each node n ir	the QuadTree	
Traverse (QuadTree from top to bottom,	
converting	g outer to inner expansions	
and comb	ining them	
(4) For each leaf	node n, add contributions	of
nearest partic	cles directly into Inner(n)	
if 1 node/le	eaf, then each particles accesse	d once.
so cost = 0		,
	(n) is desired output: expansion	for potential at
	t due to all particles	
04/07/2015	CS267 Lecture 21	44

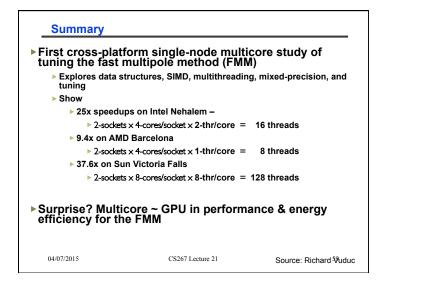


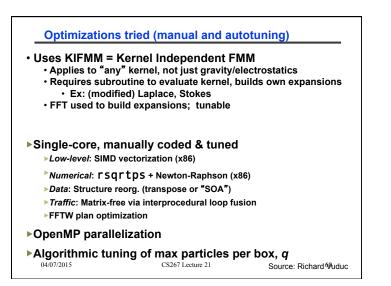


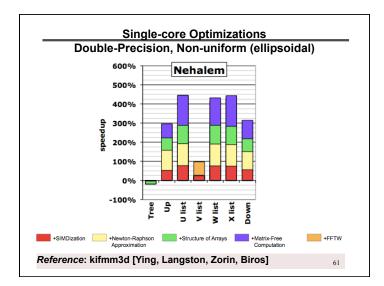


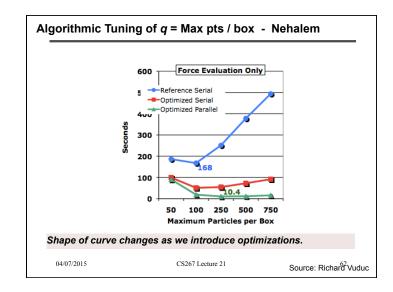
Not practica compute Co build QuadT	l to compute QuadTree, in o stzones, to then determine h ree	rder to now to best
Random Sar	npling:	
 All processo Proc 1 	ors send small random sample of thei	r particles to
	s small Quadtree serially, determines ists them to all processors	its Costzones,
 Other proce these Costz 	ssors build part of Quadtree they are ones	assigned by
All processo later to com	rs know all Costzones; we r oute LETs	need this
As particles construction	move, may need to occasion , so should not be too slow	nally repeat

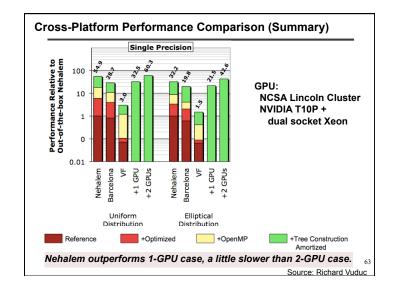


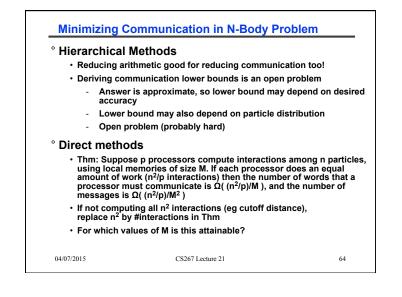


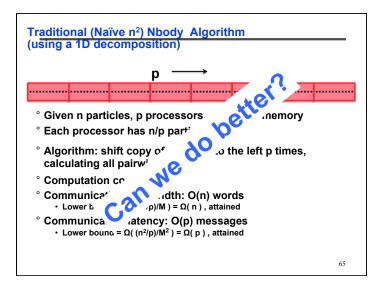

Recall	Step 3 of FMM
	shift and Convert to build each ing expansions from other nodes
Which other nodes	?
 Inner_shift(Inner(pare from particles far end 	to compute the potential accurately ent(n)), center(n)) will account for potential ough away from parent (red nodes below) nter(n)) will account for potential from particles
	el in Interaction Set (nodes labeled i below)
in boxes at same leve	
in boxes at same leve	el in Interaction Set (nodes labeled i below)
in boxes at same leve	el in Interaction Set (nodes labeled i below) tian_Set(n) for the Fast Multipole Method p = parent(n) 1 1 1 1 1 1 1 1 1 1 1 1 1

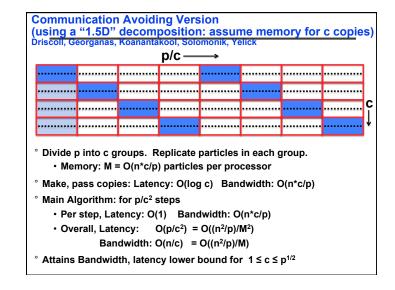

512 Proc Intel Delta		
	ercomputing 92, Gordon Bell	Prize
 8.8 M particles, uniformly 		
 .1% to 1% RMS error, Bar 	nes-Hut	
 114 seconds = 5.8 Gflops 		
 Decomposing doma 	in 7 secs	
 Building the OctTree 	e 7 secs	
- Tree Traversal	33 secs	
 Communication dur 	ing traversal 6 secs	
 Force evaluation 	54 secs	
- Load imbalance	7 secs	
 Rises to 160 secs as distr 	ibution becomes nonuniform	
04/07/2015 CS	267 Lecture 21	56

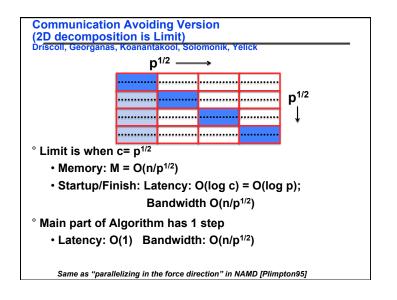

Cray T3E				
 Blackstor 	n, 1999			
• 10-4 RMS	error			
Generally	80% effic	ient on up to 32	processors	
• Example:	50K partio	cles, both unifor	m and nonunif	orm
- prel	iminary re	sults; lots of tur	ing parameters	s to set
	Unif	orm	Nonur	niform
	1 proc	4 procs	1 proc	4 procs
Tree size	2745	2745	5729	5729
MaxDepth	4	4	10	10
Time(secs)	172.4	38.9	14.7	2.4
Speedup		4.4		6.1
Speedup vs O(n²)		>50		>500

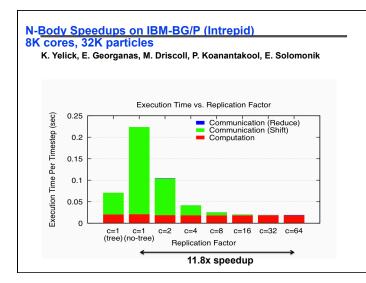


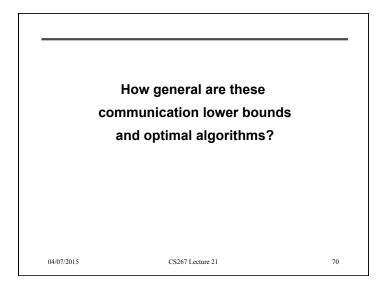


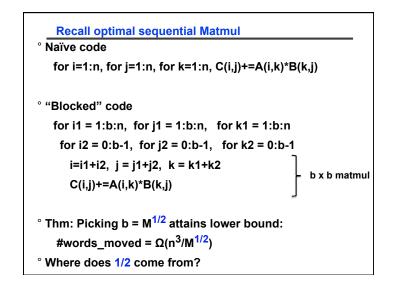


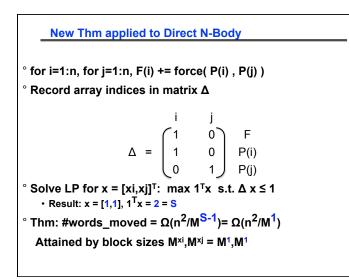


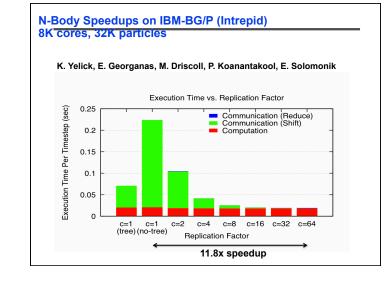







			p/c —				
	•••••					•••••	
	o into c gr copy of e	•		•	•	c proces	sors
Make a	o into c gr copy of e opy to the	ach grou	p of n*c/j	o particle	s	•	sors





New Thm	applied to Mat	mul		
° for i=1:n, for	j=1:n, for k=1:n	, C(i,j)	+= A(i	,k)*B(k,j)
° Record array	indices in mat	rix ∆		
	$\Delta = \begin{pmatrix} i \\ 1 \\ 0 \\ 1 \end{pmatrix}$	j 0 1 1	k 1 1 0) A B C
• Result: x = ° Thm: #words	x = [xi,xj,xk] ^T : 1 [1/2, 1/2, 1/2] ^T , 1 ^T x 5_moved = Ω(n ³ block sizes M ^{xi} ,	= 3/2 = 8 /M ^{S-1}) [;]	5 = Ω(n ³	³ /M ^{1/2})

$^\circ$ for i1=1:n, for i2=1:n, \ldots , for i	6=1:r	1					
A1(i1,i3,i6) += func1(A2(i1	,i2,i4	I),A3	3(i2,i	3,i5)	, A4 (i3,i4	1,i6)
A5(i2,i6) += func2(A6(i1,i4	l,i5),	A3(i:	3, i 4,i	6))			
° Record array indices	i1	i2	i3	i4	i5	i6	
	1 1 0 0 1	0	1	0	0	1	A1
in matrix Δ	1	1	0	1	0	0	A2
$\Delta =$	0	1	1	0	1	0	A3
	0	0	1	1	0	1	A3,A4
	0	0	1	1	0	1	A5
		0	0	1	1	0	A6
 Solve LP for x = [x1,,x6]^T: n Result: x = [2/7,3/7,1/7,2/7,3/7,4/7], 1 Thm: #words_moved = Ω(n⁶/N 	$ax_{x=1}^{T}$	^T XS 5/7 = 9	.t. ∆	x ≤ 1		1	

Approac	h to generalizing lower bounds
° Matmu	1
for i	=1:n, for j=1:n, for k=1:n,
(C(i,j)+=A(i,k)*B(k,j)
=> for (i,j,k) in S = subset of Z³
1	Access locations indexed by (i,j), (i,k), (k,j)
° Genera	l case
for i1	=1:n, for i2 = i1:m, for ik = i3:i4
C	:(i1+2*i3-i7) = func(A(i2+3*i4,i1,i2,i1+i2,),B(pnt(3*i4)),)
D	(something else) = func(something else), …
=> for (i	1,i2,…,ik) in S = subset of Z ^k
А	ccess locations indexed by "projections", eg
	φ _c (i1,i2,,ik) = (i1+2*i3-i7)
	φ _A (i1,i2,,ik) = (i2+3*i4,i1,i2,i1+i2,),

General Communication Bound

° Def: Hölder-Brascamp-Lieb Linear Program (HBL-LP)

for s₁,...,s_m:

for all subgroups $H < Z^k$, rank(H) $\leq \Sigma_i s_i^* rank(\varphi_i(H))$

 $^\circ$ Thm: Given a program with array refs given by $\phi_i,$ choose s_j to minimize s_{HBL} = Σ_j s_j subject to HBL-LP. Then

#words_moved = Ω (#iterations/M^{SHBL-1})

 Proof depends on recent result in pure mathematics by Christ/Tao/Carbery/Bennett

Is this bound attainable? (1/2)

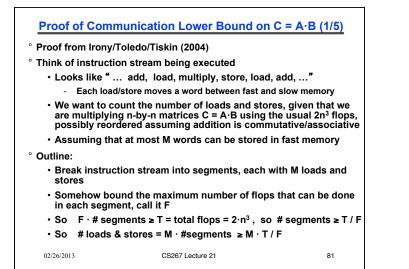
° But first: Can we write it down?

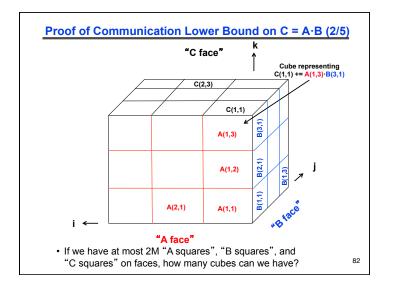
- One inequality per subgroup H < Z^k, but still finitely many!
- Thm: (bad news) Writing down all inequalities equivalent to Hilbert's 10^{th} problem over Q
 - conjectured to be undecidable
- Thm: (good news) Can decidably write down a subset of the constraints with the same solution ${\rm s}_{\rm HBL}$
- Thm: (better news) Can write it down explicitly in many cases of interest
 - Ex: when all φ_j = {subset of indices}

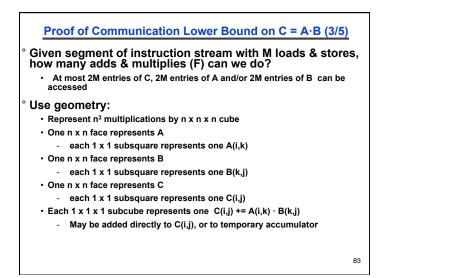
Is this bound attainable? (2/2)

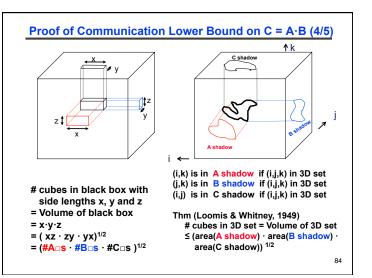
° Depends on loop dependencies

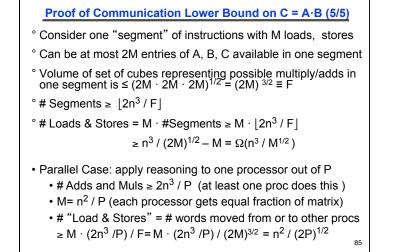
- [°] Best case: none, or reductions (matmul)
- $^\circ$ Thm: When all ϕ_i = {subset of indices}, dual of HBL-LP gives optimal tile sizes:


HBL-LP: minimize $1^{T*}s$ s.t. $s^{T*}\Delta \ge 1^{T}$


Dual-HBL-LP: maximize $1^{T*}x$ s.t. $\Delta^*x \leq 1$


- Then for sequential algorithm, tile i_i by M^{xj}
- ° Ex: Matmul: s = [1/2 , 1/2 , 1/2]^T = x
- ° Extends to unimodular transforms of indices


$\label{eq:second} \begin{array}{l} \mbox{Intuition behind LP for matmul} \\ for i=1:n, for j=1:n, for k=1:n, C(i,j) += A(i,k)^{*}B(k,j) \\ for i1= 1:M^{xi}:n, for j1=1:M^{xi}:n, for k1=1:M^{xk}:n \\ for i2=0: M^{xi} -1, for j2=0: M^{xj} -1, for k2=0: M^{xk} -1 \\ C(i1+i2, j1+j2) += A(i1+i2,k1+k2)^{*}B(k1+k2,j1+j2) \\ How do we choose x = [xi,xj,xk]? \\ \cdot C(i,j) has blocks of size M^{xi} by M^{xj}, or M^{xi+xj} words, so xi + xj \leq 1 \\ to fit in fast memory of size M \\ \cdot Similarly A(i,k) requires xi + xk \leq 1, B(k,j) requires xk + xj \leq 1 \\ \cdot Same as \Delta x \leq 1 \\ \cdot Number of inner 3 loop iterations = M^{xi} x M^{xj} x M^{xk} = M^{xi + xj + xk} \\ \cdot Goal: maximize number of inner 3 loop iterations given blocks of A,B,C in fast memory \\ \cdot Same as maximizing s = xi + xj + xk = 1^{T}x \quad s.t. \quad \Delta x \leq 1 \\ \cdot Solution: x = [\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, s = 3/2 \end{array}$


- Overall communication cost
- = number of times inner 3 loops executed * M = n³/M^s * M = n³/M^{1/2}

