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Motifs 

The Motifs (formerly “Dwarfs”) from  
“The Berkeley View” (Asanovic et al.) 

Motifs form key computational patterns 

Topic of this  
lecture  
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Ouline and References 

° Outline 
•  Definitions 
•  A few applications of FFTs 
•  Sequential algorithm 
•  Parallel 1D FFT 
•  Parallel 3D FFT 
•  Autotuning FFTs: FFTW and Spiral projects 

° References 
•  Previous CS267 lectures  

•  FFTW project:   http://www.fftw.org 
•  Spiral project:   http://www.spiral.net   
•  LogP: UCB EECS Tech Report UCB/CSD-92-713  
•  Lecture by Geoffrey Fox:  

http://grids.ucs.indiana.edu/ptliupages/presentations/PC2007/cps615fft00.ppt 
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Definition of Discrete Fourier Transform (DFT) 

° The  2D DFT of an m-by-m  matrix V is F*V*F 
•  Do 1D DFT on all the columns independently, then all the rows 

° Higher dimensional DFTs are analogous 

° Let i=sqrt(-1) and index matrices and vectors from 0. 
° The (1D) DFT of an m-element vector v is: 
                        F*v            
   where F is an m-by-m matrix defined as: 
                       F[j,k] = ϖ (j*k),           0 ≤  j, k ≤ m-1 

   and where  ϖ  is: 
                     ϖ = e (2πi/m) = cos(2π/m) + i*sin(2π/m) 
° ϖ is a complex number with whose mth power ϖm =1 

and is therefore called an mth root of unity 
° E.g., for m = 4:    ϖ = i,    ϖ2 = -1,    ϖ3 = -i,    ϖ4 = 1 
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Motivation for Fast Fourier Transform (FFT) 

° Signal processing 
°  Image processing 
° Solving Poisson’s Equation nearly optimally 

•   O(N log N) arithmetic operations, N = #unknowns 
•  Competitive with multigrid 

° Fast multiplication of large integers  
° … 
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Using the 1D FFT for filtering 

° Signal = sin(7t) + .5 sin(5t) at 128 points 
° Noise = random number bounded by .75 
° Filter by zeroing out FFT components < .25 
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Using the 2D FFT for image compression 

°  Image = 200x320 matrix of values 
° Compress by keeping largest 2.5% of FFT 

components 
° Similar idea used by jpeg 
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Recall: Poisson’s equation arises in many models 

° Electrostatic or Gravitational Potential: Potential(position)  
° Heat flow:  Temperature(position, time) 
° Diffusion:  Concentration(position, time) 
° Fluid flow: Velocity,Pressure,Density(position,time) 
° Elasticity:   Stress,Strain(position,time) 
° Variations of Poisson have variable coefficients 

3D:   ∂2u/∂x2  +  ∂2u/∂y2  +  ∂2u/∂z2  =  f(x,y,z) 

2D:   ∂2u/∂x2  +  ∂2u/∂y2  =  f(x,y) 

1D:   d2u/dx2  =  f(x) 

f represents the 
sources; also 
need boundary 
conditions 
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Solving Poisson Equation with FFT (1/2) 
° 1D Poisson equation: solve L1x = b where 
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Graph and “stencil” 

° 2D Poisson equation: solve L2x = b where 
4    -1           -1 

-1    4    -1          -1 

      -1     4                 -1 

 -1                4     -1          -1 

       -1         -1     4    -1          -1           

              -1         -1     4                  -1 

                   -1                   4    -1 

                          -1            -1     4    -1 

                                -1             -1     4 

L2=
4 

-1 

-1 

-1 

-1 

Graph and “5 point stencil” 

3D case is analogous     
(7 point stencil) 9 

Solving 2D Poisson Equation with FFT (2/2) 
° Use facts that 

•  L1 = F ·  D · FT is eigenvalue/eigenvector decomposition,  where  
-  F is very similar to FFT  (imaginary part) 

–  F(j,k) = (2/(n+1))1/2 · sin(j k π  /(n+1)) 
-  D = diagonal matrix of eigenvalues 

–  D(j,j) = 2(1 – cos(j π / (n+1)) ) 
•  2D Poisson same as solving L1 · X  +  X · L1 =  B  where 

-  X square matrix of unknowns at each grid point, B square too 

° Substitute L1 = F ·  D · FT into 2D Poisson to get algorithm 
1.  Perform 2D “FFT” on B to get B’ = FT ·B · F, or  B = F ·B’ · FT 
  Get FDFTX+XFDFT=FB’FT or F[D(FTXF)+(FTXF)D]FT = F[B’]FT or DX’+X’D=B’ 

2. Solve D X’ + X’ D = B’ for X’:  X’(j,k) = B’(j,k)/ (D(j,j) + D(k,k)) 
3. Perform inverse 2D “FFT” on X’= FT·X·F  to get  X = F·X’·FT 

° Cost = 2  2D-FFTs plus n2 adds, divisions = O(n2 log n) 
° 3D Poisson analogous 

04/14/2015 CS267 Lecture 23 
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Algorithms for 2D (3D) Poisson Equation (N = n2 (n3) vars) 
Algorithm  Serial   PRAM   Memory      #Procs 
°  Dense LU  N3   N   N2   N2 
°  Band LU  N2  (N7/3)  N   N3/2  (N5/3)  N (N4/3) 
°  Jacobi  N2 (N5/3)   N (N2/3)   N   N 
°  Explicit Inv.  N2   log N   N2   N2 

°  Conj.Gradients N3/2 (N4/3)  N1/2(1/3) *log N  N   N 
°  Red/Black SOR N3/2 (N4/3)  N1/2 (N1/3)  N   N 
°  Sparse LU  N3/2 (N2)   N1/2   N*log N (N4/3)  N 
°  FFT   N*log N  log N   N   N 
°  Multigrid  N   log2 N   N   N 
°  Lower bound  N   log N   N 

PRAM is an idealized parallel model with zero cost communication 
Reference:  James Demmel, Applied Numerical Linear Algebra, SIAM, 1997. 
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Related Transforms 

° Most applications require multiplication by both F and F-1 
•  F(j,k) = exp(2πijk/m) 

° Multiplying by F and F-1 are essentially the same.    
•  F-1 = complex_conjugate(F) / m 

° For solving the Poisson equation and various other 
applications, we use variations on the FFT 

•  The sin transform -- imaginary part of F 
•  The cos transform -- real part of F 

° Algorithms are similar, so we will focus on F 

12 



4 

04/14/2015 CS267 Lecture 23 

Serial Algorithm for the FFT 

° Compute the FFT (F*v) of an m-element vector v 

      (F*v)[j] =  Σ        F(j,k) * v(k) 

                  =  Σ        ϖ (j*k) * v(k) 

                  =  Σ        (ϖ j)k * v(k) 
                  =  V(ϖ j) 
     where V is defined as the polynomial 

           V(x) = Σ        xk * v(k) 

m-1 

k = 0 

m-1 

k = 0 

m-1 

k = 0 

m-1 

k = 0 
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Divide and Conquer FFT 
° V can be evaluated using divide-and-conquer 

           V(x) = Σ        xk * v(k) 
                   =          v[0] + x2*v[2] + x4*v[4] + … 
                        + x*(v[1] + x2*v[3] + x4*v[5] + … ) 
                   = Veven(x2) + x*Vodd(x2) 
° V has degree m-1, so Veven and Vodd are polynomials 

of degree m/2-1 
° We evaluate these at m points: (ϖ j)2 for 0 ≤ j ≤ m-1  

° But this is really just m/2 different points, since 
    (ϖ (j+m/2) )2 = (ϖ j *ϖ m/2 )2 = ϖ 2j *ϖ m = (ϖ j)2 

° So FFT on m points reduced to 2 FFTs on m/2 points 
•  Divide and conquer! 

 

m-1 

k = 0 
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Divide-and-Conquer  FFT   (D&C FFT) 
FFT(v, ϖ, m)        … assume m is a power of 2 
   if m = 1 return v[0] 
   else  
      veven  = FFT(v[0:2:m-2], ϖ 2, m/2) 
      vodd   = FFT(v[1:2:m-1], ϖ 2, m/2) 
      ϖ-vec = [ϖ0, ϖ1, … ϖ (m/2-1) ]  
      return  [veven + (ϖ-vec .* vodd), 
                    veven -  (ϖ-vec .* vodd) ] 
°  Matlab notation:  “.*”   means component-wise multiply. 

Cost: T(m) = 2T(m/2)+O(m) =  O(m log m) operations. 

precomputed 
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An Iterative Algorithm 

°  The call tree of the D&C FFT algorithm is a complete binary 
tree of log m levels 

°  An iterative algorithm that uses loops rather than recursion, 
does each level in the tree starting at the bottom 

•  Algorithm overwrites v[i] by (F*v)[bitreverse(i)] 

°  Practical algorithms combine recursion (for memory hierarchy) 
and iteration (to avoid function call overhead) – more later 

FFT(0,1,2,3,…,15) = FFT(xxxx) 

FFT(1,3,…,15) = FFT(xxx1) FFT(0,2,…,14) = FFT(xxx0) 

FFT(xx10) FFT(xx01) FFT(xx11) FFT(xx00) 

FFT(x100) FFT(x010) FFT(x110) FFT(x001) FFT(x101) FFT(x011) FFT(x111) FFT(x000) 

FFT(0)  FFT(8)  FFT(4)  FFT(12)  FFT(2) FFT(10) FFT(6) FFT(14) FFT(1) FFT(9) FFT(5)  FFT(13)  FFT(3)  FFT(11)  FFT(7) FFT(15) 

even odd 
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Parallel 1D FFT 

° Data dependencies in 
1D FFT 

•  Butterfly pattern 
•  From veven ± w .* vodd 

° A PRAM algorithm 
takes O(log m) time 

•  each step to right is 
parallel 

•  there are log m steps 

° What about 
communication cost? 

°  (See UCB EECS Tech report 
UCB/CSD-92-713 for details, 
aka “LogP paper”) 
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Data dependencies in a 16-point FFT 
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Block Layout of 1D FFT 

° Using a block layout       
(m/p contiguous words      
per processor) 

° No communication in last 
log m/p steps 

° Significant communication 
in first log p steps 

18 

Communication 
Required 

log(p) steps 

No communication 
log(m/p) steps 

Block Data Layout of an m=16-point FFT on p=4 Processors 
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Cyclic Layout of 1D FFT 

° Cyclic layout 
(consecutive words 
map to consecutive 
processors) 

° No communication in 
first log(m/p) steps 

° Communication in 
last log(p) steps 
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No communication 
log(m/p) steps 

Communication 
Required 

log(p) steps 

Cyclic Data Layout of an m=16-point FFT on p=4 Processors 
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Parallel Complexity 

° m = vector size, p = number of processors 
°  f = time per flop = 1 
°   α = latency for message 
°   β = time per word in a message 

° Time(block_FFT)  =  Time(cyclic_FFT)  = 
       2*m*log(m)/p              … perfectly parallel flops  
      + log(p) * α                    ...  1 message/stage, log p stages 
      + m*log(p)/p * β           …  m/p words/message 

20 
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FFT With “Transpose” 

°  If we start with a cyclic 
layout for first log(m/p) 
steps, there is no 
communication 

° Then transpose the 
vector for last log(p) 
steps 

° All communication is 
in the transpose 

° Note: This example has  
log(m/p) = log(p) 

•  If log(m/p) < log(p) more 
phases/layouts will be 
needed 

•  We will assume          
log(m/p) ≥ log(p)              
for simplicity 
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No communication 
log(m/p) steps 

No communication 
log(p) steps 

Transpose 

Transpose Algorithm for an m=16-point FFT on p=4 Processors 
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Why is the Communication Step Called a Transpose? 

° Analogous to transposing an array 
° View as a 2D array of m/p by p  
° Note: same idea is useful for caches 
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Parallel Complexity of the FFT with Transpose 

°  If no communication is pipelined (overestimate!) 
° Time(transposeFFT) = 
       2*m*log(m)/p                               same as before 
      + (p-1) * α                                          was log(p) * α 
      + m*(p-1)/p2 * β                                was m* log(p)/p * β 
°  If communication is pipelined, so we do not pay for 

p-1 messages, the second term becomes simply α, 
rather than (p-1)α  

° This is close to optimal.  See LogP paper for details. 
° See also following papers 

•  A. Sahai, “Hiding Communication Costs in Bandwidth Limited FFT” 
•  R. Nishtala et al, “Optimizing bandwidth limited problems using one-

sided communication” 
23 
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Sequential Communication Complexity of the FFT 

°  How many words need to be moved between main memory and cache 
of size M to do the FFT of size m, where m > M? 

°  Thm (Hong, Kung, 1981): #words = Ω(m log m / log M) 
°  Proof follows from each word of data being reusable only log M 

times 
°  Attained by transpose algorithm 

°  Sequential algorithm “simulates” parallel algorithm 
°  Imagine we have P = m/M processors, so each processor stores 

and works on O(M) words 
°  Each local computation phase in parallel FFT replaced by similar 

phase working on cache resident data in sequential FFT 
°  Each communication phase in parallel FFT replaced by reading/

writing data from/to cache in sequential FFT 
°  Attained by recursive, “cache-oblivious” algorithm (FFTW) 

24 
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Parallel Communication Complexity of the FFT 

°  How many words need to be moved between p processors to do the 
FFT of size m? 

°  Thm (Aggarwal, Chandra, Snir, 1990): #words = Ω(m log m / (p log m/p)) 
°  Proof assumes no recomputation  
°  Holds independent of local memory size (which must exceed m/p) 

°  Does TransposeFFT attain lower bound? 
°  Recall assumption: log (m/p) ≥ log(p) 
°  So   2 ≥ log(m) / log(m/p) ≥  1 
°  So #words =  Ω(m / p) 
°  Attained by transpose algorithm 
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Comment on the 1D Parallel FFT 

° The above algorithm leaves data in bit-reversed order 
•  Some applications can use it this way, like Poisson 
•  Others require another transpose-like operation 

° Other parallel algorithms also exist 
•  A very different 1D FFT is due to Edelman   

-  http://www-math.mit.edu/~edelman 
•  Based on the Fast Multipole algorithm 
•  Less communication for non-bit-reversed algorithm 
•  Approximates FFT 
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Higher Dimensional FFTs 

° FFTs on 2 or more dimensions are defined as 1D FFTs 
on vectors in all dimensions. 

•  2D FFT does 1D FFTs on all rows and then all columns 

° There are 3 obvious possibilities for the 2D FFT: 
•  (1) 2D blocked layout for matrix, using parallel 1D FFTs for each   

row and column 
•  (2) Block row layout for matrix, using serial 1D FFTs on rows, 

followed by a transpose, then more serial 1D FFTs 
•  (3) Block row layout for matrix, using serial 1D FFTs on rows, 

followed by parallel 1D FFTs on columns 
•  Option 2 is best, if we overlap communication and computation 

° For a 3D FFT the options are similar 
•  2 phases done with serial FFTs, followed by a transpose for 3rd 
•  can overlap communication with 2nd phase in practice 
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Bisection Bandwidth 

° FFT requires one (or more) transpose operations: 
•  Every processor sends 1/p-th of its data to each other one 

° Bisection Bandwidth limits this performance 
•  Bisection bandwidth is the bandwidth across the narrowest part 

of the network 
•  Important in global transpose operations, all-to-all, etc. 

° “Full bisection bandwidth” is expensive 
•  Fraction of machine cost in the network is increasing 
•  Fat-tree and full crossbar topologies may be too expensive 
•  Especially on machines with 100K and more processors 
•  SMP clusters often limit bandwidth at the node level 

° Goal: overlap communication and computation 
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Modified LogGP Model 

°  LogGP: no overlap 

P0 

P1 

osend 

L 

orecv 

EEL:  end to end latency (1/2 roundtrip) 
g:   minimum time between small message sends 
G:   gap per byte for larger messages  

°  LogGP: with overlap 

P0 

P1 

g 
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Historical Perspective 
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• Potential performance advantage for fine-grained, one-sided programs 
• Potential productivity advantage for irregular applications 

½ round-trip latency 
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General Observations 

° “Overlap” means computing and communicating 
simultaneously, (or communication with other 
communication, aka pipelining) 

° Rest of slide about comm/comp overlap 
° The overlap potential is the difference between the 

gap and overhead 
•  No potential if CPU is tied up throughout message send  

-  E.g., no send-side DMA 
•  Potential grows with message size for machines with DMA (per 

byte cost is handled by network, i.e. NIC) 
•  Potential grows with amount of network congestion 

-  Because gap grows as network becomes saturated 

° Remote overhead is 0 for machine with RDMA 
° Need good SW support to take advantage of this 
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GASNet Communications System 

GASNet offers put/get communication 
° One-sided: no remote CPU involvement required in API 

(key difference with MPI) 
•  Message contains remote address 
•  No need to match with a receive 
•  No implicit ordering required 

Compiler-generated code 

Language-specific runtime 

GASNet 

Network Hardware 

° Used in language runtimes (UPC, 
etc.) 

° Fine-grained and bulk transfers 

° Split-phase communication 

32 
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Performance of 1-Sided vs 2-sided Communication: GASNet vs MPI 
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°  Comparison on Opteron/InfiniBand – GASNet’s vapi-conduit and OSU MPI 0.9.5 

°  Up to large message size (> 256 Kb), GASNet provides up to 2.2X improvement in 
streaming bandwidth 

°  Half power point (N/2) differs by one order of magnitude 
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GASNet usually reaches saturation bandwidth before MPI - fewer costs to amortize 
Usually outperforms MPI at medium message sizes - often by a large margin 

GASNet: Performance for mid-range message sizes 
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NAS FT Benchmark Case Study 

° Performance of Exchange (All-to-all) is critical 
•  Communication to computation ratio increases with faster, more 

optimized 1-D FFTs (used best available, from FFTW) 
•  Determined by available bisection bandwidth 
•  Between 30-40% of the application’s total runtime 

° Assumptions 
•  1D partition of 3D grid  
•  At most N processors for N^3 grid 
•  HPC Challenge benchmark has large 1D FFT (can be viewed as 3D 

or more with proper roots of unity) 

° Reference for details 
•  “Optimizing Bandwidth Limited Problems Using One-side 

Communication and Overlap”, C. Bell, D. Bonachea, R. Nishtala, 
K. Yelick, IPDPS’06 (www.eecs.berkeley.edu/~rajashn) 

•  Started as CS267 project 
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Performing a 3D FFT (1/3) 

° NX x NY x NZ elements spread across P processors 
° Will Use 1-Dimensional Layout in Z dimension 

•  Each processor gets NZ / P “planes” of  NX x NY elements per 
plane 

1D Partition 

NX 

NY 

Example: P = 4 

NZ 

p0 
p1 

p2 
p3 

NZ/P 

Source:  R. Nishtala, C. Bell, D. Bonachea, K. Yelick  

04/17/2012 CS267 Lecture 25 
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Performing a 3D FFT (2/3) 

° Perform an FFT in all three dimensions 
° With 1D layout, 2 out of the 3 dimensions are local 

while the last Z dimension is distributed 

Step 1: FFTs on the columns 
 (all elements local) 

Step 2: FFTs on the rows 
  (all elements local) 

Step 3: FFTs in the Z-dimension 
 (requires communication) 

Source:  R. Nishtala, C. Bell, D. Bonachea, K. Yelick  

04/17/2012 CS267 Lecture 25 
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Performing the 3D FFT (3/3) 

° Can perform Steps 1 and 2 since all the data 
is available without communication 

° Perform a Global Transpose of the cube 
• Allows step 3 to continue 

Transpose 

Source:  R. Nishtala, C. Bell, D. Bonachea, K. Yelick  
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The Transpose 
°  Each processor has to scatter input domain to other processors 

•  Every processor divides its portion of the domain into P pieces  
•  Send each of the P pieces to a different processor 

°  Three different ways to break it up the messages 
1.  Packed Slabs (i.e. single packed “All-to-all” in MPI parlance) 
2.  Slabs 
3.  Pencils 

°  Going from approach Packed Slabs to Slabs to Pencils leads to 
•  An order of magnitude increase in the number of messages  
•  An order of magnitude decrease in the size of each message 

°  Why do this? Slabs and Pencils allow overlapping communication 
and computation and leverage RDMA support in modern networks  

Source:  R. Nishtala, C. Bell, D. Bonachea, K. Yelick  
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Algorithm 1: Packed Slabs 

Example with P=4, NX=NY=NZ=16 

1.  Perform all row and column FFTs 
2.  Perform local transpose  

•  data destined to a remote 
processor are grouped together 

3.  Perform P puts of the data 

Local transpose 

put to proc 0 

put to proc 1 

put to proc 2 

put to proc 3 

•    For 5123 grid across 64 processors 
–    Send 64-1 messages of 512kB each 

Source:  R. Nishtala, C. Bell, D. Bonachea, K. Yelick  
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Bandwidth Utilization 

° NAS FT (Class D) with 256 processors on 
Opteron/InfiniBand 

• Each processor sends 256 messages of 512kBytes 
• Global Transpose (i.e. all to all exchange) only 

achieves 67% of peak point-to-point bidirectional 
bandwidth  

• Many factors could cause this slowdown 
-  Network contention  
-  Number of processors with which each processor 

communicates  

° Can we do better? 

Source:  R. Nishtala, C. Bell, D. Bonachea, K. Yelick  

Algorithm 2: Slabs 

°  Waiting to send all data in one phase 
bunches up communication events 

°  Algorithm Sketch 
•  for each of the NZ/P planes 

-  Perform all column FFTs 
-  for each of the P “slabs”  
   (a slab is NX/P rows) 

–  Perform FFTs on the rows in the slab 
–  Initiate 1-sided put of the slab  

•  Wait for all puts to finish  
•  Barrier 

°  Non-blocking RDMA puts allow data 
movement to be overlapped with 
computation.  

°  Puts are spaced apart by the amount 
of time to perform FFTs on NX/P rows 

Start computation  
for next plane 

plane 0 

put to proc 0 

put to proc 1 

put to proc 2 

put to proc 3 

•  For 5123 grid across 64 
processors 
–  Send 512-8 messages 

of 64kB each 

Source:  R. Nishtala, C. Bell, D. Bonachea, K. Yelick  

Algorithm 3: Pencils 
°  Further reduce the granularity of 

communication 
•  Send a row (pencil) as soon as it is 

ready 

°  Algorithm Sketch 
•  For each of the NZ/P planes 

-  Perform all 16 column FFTs 
-  For r=0; r<NX/P; r++  

–  For each slab s in the plane 
•  Perform FFT on row r of slab s 
•  Initiate 1-sided put of row r  

•  Wait for all puts to finish 
•  Barrier 

°  Large increase in message count 

°  Communication events finely diffused 
through computation 

•  Maximum amount of overlap 
•  Communication starts early  

plane 0 
0 
0 
0 
0 
1 
1 
1 
1 
2 
2 
2 
2 
3 
3 
3 
3 

Start computation  
for next plane 

•  For 5123 grid across 64 
processors 
–  Send 4096-64 

messages of 8kB each 

Source:  R. Nishtala, C. Bell, D. Bonachea, K. Yelick   

Communication Requirements 

° 5123 across 64 processors 

• Alg 1: Packed Slabs 
-  Send 64 messages of 512kB 

• Alg 2: Slabs 
-  Send 512 messages of 64kB 

• Alg 3: Pencils  
-  Send 4096 messages of 8kB 

With Slabs GASNet is slightly faster than 
MPI 

GASNet achieves close to peak bandwidth 
with Pencils but MPI is about 50% less 
efficient at 8k 
More overlap possible with 8k messages 

With the message sizes in Packed Slabs both 
comm systems reach the same peak bandwidth  

Source:  R. Nishtala, C. Bell, D. Bonachea, K. Yelick  
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Platforms 

Name Processor Network  Software 

Opteron/Infiniband 
“Jacquard” @ NERSC 

Dual 2.2 GHz Opteron 
(320 nodes @ 4GB/
node) 

Mellanox Cougar 
InfiniBand 4x HCA 

Linux 2.6.5, Mellanox 
VAPI, MVAPICH 0.9.5, 
Pathscale CC/F77 2.0 

Alpha/Elan3 
“Lemieux” @ PSC 

Quad 1 GHz Alpha 
21264 (750 nodes @ 
4GB/node) 

Quadrics QsNet1 
Elan3 /w dual rail (one 
rail used) 

Tru64 v5.1, Elan3 
libelan 1.4.20, Compaq 
C V6.5-303, HP Fortra 
Compiler 
X5.5A-4085-48E1K 

Itanium2/Elan4 
“Thunder” @ LLNL 

Quad 1.4 Ghz Itanium2 
(1024 nodes @ 8GB/
node) 

Quadrics QsNet2 Elan4 Linux 2.4.21-chaos, 
Elan4 libelan 1.8.14, 
Intel ifort 8.1.025, icc 8. 
1.029 

P4/Myrinet 
“FSN” @  
UC Berkeley Millennium 
Cluster 

Dual 3.0 Ghz Pentium 4 
Xeon (64 nodes @ 3GB/
node) 

Myricom Myrinet 2000 
M3S-PCI64B 

Linux 2.6.13, GM 2.0.19, 
Intel ifort 
8.1-20050207Z, icc 
8.1-20050207Z 

Source:  R. Nishtala, C. Bell, D. Bonachea, K. Yelick  
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UPC Slabs
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Comparison of Algorithms 

°  Compare 3 algorithms against 
original NAS FT 

•  All versions including Fortran 
use FFTW for local 1D FFTs 

•  Largest class that fit in the 
memory (usually class D) 

°  All UPC flavors outperform 
original Fortran/MPI 
implantation by at least 20% 

•  One-sided semantics allow 
even exchange based 
implementations to improve 
over MPI implementations 

•  Overlap algorithms spread 
the messages out, easing the 
bottlenecks  

•  ~1.9x speedup in the best 
case 

up is good 

Source:  R. Nishtala, C. Bell, D. Bonachea, K. Yelick  

Time Spent in Communication 

°  Implemented the 3 
algorithms in MPI using 
Irecvs and Isends 

 

° Compare time spent 
initiating or waiting for 
communication to finish 

•  UPC consistently spends 
less time in 
communication than its 
MPI counterpart 

•  MPI unable to handle 
pencils algorithm in some 
cases  
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Source:  R. Nishtala, C. Bell, D. Bonachea, K. Yelick  

Performance Summary 
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up is good 

Source:  R. Nishtala, C. Bell, D. Bonachea, K. Yelick  
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FFT Performance on BlueGene/P 

HPC Challenge Peak as of July 09 is 
~4.5 Tflops on 128k Cores 

•  PGAS implementations 
consistently outperform MPI 

•  Leveraging communication/
computation overlap yields 
best performance 

•  More collectives in flight 
and more communication 
leads to better 
performance 

•  At 32k cores, overlap 
algorithms yield 17% 
improvement in overall 
application time 

•  Numbers are getting close to 
HPC record  

•  Future work to try to beat 
the record 
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FFT Performance on Cray XT4  (Franklin) 

°  1024 Cores of the Cray XT4 
•  Uses FFTW for local FFTs 
•  Larger the problem size the more effective the overlap 

50 
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FFTW – Fastest Fourier Transform in the West 

° www.fftw.org 
° Produces FFT implementation optimized for 

•  Your version of FFT (complex, real,…) 
•  Your value of n (arbitrary, possibly prime) 
•  Your architecture 
•  Very good sequential performance (competes with Spiral) 

° Similar in spirit to PHIPAC/ATLAS/OSKI/Sparsity 
° Won 1999 Wilkinson Prize for Numerical Software 
° Widely used  

•  Latest version 3.3.4 (Mar 2014), includes threads, OpenMP 
•  Added MPI versions in v3.3 Beta 1 (June 2011) 
•  Layout constraints from users/apps + network differences are 

hard to support 

51 04/14/2015 CS267 Lecture 23 

FFTW 

• C library for real & complex FFTs (arbitrary size/dimensionality)	


• Computational kernels (80% of code) automatically generated	


• Self-optimizes for your hardware (picks best composition of steps)	

	
= portability + performance	


(+ parallel versions for threads & MPI)	


free software: http://www.fftw.org/!

the “Fastest	

Fourier Tranform	


in the West”	


52 
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FFTW performance 
power-of-two sizes, double precision 

833 MHz Alpha EV6	
 2 GHz PowerPC G5	


2 GHz AMD Opteron	
 500 MHz Ultrasparc IIe	


53 04/17/2012 
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FFTW performance 
non-power-of-two sizes, double precision 

833 MHz Alpha EV6	


2 GHz AMD Opteron	


unusual: non-power-of-two sizes	

receive as much optimization	


as powers of two	


…because we	

let the code do the optimizing	


54 
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FFTW performance 
double precision, 2.8GHz Pentium IV: 2-way SIMD (SSE2) 

powers of two	


…because we	

let the code write itself	


non-powers-of-two	


exploiting CPU-specific	

SIMD instructions	

(rewriting the code)	


is easy	


55 04/14/2015 CS267 Lecture 23 

Why is FFTW fast? 
three unusual features 

FFTW implements many FFT algorithms:  	

A planner picks the best composition	


by measuring the speed of different combinations.	


The resulting plan is executed	

with explicit recursion: 	


enhances locality 	


3	


1	


2	

The base cases of the recursion are codelets:	


highly-optimized dense code	

automatically generated by a special-purpose “compiler”	


56 
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FFTW is easy to use 

{!
!complex x[n];!
!plan p;!

!
!p = plan_dft_1d(n, x, x, FORWARD, MEASURE);!
!...!
!execute(p); /* repeat as needed */!
!...!
!destroy_plan(p);!

}!

Key fact: usually,	

many transforms of same size 

are required.	

57 04/14/2015 CS267 Lecture 23 

Why is FFTW fast? 
three unusual features 

FFTW implements many FFT algorithms:  	

A planner picks the best composition	


by measuring the speed of different combinations.	


The resulting plan is executed	

with explicit recursion: 	


enhances locality 	


3	


1	


2	
 The base cases of the recursion are codelets:	

highly-optimized dense code	


automatically generated by a special-purpose “compiler”	

58 
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But traditional implementation is non-recursive,	

breadth-first traversal:	


log2 n passes over whole array	


FFTW Uses Natural Recursion  

Size 8 DFT	


Size 4 DFT	
 Size 4 DFT	


Size 2 DFT	
 Size 2 DFT	
 Size 2 DFT	
 Size 2 DFT	


p = 2 (radix 2)	


59 04/14/2015 CS267 Lecture 23 

breadth-first, but with blocks of size = cache	


Traditional cache solution: Blocking 

Size 8 DFT	


Size 4 DFT	
 Size 4 DFT	


Size 2 DFT	
 Size 2 DFT	
 Size 2 DFT	
 Size 2 DFT	


p = 2 (radix 2)	


…requires program specialized for cache size	


60 
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Recursive Divide & Conquer is Good 

Size 8 DFT	


Size 4 DFT	
 Size 4 DFT	


Size 2 DFT	
 Size 2 DFT	
 Size 2 DFT	
 Size 2 DFT	


p = 2 (radix 2)	


eventually small enough to fit in cache	

…no matter what size the cache is	


(depth-first traversal)	
 [Singleton, 1967]	


61 04/14/2015 CS267 Lecture 23 

Cache Obliviousness 

• A cache-oblivious algorithm does not know the cache size	

	
— it can be optimal for any machine	

	
     & for all levels of cache simultaneously	


• Exist for many other algorithms, too [Frigo et al. 1999]	

— all via the recursive divide & conquer approach	


62 
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Why is FFTW fast? 
three unusual features 

FFTW implements many FFT algorithms:  	

A planner picks the best composition	


by measuring the speed of different combinations.	


The resulting plan is executed	

with explicit recursion: 	


enhances locality 	


3	


1	


2	
 The base cases of the recursion are codelets:	

highly-optimized dense code	


automatically generated by a special-purpose “compiler”	

63 

Spiral 

° Software/Hardware Generation for DSP Algorithms 
° Autotuning not just for FFT, many other signal 

processing algorithms 
° Autotuning not just for software implementation, 

hardware too 
° More details at 

•  www.spiral.net 
•  On-line generators, papers available 

04/14/2015 CS267 Lecture 23 64 
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Motifs – so far this semester 

The Motifs (formerly “Dwarfs”) from  
“The Berkeley View” (Asanovic et al.) 

Motifs form key computational patterns 

65 

Rest of the semester 
° Computational Astrophysics (Julian Borrill, LBNL) 
° Dynamic Load Balancing (TBD) 
° Climate Modeling (Michael Wehner, LBNL) 
° Computational Materials Science (Kristin Persson, LBNL) 
° Future of Exascale Computing (Kathy Yelick, UCB & LBNL) 
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