

Recall: Po	isson's equation arises in	many models			
3D: ∂²u/	$\partial x^2 + \partial^2 u / \partial y^2 + \partial^2 u / \partial z^2 = f(x,y,z)$	z)			
2D: ∂²u/	$\partial x^2 + \partial^2 u / \partial y^2 = f(x,y)$	f represents the sources; also			
1D: d²u	$/dx^2 = f(x)$	need boundary conditions			
[°] Electrostatic or Gravitational Potential: Potential(position)					
° Heat flow: T	emperature(position, time)			
° Diffusion: C	concentration(position, tim	e)			
° Fluid flow: Velocity,Pressure,Density(position,time)					
° Elasticity:	Stress,Strain(position,time)			
° Variations of Poisson have variable coefficients					
04/14/2015	CS267 Lecture 23	8			

Algorithm	Serial	PRAM	Memory	#Procs
° Dense LU	N ³	N	\mathbb{N}^2	\mathbb{N}^2
° Band LU	N ² (N ^{7/3})	N	N ^{3/2} (N ^{5/3})	N (N ^{4/3}
° Jacobi	N ² (N ^{5/3})	N (N ^{2/3})	Ν	Ν
° Explicit Inv.	\mathbb{N}^2	log N	\mathbb{N}^2	\mathbb{N}^2
° Conj.Gradie	nts N ^{3/2} (N ^{4/3})	N ^{1/2(1/3)} *log N	Ν	Ν
° Red/Black S	OR N ^{3/2} (N ^{4/3})	N ^{1/2} (N ^{1/3})	Ν	Ν
° Sparse LU	ℕ ^{3/2} (ℕ ²)	N ^{1/2}	N*log N (N ^{4/3})	Ν
° FFT	N*log N	log N	Ν	Ν
° Multigrid	N	log ² N	Ν	Ν
° Lower boun	d N	log N	N	

	Related Transforms	i		
0	Most applications req ・F(j,k) = exp(2πijk/m)	uire multiplication by both F a	nd F ⁻¹	
0	Multiplying by F and F • F ⁻¹ = complex_conjuga	¹ are essentially the same. ate(F) / m		
0	For solving the Poisso applications, we use v	on equation and various other variations on the FFT		
	The sin transform in	naginary part of F		
	The cos transform re	eal part of F		
° Algorithms are similar, so we will focus on F				
	04/14/2015	CS267 Lecture 23	12	

° m = vector size, p =	number of processors	
° f = time per flop = 1		
$^{\circ} \alpha$ = latency for mes	sage	
° $β$ = time per word in	n a message	
1/me(block_FFT) = 1/me(cyclic_FFT) = 2*m*log(m)/p perfectly parallel flops + log(p) * α 1 message/stage, log p state + m*log(p)/p * β m/p words/message		
04/14/2015	CS267 Lecture 25	20

° If no communi	cation is pipeline	ed (overestimate!)
° Time(transpos	eFFT) =	
2*m*log(m)/	/p	same as before
+ (p-1) * α		was log(p) * α
+ m*(p-1)/p²	*β	was m* log(p)/p * β
° If communicat p-1 messages rather than (p-	ion is pipelined, , the second term 1)α	so we do not pay for a becomes simply α ,
° This is close t	o optimal. See L	ogP paper for details.
° See also follov	ving papers	

[°] How many words need to be moved of size M to do the FFT of size m, wh	between main memory and cach ere m > M?
$^\circ$ Thm (Hong, Kung, 1981): #words = Ω	e(m log m / log M)
° Proof follows from each word of times	data being reusable only log M
° Attained by transpose algorithm	
° Sequential algorithm "simulates"	' parallel algorithm
[°] Imagine we have P = m/M proces and works on O(M) words	sors, so each processor stores
[°] Each local computation phase in phase working on cache resident	parallel FFT replaced by similar t data in sequential FFT
[°] Each communication phase in pa writing data from/to cache in seq	arallel FFT replaced by reading/ uential FFT
° Attained by recursive, "cache-oblivio	ous" algorithm (FFTW)

Higher Dimensional FFTs ° FFTs on 2 or more dimensions are defined as 1D FFTs on vectors in all dimensions. · 2D FFT does 1D FFTs on all rows and then all columns [°] There are 3 obvious possibilities for the 2D FFT: • (1) 2D blocked layout for matrix, using parallel 1D FFTs for each row and column (2) Block row layout for matrix, using serial 1D FFTs on rows, followed by a transpose, then more serial 1D FFTs • (3) Block row layout for matrix, using serial 1D FFTs on rows, followed by parallel 1D FFTs on columns · Option 2 is best, if we overlap communication and computation ° For a 3D FFT the options are similar · 2 phases done with serial FFTs, followed by a transpose for 3rd · can overlap communication with 2nd phase in practice CS267 Lecture 23 27 04/14/2015

• Every proces	s one (or more) transpose operations: ssor sends 1/p-th of its data to each other one
 Bisection Ba Bisection ba of the netwo Important in 	Indwidth limits this performance Indwidth is the bandwidth across the narrowest part rk global transpose operations, all-to-all, etc.
[•] "Full bisection	on bandwidth" is expensive
 Fraction of n Fat-tree and Especially o SMP clusters 	nachine cost in the network is increasing full crossbar topologies may be too expensive n machines with 100K and more processors s often limit bandwidth at the node level
 Fraction of r Fat-tree and Especially o SMP clusters Goal: overlag 	nachine cost in the network is increasing full crossbar topologies may be too expensive n machines with 100K and more processors s often limit bandwidth at the node level p communication and computation

Platforms			
Name	Processor	Network	Software
Opteron/Infiniband "Jacquard" @ NERSC	Dual 2.2 GHz Opteron (320 nodes @ 4GB/ node)	Mellanox Cougar InfiniBand 4x HCA	Linux 2.6.5, Mellanox VAPI, MVAPICH 0.9.5, Pathscale CC/F77 2.0
Alpha/Elan3 "Lemieux" @ PSC	Quad 1 GHz Alpha 21264 (750 nodes @ 4GB/node)	Quadrics QsNet1 Elan3 /w dual rail (one rail used)	Tru64 v5.1, Elan3 libelan 1.4.20, Compaq C V6.5-303, HP Fortra Compiler X5.5A-4085-48E1K
Itanium2/Elan4 "Thunder" @ LLNL	Quad 1.4 Ghz Itanium2 (1024 nodes @ 8GB/ node)	Quadrics QsNet2 Elan4	Linux 2.4.21-chaos, Elan4 libelan 1.8.14, Intel ifort 8.1.025, icc 8. 1.029
P4/Myrinet "FSN" @ UC Berkeley Millennium Cluster	Dual 3.0 Ghz Pentium 4 Xeon (64 nodes @ 3GB/ node)	Myricom Myrinet 2000 M3S-PCI64B	Linux 2.6.13, GM 2.0.19 Intel ifort 8.1-20050207Z, icc 8.1-20050207Z
Source: R. Nishtala, C. B	ell, D. Bonachea, K. Yelick		45

