Parallel Spectral Methods: Fast Fourier Transform (FFT) with Applications

James Demmel
www.cs.berkeley.edu/~demmel/cs267_Spr15

Ouline and References

${ }^{\circ}$ Outline

- Definitions
- A few applications of FFTs
- Sequential algorithm
- Parallel 1D FFT
- Parallel 3D FFT
- Autotuning FFTs: FFTW and Spiral projects

${ }^{\circ}$ References

- Previous CS267 lectures
- FFTW project: http://www.fftw.org
- Spiral project: http://www.spiral.net
- LogP: UCB EECS Tech Report UCB/CSD-92-713
- Lecture by Geoffrey Fox:
http://grids.ucs.indiana.edu/ptliupages/presentations/PC2007/cps615fft00.ppt
04/14/2015
CS267 Lecture 23

Definition of Discrete Fourier Transform (DFT)
${ }^{\circ}$ Let $\mathrm{i}=\mathrm{sqrt}(-1)$ and index matrices and vectors from 0 .
${ }^{\circ}$ The (1D) DFT of an m-element vector v is:

F*

where F is an m-by- m matrix defined as:

```
F[j,k]= = (\mp@subsup{0}{}{*}k),
```

and where σ is:

$$
\varpi=e^{(2 \pi i / m)}=\cos (2 \pi / m)+i^{*} \sin (2 \pi / m)
$$

${ }^{\circ} \varpi$ is a complex number with whose $m^{\text {th }}$ power $\varpi^{m}=1$ and is therefore called an $\mathrm{m}^{\text {th }}$ root of unity
${ }^{\circ}$ E.g., for $m=4: \quad \omega=i, \quad \omega^{2}=-1, \quad \omega^{3}=-i, \quad \boldsymbol{w}^{4}=1$
${ }^{\circ}$ The 2D DFT of an m-by-m matrix V is $F^{*} V^{*} F$

- Do 1D DFT on all the columns independently, then all the rows
${ }^{\circ}$ Higher dimensional DFTs are analogous

Motivation for Fast Fourier Transform (FFT)

${ }^{\circ}$ Signal processing
${ }^{\circ}$ Image processing
${ }^{\circ}$ Solving Poisson's Equation nearly optimally

- $\mathbf{O}(\mathbf{N} \log \mathrm{N})$ arithmetic operations, $\mathrm{N}=$ \#unknowns
- Competitive with multigrid
${ }^{\circ}$ Fast multiplication of large integers
。 ...
${ }^{\circ}$ Signal $=\sin (7 t)+.5 \sin (5 t)$ at 128 points
${ }^{\circ}$ Noise $=$ random number bounded by .75
${ }^{\circ}$ Filter by zeroing out FFT components < . 25

Using the 2D FFT for image compression

${ }^{\circ}$ Image $=200 \times 320$ matrix of values
${ }^{\circ}$ Compress by keeping largest $\mathbf{2 . 5 \%}$ of FFT components
${ }^{\circ}$ Similar idea used by jpeg

Recall: Poisson's equation arises in many models
3D: $\partial^{2} u / \partial x^{2}+\partial^{2} u / \partial y^{2}+\partial^{2} u / \partial z^{2}=f(x, y, z)$
2D: $\partial^{2} u / \partial x^{2}+\partial^{2} u / \partial y^{2}=f(x, y)$
1D: $d^{2} u / d x^{2}=f(x)$
f represents the
sources; also
need boundary
conditions
${ }^{\circ}$ Electrostatic or Gravitational Potential: Potential(position)
${ }^{\circ}$ Heat flow: Temperature(position, time)
${ }^{\circ}$ Diffusion: Concentration(position, time)
${ }^{\circ}$ Fluid flow: Velocity,Pressure,Density(position,time)
${ }^{\circ}$ Elasticity: Stress,Strain(position,time)
${ }^{\circ}$ Variations of Poisson have variable coefficients

04/14/2015
CS267 Lecture 23
8

Algorithms for 2D (3D) Poisson Equation ($\mathrm{N}=\mathrm{n}^{2}\left(\mathrm{n}^{3}\right)$ vars)				
Algorithm	Serial	PRAM	Memory	\#Procs
- Dense LU	N^{3}	N	N^{2}	N^{2}
${ }^{\circ}$ Band LU	$\mathrm{N}^{2}\left(\mathrm{~N}^{7 / 3}\right)$	N	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{5 / 3}\right)$	$\mathrm{N}\left(\mathrm{N}^{4 / 3}\right)$
- Jacobi	$\mathrm{N}^{2}\left(\mathrm{~N}^{5 / 3}\right)$	$\mathrm{N}\left(\mathrm{N}^{2 / 3}\right)$	N	N
- Explicit Inv.	N^{2}	$\log N$	N^{2}	N^{2}
- Conj.Gradien	S $\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{4 / 3}\right)$	$\mathrm{N}^{1 / 2(1 / 3)} \boldsymbol{\operatorname { l o g }} \mathrm{N}$	N	N
- Red/Black SOR	R $\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{4 / 3}\right)$	$\mathrm{N}^{1 / 2}\left(\mathrm{~N}^{1 / 3}\right)$	N	N
- Sparse LU	$\mathrm{N}^{3 / 2}\left(\mathrm{~N}^{2}\right)$	$\mathrm{N}^{1 / 2}$	$\mathrm{N}^{*} \log \mathrm{~N}\left(\mathrm{~N}^{4 / 3}\right)$	N
$\Rightarrow{ }^{\circ} \mathrm{FFT}$	$N^{*} \log N$	$\log N$	N	N
- Multigrid	N	$\log ^{2} N$	N	N
- Lower bound	N	$\boldsymbol{\operatorname { l o g }} N$	N	
PRAM is an idealized parallel model with zero cost communication				
Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.				
04/14/2015 CS267 Lecture 23 11				

Solving 2D Poisson Equation with FFT (2/2)

- Use facts that

- $L_{1}=F \cdot D \cdot F^{\top}$ is eigenvalue/eigenvector decomposition, where
- F is very similar to FFT (imaginary part)
$-\mathrm{F}(\mathrm{j}, \mathrm{k})=(2 /(\mathrm{n}+1))^{1 / 2} \cdot \sin (\mathrm{j} \mathrm{k} \pi /(\mathrm{n}+1))$
- $\mathbf{D}=$ diagonal matrix of eigenvalues
$-D(\mathrm{j}, \mathrm{j})=2(1-\cos (\mathrm{j} \pi /(\mathrm{n}+1)))$
- 2D Poisson same as solving $L_{1} \cdot X+X \cdot L_{1}=B$ where
- X square matrix of unknowns at each grid point, B square too
${ }^{\circ}$ Substitute $L_{1}=F \cdot D \cdot F^{\top}$ into 2D Poisson to get algorithm 1. Perform 2D "FFT" on B to get $B^{\prime}=F^{\top} \cdot B \cdot F$, or $B=F \cdot B^{\prime} \cdot F^{\top}$

Get $F F^{\top} X+X F D F^{\top}=F B^{\prime} F^{\top}$ or $F\left[D\left(F^{\top} X F\right)+\left(F^{\top} X F\right) D\right]^{\top}=F\left[B^{\prime}\right] F^{\top}$ or $D X^{\prime}+X^{\prime} D=B^{\prime}$
2. Solve $D X^{\prime}+X^{\prime} D=B^{\prime}$ for $X^{\prime}: X^{\prime}(j, k)=B^{\prime}(j, k) /(D(j, j)+D(k, k))$
3. Perform inverse $2 D$ " $F F T$ " on $X^{\prime}=F^{\top} \cdot X \cdot F$ to get $X=F \cdot X^{\prime} \cdot F^{\top}$
${ }^{\circ}$ Cost $=2$ 2D-FFTs plus n^{2} adds, divisions $=O\left(n^{2} \log n\right)$

- 3D Poisson analogous

04/14/2015
CS267 Lecture 23
10

Related Transforms

${ }^{\circ}$ Most applications require multiplication by both F and F-1 - $F(j, k)=\exp (2 \pi i j k / m)$
${ }^{\circ}$ Multiplying by F and F^{-1} are essentially the same.
$\cdot \mathrm{F}^{-1}=$ complex_conjugate $(\mathrm{F}) / \mathrm{m}$
${ }^{\circ}$ For solving the Poisson equation and various other applications, we use variations on the FFT

- The sin transform -- imaginary part of F
- The cos transform -- real part of F
${ }^{\circ}$ Algorithms are similar, so we will focus on F

04/14/2015
CS267 Lecture 23
12

Serial Algorithm for the FFT

${ }^{\circ}$ Compute the FFT ($F^{*} \mathrm{v}$) of an m-element vector v
$\left(F^{*} v\right)[j]=\Sigma_{k=0}^{m-1} F(j, k) * v(k)$
$=\Sigma_{\mathrm{k}=0}^{\mathrm{m-1}} \boldsymbol{\sigma}^{\left(\mathrm{j}^{\mathrm{k}} \mathrm{k}\right)} * \mathrm{v}(\mathrm{k})$
$=\Sigma_{\mathrm{k}=0}^{\mathrm{m}-1}\left(\boldsymbol{\sigma}^{j}\right)^{\mathrm{k} *} \mathrm{v}(\mathbf{k})$
$=\mathrm{V}\left(\boldsymbol{\omega}^{\mathrm{j}}\right)$
where \mathbf{V} is defined as the polynomial

$$
V(x)=\Sigma_{k=0}^{m-1} \quad x^{k *} v(k)
$$

Divide and Conquer FFT
${ }^{\circ} \mathrm{V}$ can be evaluated using divide-and-conquer

$$
\begin{aligned}
V(x)= & \Sigma_{k=0}^{m-1} \quad x^{k *} v(k) \\
= & v[0]+x^{2 *} v[2]+x^{4 *} v[4]+\ldots \\
& +x^{*}\left(v[1]+x^{2 *} v[3]+x^{4 *} v[5]+\ldots\right) \\
= & V_{\text {even }}\left(x^{2}\right)+x^{*} V_{\text {odd }}\left(x^{2}\right)
\end{aligned}
$$

${ }^{\circ} V$ has degree $m-1$, so $V_{\text {even }}$ and $V_{\text {odd }}$ are polynomials of degree $\mathrm{m} / 2-1$
${ }^{\circ}$ We evaluate these at m points: $\left(\omega^{j}\right)^{2}$ for $0 \leq j \leq m-1$ ${ }^{\circ}$ But this is really just $\mathrm{m} / 2$ different points, since $\left(\omega^{(j+m / 2)}\right)^{2}=\left(\sigma^{j *} \omega^{m / 2}\right)^{2}=\sigma^{2 j}{ }^{*} \omega^{m}=\left(\omega^{j}\right)^{2}$
${ }^{\circ}$ So FFT on m points reduced to 2 FFTs on $m / 2$ points - Divide and conquer!

04/14/2015 CS267 Lecture 23
14

An Iterative Algorithm

- The call tree of the D\&C FFT algorithm is a complete binary tree of log m levels

FFT(0) $\operatorname{FFT}(8) \operatorname{FFT}(4) \operatorname{FFT}(12) \operatorname{FFT}(2) \operatorname{FFT}(10) \operatorname{FFT}(6) \operatorname{FFT}(14) \operatorname{FFT}(1) \operatorname{FFT}(9) \operatorname{FFT}(5) \operatorname{FFT}(13) \operatorname{FFT}(3) \operatorname{FFT}(11) \operatorname{FFT}(7) \operatorname{FFT}(15)$
${ }^{\circ}$ An iterative algorithm that uses loops rather than recursion, does each level in the tree starting at the bottom

- Algorithm overwrites $\mathrm{v}[\mathrm{i}]$ by $\left(\mathrm{F}^{*} v\right)$ [bitreverse $\left.(\mathrm{i})\right]$
${ }^{\circ}$ Practical algorithms combine recursion (for memory hierarchy) and iteration (to avoid function call overnead) - more later

Block Layout of 1D FFT

- Using a block layout (m/p contiguous words per processor)
${ }^{\circ}$ No communication in last log m/p steps
- Significant communication in first log p steps

Parallel Complexity

$$
\begin{aligned}
& { }^{\circ} \mathbf{m}=\text { vector size, } p=\text { number of processors } \\
& { }^{\circ} \mathrm{f}=\text { time per flop }=1 \\
& \text { - } \alpha=\text { latency for message } \\
& \text { - } \beta=\text { time per word in a message } \\
& \text { - Time(block_FFT) }=\text { Time(cyclic_FFT) }=
\end{aligned}
$$

Parallel Complexity of the FFT with Transpose

- If no communication is pipelined (overestimate!)
- Time(transposeFFT) =

$2^{*} m^{*} \log (m) / p$	same as before
$+(p-1)^{*} \alpha$	was $\log (p)^{*} \alpha$
$+m^{*}(p-1) / p^{2}{ }^{*} \beta$	was $m^{*} \log (p) / p * \beta$

- If communication is pipelined, so we do not pay for $p-1$ messages, the second term becomes simply α, rather than ($p-1$) α
${ }^{\circ}$ This is close to optimal. See LogP paper for details.
- See also following papers
- A. Sahai, "Hiding Communication Costs in Bandwidth Limited FFT"
- R. Nishtala et al, "Optimizing bandwidth limited problems using onesided communication"
04/14/2015
CS267 Lecture 23
23

Why is the Communication Step Called a Transpose?

- Analogous to transposing an array
${ }^{\circ}$ View as a 2D array of m/p by p
${ }^{\circ}$ Note: same idea is useful for caches

04/14/2015
CS267 Lecture 23
22

Sequential Communication Complexity of the FFT

- How many words need to be moved between main memory and cache of size M to do the FFT of size m, where $m>M$?
${ }^{\circ}$ Thm (Hong, Kung, 1981): \#words $=\Omega(\mathrm{m} \log \mathrm{m} / \log \mathrm{M})$
${ }^{\circ}$ Proof follows from each word of data being reusable only log M times
Attained by transpose algorithm
- Sequential algorithm "simulates" parallel algorithm
${ }^{\circ}$ Imagine we have $P=m / M$ processors, so each processor stores and works on $\mathrm{O}(\mathrm{M})$ words
- Each local computation phase in parallel FFT replaced by similar phase working on cache resident data in sequential FFT
${ }^{\circ}$ Each communication phase in parallel FFT replaced by reading writing data from/to cache in sequential FFT
- Attained by recursive, "cache-oblivious" algorithm (FFTW)

How many words need to be moved between p processors to do the FFT of size m ?
。Thm (Aggarwal, Chandra, Snir, 1990): \#words $=\Omega(m \log m /(p \log m / p))$

- Proof assumes no recomputation
${ }^{\circ}$ Holds independent of local memory size (which must exceed m / p)
- Does TransposeFFT attain lower bound?
${ }^{\circ}$ Recall assumption: $\log (m / p) \geq \log (p)$
${ }^{\circ}$ So $2 \geq \log (m) / \log (m / p) \geq 1$
${ }^{\circ}$ So \#words $=\Omega(\mathrm{m} / \mathrm{p})$
${ }^{\circ}$ Attained by transpose algorithm

Higher Dimensional FFTs

${ }^{\circ}$ FFTs on 2 or more dimensions are defined as 1D FFTs on vectors in all dimensions.

- 2D FFT does 1D FFTs on all rows and then all columns
${ }^{\circ}$ There are 3 obvious possibilities for the 2D FFT:
- (1) 2D blocked layout for matrix, using parallel 1D FFTs for each row and column
- (2) Block row layout for matrix, using serial 1D FFTs on rows
followed by a transpose, then more serial 1D FFTs
- (3) Block row layout for matrix, using serial 1D FFTs on rows followed by parallel 1D FFTs on columns
- Option 2 is best, if we overlap communication and computation

${ }^{\circ}$ For a 3D FFT the options are similar

- 2 phases done with serial FFTs, followed by a transpose for 3rd
- can overlap communication with 2nd phase in practice

Comment on the 1D Parallel FFT
${ }^{\circ}$ The above algorithm leaves data in bit-reversed order

- Some applications can use it this way, like Poisson
- Others require another transpose-like operation
${ }^{\circ}$ Other parallel algorithms also exist
- A very different 1D FFT is due to Edelman
- http://www-math.mit.edu/~edelman
- Based on the Fast Multipole algorithm
- Less communication for non-bit-reversed algorithm
- Approximates FFT

Bisection Bandwidth

${ }^{\circ}$ FFT requires one (or more) transpose operations:

- Every processor sends $1 / \mathrm{p}$-th of its data to each other one
${ }^{\circ}$ Bisection Bandwidth limits this performance
- Bisection bandwidth is the bandwidth across the narrowest part of the network
- Important in global transpose operations, all-to-all, etc.
- "Full bisection bandwidth" is expensive
- Fraction of machine cost in the network is increasing
- Fat-tree and full crossbar topologies may be too expensive
- Especially on machines with 100K and more processors
- SMP clusters often limit bandwidth at the node level
${ }^{\circ}$ Goal: overlap communication and computation

GASNet Communications System
GASNet offers put/get communication
${ }^{\circ}$ One-sided: no remote CPU involvement required in API (key difference with MPI)

- Message contains remote address
- No need to match with a receive
- No implicit ordering required
- Used in language runtimes (UPC, etc.)
- Fine-grained and bulk transfers
- Split-phase communication
${ }^{\circ}$ Remote overhead is $\mathbf{0}$ for machine with RDMA
${ }^{\circ}$ Need good SW support to take advantage of this
04/14/2015
CS267 Lecture 23 31

General Observations

- "Overlap" means computing and communicating simultaneously, (or communication with other communication, aka pipelining)
${ }^{\circ}$ Rest of slide about comm/comp overlap
${ }^{\circ}$ The overlap potential is the difference between the gap and overhead
- No potential if CPU is tied up throughout message send
E.g., no send-side DMA
- Potential grows with message size for machines with DMA (per byte cost is handled by network, i.e. NIC)
- Potential grows with amount of network congestion

Because gap grows as network becomes saturated

Historical Perspective

- Potential performance advantage for fine-grained, one-sided programs
- Potential productivity advantage for irregular applications 04/14/2015 CS267 Lecture 23

30

Comparison on Opteron/lnfiniBand - GASNet's vapi-conduit and OSU MPI 0.9.5
Up to large message size (> $\mathbf{2 5 6} \mathbf{~ K b}$), GASNet provides up to 2.2 X improvement in reaming bandwidth

04/20/201
CS267 Lecture 23

GASNet: Performance for mid-range message sizes

Performing a 3D FFT (1/3)

- NX x NY x NZ elements spread across P processors ${ }^{\circ}$ Will Use 1-Dimensional Layout in Z dimension
- Each processor gets NZ / P "planes" of NX x NY elements per plane

Performing a 3D FFT $(2 / 3)$

- Perform an FFT in all three dimensions
${ }^{\circ}$ With 1D layout, 2 out of the 3 dimensions are local while the last Z dimension is distributed

Step 1: FFTs on the columns (all elements local)

Step 2: FFTs on the rows (all elements local)

Step 3: FFTs in the Z-dimension (requires communication)

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick 37

Performing the 3D FFT (3/3)

${ }^{\circ}$ Can perform Steps 1 and 2 since all the data is available without communication
 ${ }^{\circ}$ Perform a Global Transpose of the cube - Allows step 3 to continue

Algorithm 1: Packed Slabs

Example with $\mathrm{P}=4, \mathrm{NX}=\mathrm{NY}=\mathrm{NZ}=16$

1. Perform all row and column FFTs
2. Perform local transpose

- data destined to a remote processor are grouped together

3. Perform P puts of the data

- For 512^{3} grid across 64 processors - Send 64-1 messages of 512 kB each

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Bandwidth Utilization

NAS FT (Class D) with 256 processors on Opteron/InfiniBand

- Each processor sends 256 messages of 512 kBytes
- Global Transpose (i.e. all to all exchange) only achieves 67% of peak point-to-point bidirectional bandwidth
- Many factors could cause this slowdown
- Network contention
- Number of processors with which each processor communicates
${ }^{\circ}$ Can we do better?

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick
Waiting to send all data in one phase
bunches up communication events

- for each of the NZ/P planes Perform all column FFTs for each of the P "slabs" (a slab is NX/P rows) Inform FFTs on the rows in the slab
-Wait for all puts to finsh
- Barrier
Non-blocking RDMA puts allow data movement to be overlapped with computation.
Puts are spaced apart by the amount of time to perform FFTs on NX/P rows
Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick


```
Algorithm 3: Pencils
* Further reduce the granularity of
communication
    -Send a row (pencil) as soon as it is
        ready
* Algorithm Sketch
    For each of the NZ/P planes
        Perform all 16 column FFTs
            For r=0; r<NX/P; r++
            For each slabs in the plane
            Perform FFT on row rof slab s
    -Wait for all puts to finish
    - Barrier
* Large increase in message count
Communication events finely diffused
through computation processors
rough computation messages of 8 kB each Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick
```

Communication Requirements
$512^{\mathbf{3}}$ across 64 processors 512^{3} across 64 processors MP
MPI Opteron/ntiniband Flood Bandwicth)

- Alg 1: Packed Slabs - Send 64 messages of 512 kB

- Alg 2: Slabs

- Send 512 messages of 64 kB
- Alg 3: Pencils

Send 4096 messages of $8 \mathrm{kB}{ }^{\text {i }}$

GASNet achieves close to peak bandwidth
with Pencils but MPI is about 50% less
efficient at 8 k
More overlap possible with 8 k messages
Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Platforms			
Name	Processor	Network	Software
Opteron/Infiniband "Jacquard" @ NERSC	Dual 2.2 GHz Opteron (320 nodes @ 4GB node)	Mellanox Cougar InfiniBand 4x HCA	Linux 2.6.5, Mellanox VAPI, MVAPICH 0.9.5, Pathscale CC/F77 2.0
Alpha/Elan3 "Lemieux" @ PSC	Quad 1 GHz Alpha 21264 (750 nodes @ 4GB/node)	Quadrics QsNet1 Elan3/w dual rail (one rail used)	Tru64 v5.1, Elan3 libelan 1.4.20, Compaq C V6.5-303, HP Fortra Compiler X5.5A-4085-48E1K
Itanium2/Elan4 "Thunder" @ LLNL	Quad 1.4 Ghz Itanium2 (1024 nodes @ 8GB/ node)	Quadrics QsNet2 Elan4	$\begin{aligned} & \text { Linux 2.4.21-chaos, } \\ & \text { Elan4 libelan 1.8.14, } \\ & \text { Intel ifort 8.1.025, icc } 8 . \\ & 1.029 \end{aligned}$
P4/Myrinet "FSN" @ UC Berkeley Millennium Cluster	Dual 3.0 Ghz Pentium 4 Xeon (64 nodes @ 3GB/ node)	Myricom Myrinet 2000 M3S-PCI64B	$\begin{aligned} & \text { Linux 2.6.13, GM 2.0.19, } \\ & \text { Intel ifort } \\ & \text { 8.1-20050207Z, icc } \\ & 8.1-20050207 Z \end{aligned}$
Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick			45

Comparison of Algorithms

- Compare 3 algorithms against
original $N A S F T$
- All versions including Fortran
- All versions including Fortran
- Largest class that fit in the
memory (usually class D) All UPC flavors outperform All UPC flavors outperform
original Fortran/MPI
implantation by at least 20% implantation by at least 20% - One-sided semantics allow even exchange based implementations to improve
Overlap algorithms spread the messages out, easing the bottlenecks
$-1.9 x$ speedup in the best
$\stackrel{\sim}{\text { case }}$

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

FFT Performance on BlueGene/P

PGAS implementations consistently outperform MPI Leveraging communication/ computation overlap yields best performance

More collectives in flight and more communication leads to better performance
At 32 k cores, overlap algorithms yield 17% improvement in overall application time
Numbers are getting close to HPC record

Future work to try to beat the record

04/14/2015

FFT Performance on Cray XT4 (Franklin)

- 1024 Cores of the Cray XT4
- Uses FFTW for local FFTs
- Larger the problem size the more effective the overlap

the "Fastest Fourier Tranform
in the West"
- C library for real \& complex FFTs (arbitrary size/dimensionality) (+ parallel versions for threads \& MPI)
- Computational kernels (80% of code) automatically generated
- Self-optimizes for your hardware (picks best composition of steps) $=$ portability + performance
free software: http://www.fftw.org/
04/14/2015 CS267 Lecture 23

Why is FFTW fast?
 three unusual features

FFTW implements many FFT algorithms:
A planner picks the best composition
by measuring the speed of different combinations.

The resulting plan is executed with explicit recursion:
enhances locality

The base cases of the recursion are codelets:
highly-optimized dense code
automatically generated by a special-purpose "compiler"
04/14/2015
CS267 Lecture 23
56

FFTW is easy to use

complex x[n];
plan p;
$\mathrm{p}=$ plan_dft_1d(n, x, x, FORWARD, MEASURE) ;
...
execute(p); /* repeat as needed */
...
destroy_plan(p);

Key fact: usually, many transforms of same size are required.

FFTW Uses Natural Recursion

But traditional implementation is non-recursive, breadth-first traversal:

$$
\log _{2} n \text { passes over whole array }
$$

Why is FFTW fast?
three unusual featuresFFTW implements many FFT algorithms: A planner picks the best composition
by measuring the speed of different combinations.

The resulting plan is executed with explicit recursion: enhances localityThe base cases of the recursion are codelets:
highly-optimized dense code
automatically generated by a special-purpose "compiler"
04/14/2015
CS267 Lecture 23
58

Traditional cache solution: Blocking

breadth-first, but with blocks of size $=$ cache
...requires program specialized for cache size
04/14/2015
CS267 Lecture 23
60

Cache Obliviousness

- A cache-oblivious algorithm does not know the cache size
- it can be optimal for any machine
\& for all levels of cache simultaneously
- Exist for many other algorithms, too [Frigo et al. 1999]
- all via the recursive divide \& conquer approach

Spiral

- Software/Hardware Generation for DSP Algorithms
${ }^{\circ}$ Autotuning not just for FFT, many other signal processing algorithms
${ }^{\circ}$ Autotuning not just for software implementation, hardware too
${ }^{\circ}$ More details at
- www.spiral.net
- On-line generators, papers available

04/14/2015
CS267 Lecture 23
64
Motifs - so far this semester
The Motifs (formerly "Dwarfs") from
"The Berkeley View" (Asanovic et al.) Motifs form key computational patterns

Circuits
Circuits
Graph Algorithms
Graph Algorithms
Structured Grid
Structured Grid
Dense Matrix
Dense Matrix
Sparse Matrix
Sparse Matrix
Spectral (FFT)
Spectral (FFT)
Dynamic Prog
Dynamic Prog
N-Body
N-Body
Backtrackl B\&B
Backtrackl B\&B
Graphical Models
Graphical Models
Unstructured Grid
Unstructured Grid

Rest of the semester

- Computational Astrophysics (Julian Borrill, LBNL)

${ }^{\circ}$ Dynamic Load Balancing (TBD)
${ }^{\circ}$ Climate Modeling (Michael Wehner, LBNL)
${ }^{\circ}$ Computational Materials Science (Kristin Persson, LBNL)
${ }^{\circ}$ Future of Exascale Computing (Kathy Yelick, UCB \& LBNL)

