
1

Parallel Spectral Methods:
Fast Fourier Transform (FFT)

with Applications

James Demmel

www.cs.berkeley.edu/~demmel/cs267_Spr15!

04/17/2012 CS267 Lecture 25 2!

Motifs

The Motifs (formerly “Dwarfs”) from
“The Berkeley View” (Asanovic et al.)

Motifs form key computational patterns

Topic of this
lecture

2

04/14/2015 CS267 Lecture 23

Ouline and References

° Outline
•  Definitions
•  A few applications of FFTs
•  Sequential algorithm
•  Parallel 1D FFT
•  Parallel 3D FFT
•  Autotuning FFTs: FFTW and Spiral projects

° References
•  Previous CS267 lectures

•  FFTW project: http://www.fftw.org
•  Spiral project: http://www.spiral.net
•  LogP: UCB EECS Tech Report UCB/CSD-92-713
•  Lecture by Geoffrey Fox:

http://grids.ucs.indiana.edu/ptliupages/presentations/PC2007/cps615fft00.ppt
 3

04/17/2012 CS267 Lecture 25

Definition of Discrete Fourier Transform (DFT)

° The 2D DFT of an m-by-m matrix V is F*V*F
•  Do 1D DFT on all the columns independently, then all the rows

° Higher dimensional DFTs are analogous

° Let i=sqrt(-1) and index matrices and vectors from 0.
° The (1D) DFT of an m-element vector v is:
   F*v
   where F is an m-by-m matrix defined as:
   F[j,k] = ϖ (j*k), 0 ≤ j, k ≤ m-1

   and where ϖ is:
   ϖ = e (2πi/m) = cos(2π/m) + i*sin(2π/m)
° ϖ is a complex number with whose mth power ϖm =1

and is therefore called an mth root of unity
° E.g., for m = 4: ϖ = i, ϖ2 = -1, ϖ3 = -i, ϖ4 = 1

4

2

Motivation for Fast Fourier Transform (FFT)

° Signal processing
°  Image processing
° Solving Poisson’s Equation nearly optimally

•  O(N log N) arithmetic operations, N = #unknowns
•  Competitive with multigrid

° Fast multiplication of large integers
° …

04/14/2015 CS267 Lecture 23 5

04/17/2012

CS267 Lecture 25

Using the 1D FFT for filtering

° Signal = sin(7t) + .5 sin(5t) at 128 points
° Noise = random number bounded by .75
° Filter by zeroing out FFT components < .25

6

04/14/2015 CS267 Lecture 23

Using the 2D FFT for image compression

°  Image = 200x320 matrix of values
° Compress by keeping largest 2.5% of FFT

components
° Similar idea used by jpeg

7 04/14/2015 CS267 Lecture 23

Recall: Poisson’s equation arises in many models

° Electrostatic or Gravitational Potential: Potential(position)
° Heat flow: Temperature(position, time)
° Diffusion: Concentration(position, time)
° Fluid flow: Velocity,Pressure,Density(position,time)
° Elasticity: Stress,Strain(position,time)
° Variations of Poisson have variable coefficients

3D: ∂2u/∂x2 + ∂2u/∂y2 + ∂2u/∂z2 = f(x,y,z)

2D: ∂2u/∂x2 + ∂2u/∂y2 = f(x,y)

1D: d2u/dx2 = f(x)

f represents the
sources; also
need boundary
conditions

8

3

Solving Poisson Equation with FFT (1/2)
° 1D Poisson equation: solve L1x = b where

04/17/2012 CS267 Lecture 25

2 -1

-1 2 -1

 -1 2 -1

 -1 2 -1

 -1 2

L1 =! 2 -1 -1

Graph and “stencil”

° 2D Poisson equation: solve L2x = b where
4 -1 -1

-1 4 -1 -1

 -1 4 -1

 -1 4 -1 -1

 -1 -1 4 -1 -1

 -1 -1 4 -1

 -1 4 -1

 -1 -1 4 -1

 -1 -1 4

L2=
4

-1

-1

-1

-1

Graph and “5 point stencil”

3D case is analogous
(7 point stencil) 9

Solving 2D Poisson Equation with FFT (2/2)
° Use facts that

•  L1 = F · D · FT is eigenvalue/eigenvector decomposition, where
-  F is very similar to FFT (imaginary part)

–  F(j,k) = (2/(n+1))1/2 · sin(j k π /(n+1))
-  D = diagonal matrix of eigenvalues

–  D(j,j) = 2(1 – cos(j π / (n+1)))
•  2D Poisson same as solving L1 · X + X · L1 = B where

-  X square matrix of unknowns at each grid point, B square too

° Substitute L1 = F · D · FT into 2D Poisson to get algorithm
1.  Perform 2D “FFT” on B to get B’ = FT ·B · F, or B = F ·B’ · FT
 Get FDFTX+XFDFT=FB’FT or F[D(FTXF)+(FTXF)D]FT = F[B’]FT or DX’+X’D=B’

2. Solve D X’ + X’ D = B’ for X’: X’(j,k) = B’(j,k)/ (D(j,j) + D(k,k))
3. Perform inverse 2D “FFT” on X’= FT·X·F to get X = F·X’·FT

° Cost = 2 2D-FFTs plus n2 adds, divisions = O(n2 log n)
° 3D Poisson analogous

04/14/2015 CS267 Lecture 23
10

04/14/2015 CS267 Lecture 23

Algorithms for 2D (3D) Poisson Equation (N = n2 (n3) vars)
Algorithm Serial PRAM Memory #Procs
°  Dense LU N3 N N2 N2
°  Band LU N2 (N7/3) N N3/2 (N5/3) N (N4/3)
°  Jacobi N2 (N5/3) N (N2/3) N N
°  Explicit Inv. N2 log N N2 N2

°  Conj.Gradients N3/2 (N4/3) N1/2(1/3) *log N N N
°  Red/Black SOR N3/2 (N4/3) N1/2 (N1/3) N N
°  Sparse LU N3/2 (N2) N1/2 N*log N (N4/3) N
°  FFT N*log N log N N N
°  Multigrid N log2 N N N
°  Lower bound N log N N

PRAM is an idealized parallel model with zero cost communication
Reference: James Demmel, Applied Numerical Linear Algebra, SIAM, 1997.

11 04/14/2015 CS267 Lecture 23

Related Transforms

° Most applications require multiplication by both F and F-1
•  F(j,k) = exp(2πijk/m)

° Multiplying by F and F-1 are essentially the same.
•  F-1 = complex_conjugate(F) / m

° For solving the Poisson equation and various other
applications, we use variations on the FFT

•  The sin transform -- imaginary part of F
•  The cos transform -- real part of F

° Algorithms are similar, so we will focus on F

12

4

04/14/2015 CS267 Lecture 23

Serial Algorithm for the FFT

° Compute the FFT (F*v) of an m-element vector v

 (F*v)[j] = Σ F(j,k) * v(k)

 = Σ ϖ (j*k) * v(k)

 = Σ (ϖ j)k * v(k)
 = V(ϖ j)
 where V is defined as the polynomial

 V(x) = Σ xk * v(k)

m-1

k = 0

m-1

k = 0

m-1

k = 0

m-1

k = 0

13 04/14/2015 CS267 Lecture 23

Divide and Conquer FFT
° V can be evaluated using divide-and-conquer

 V(x) = Σ xk * v(k)
 = v[0] + x2*v[2] + x4*v[4] + …
 + x*(v[1] + x2*v[3] + x4*v[5] + …)
 = Veven(x2) + x*Vodd(x2)
° V has degree m-1, so Veven and Vodd are polynomials

of degree m/2-1
° We evaluate these at m points: (ϖ j)2 for 0 ≤ j ≤ m-1

° But this is really just m/2 different points, since
 (ϖ (j+m/2))2 = (ϖ j *ϖ m/2)2 = ϖ 2j *ϖ m = (ϖ j)2

° So FFT on m points reduced to 2 FFTs on m/2 points
•  Divide and conquer!

m-1

k = 0

14

04/14/2015 CS267 Lecture 23

Divide-and-Conquer FFT (D&C FFT)
FFT(v, ϖ, m) … assume m is a power of 2
 if m = 1 return v[0]
 else
 veven = FFT(v[0:2:m-2], ϖ 2, m/2)
 vodd = FFT(v[1:2:m-1], ϖ 2, m/2)
 ϖ-vec = [ϖ0, ϖ1, … ϖ (m/2-1)]
 return [veven + (ϖ-vec .* vodd),
 veven - (ϖ-vec .* vodd)]
°  Matlab notation: “.*” means component-wise multiply.

Cost: T(m) = 2T(m/2)+O(m) = O(m log m) operations.

precomputed

15

04/17/2012 CS267 Lecture 25

An Iterative Algorithm

°  The call tree of the D&C FFT algorithm is a complete binary
tree of log m levels

°  An iterative algorithm that uses loops rather than recursion,
does each level in the tree starting at the bottom

•  Algorithm overwrites v[i] by (F*v)[bitreverse(i)]

°  Practical algorithms combine recursion (for memory hierarchy)
and iteration (to avoid function call overhead) – more later

FFT(0,1,2,3,…,15) = FFT(xxxx)

FFT(1,3,…,15) = FFT(xxx1) FFT(0,2,…,14) = FFT(xxx0)

FFT(xx10) FFT(xx01) FFT(xx11) FFT(xx00)

FFT(x100) FFT(x010) FFT(x110) FFT(x001) FFT(x101) FFT(x011) FFT(x111) FFT(x000)

FFT(0) FFT(8) FFT(4) FFT(12) FFT(2) FFT(10) FFT(6) FFT(14) FFT(1) FFT(9) FFT(5) FFT(13) FFT(3) FFT(11) FFT(7) FFT(15)

even odd

16

5

04/14/2015 CS267 Lecture 23

Parallel 1D FFT

° Data dependencies in
1D FFT

•  Butterfly pattern
•  From veven ± w .* vodd

° A PRAM algorithm
takes O(log m) time

•  each step to right is
parallel

•  there are log m steps

° What about
communication cost?

°  (See UCB EECS Tech report
UCB/CSD-92-713 for details,
aka “LogP paper”)

17

Data dependencies in a 16-point FFT

04/14/2015 CS267 Lecture 23

Block Layout of 1D FFT

° Using a block layout
(m/p contiguous words
per processor)

° No communication in last
log m/p steps

° Significant communication
in first log p steps

18

Communication
Required

log(p) steps

No communication
log(m/p) steps

Block Data Layout of an m=16-point FFT on p=4 Processors

04/14/2015 CS267 Lecture 23

Cyclic Layout of 1D FFT

° Cyclic layout
(consecutive words
map to consecutive
processors)

° No communication in
first log(m/p) steps

° Communication in
last log(p) steps

19

No communication
log(m/p) steps

Communication
Required

log(p) steps

Cyclic Data Layout of an m=16-point FFT on p=4 Processors

04/14/2015 CS267 Lecture 25

Parallel Complexity

° m = vector size, p = number of processors
°  f = time per flop = 1
°  α = latency for message
°  β = time per word in a message

° Time(block_FFT) = Time(cyclic_FFT) =
 2*m*log(m)/p … perfectly parallel flops
 + log(p) * α ... 1 message/stage, log p stages
 + m*log(p)/p * β … m/p words/message

20

6

04/14/2015 CS267 Lecture 23

FFT With “Transpose”

°  If we start with a cyclic
layout for first log(m/p)
steps, there is no
communication

° Then transpose the
vector for last log(p)
steps

° All communication is
in the transpose

° Note: This example has
log(m/p) = log(p)

•  If log(m/p) < log(p) more
phases/layouts will be
needed

•  We will assume
log(m/p) ≥ log(p)
for simplicity

21

No communication
log(m/p) steps

No communication
log(p) steps

Transpose

Transpose Algorithm for an m=16-point FFT on p=4 Processors

04/14/2015 CS267 Lecture 23

Why is the Communication Step Called a Transpose?

° Analogous to transposing an array
° View as a 2D array of m/p by p
° Note: same idea is useful for caches

22

04/14/2015 CS267 Lecture 23

Parallel Complexity of the FFT with Transpose

°  If no communication is pipelined (overestimate!)
° Time(transposeFFT) =
 2*m*log(m)/p same as before
 + (p-1) * α was log(p) * α
 + m*(p-1)/p2 * β was m* log(p)/p * β
°  If communication is pipelined, so we do not pay for

p-1 messages, the second term becomes simply α,
rather than (p-1)α

° This is close to optimal. See LogP paper for details.
° See also following papers

•  A. Sahai, “Hiding Communication Costs in Bandwidth Limited FFT”
•  R. Nishtala et al, “Optimizing bandwidth limited problems using one-

sided communication”
23

04/17/2012
CS267 Lecture 25

Sequential Communication Complexity of the FFT

°  How many words need to be moved between main memory and cache
of size M to do the FFT of size m, where m > M?

°  Thm (Hong, Kung, 1981): #words = Ω(m log m / log M)
°  Proof follows from each word of data being reusable only log M

times
°  Attained by transpose algorithm

°  Sequential algorithm “simulates” parallel algorithm
°  Imagine we have P = m/M processors, so each processor stores

and works on O(M) words
°  Each local computation phase in parallel FFT replaced by similar

phase working on cache resident data in sequential FFT
°  Each communication phase in parallel FFT replaced by reading/

writing data from/to cache in sequential FFT
°  Attained by recursive, “cache-oblivious” algorithm (FFTW)

24

7

04/17/2012
CS267 Lecture 25

Parallel Communication Complexity of the FFT

°  How many words need to be moved between p processors to do the
FFT of size m?

°  Thm (Aggarwal, Chandra, Snir, 1990): #words = Ω(m log m / (p log m/p))
°  Proof assumes no recomputation
°  Holds independent of local memory size (which must exceed m/p)

°  Does TransposeFFT attain lower bound?
°  Recall assumption: log (m/p) ≥ log(p)
°  So 2 ≥ log(m) / log(m/p) ≥ 1
°  So #words = Ω(m / p)
°  Attained by transpose algorithm

25 04/14/2015 CS267 Lecture 23

Comment on the 1D Parallel FFT

° The above algorithm leaves data in bit-reversed order
•  Some applications can use it this way, like Poisson
•  Others require another transpose-like operation

° Other parallel algorithms also exist
•  A very different 1D FFT is due to Edelman

-  http://www-math.mit.edu/~edelman
•  Based on the Fast Multipole algorithm
•  Less communication for non-bit-reversed algorithm
•  Approximates FFT

26

04/14/2015 CS267 Lecture 23

Higher Dimensional FFTs

° FFTs on 2 or more dimensions are defined as 1D FFTs
on vectors in all dimensions.

•  2D FFT does 1D FFTs on all rows and then all columns

° There are 3 obvious possibilities for the 2D FFT:
•  (1) 2D blocked layout for matrix, using parallel 1D FFTs for each

row and column
•  (2) Block row layout for matrix, using serial 1D FFTs on rows,

followed by a transpose, then more serial 1D FFTs
•  (3) Block row layout for matrix, using serial 1D FFTs on rows,

followed by parallel 1D FFTs on columns
•  Option 2 is best, if we overlap communication and computation

° For a 3D FFT the options are similar
•  2 phases done with serial FFTs, followed by a transpose for 3rd
•  can overlap communication with 2nd phase in practice

27 04/14/2015 CS267 Lecture 23

Bisection Bandwidth

° FFT requires one (or more) transpose operations:
•  Every processor sends 1/p-th of its data to each other one

° Bisection Bandwidth limits this performance
•  Bisection bandwidth is the bandwidth across the narrowest part

of the network
•  Important in global transpose operations, all-to-all, etc.

° “Full bisection bandwidth” is expensive
•  Fraction of machine cost in the network is increasing
•  Fat-tree and full crossbar topologies may be too expensive
•  Especially on machines with 100K and more processors
•  SMP clusters often limit bandwidth at the node level

° Goal: overlap communication and computation

28

8

04/14/2015 CS267 Lecture 23

Modified LogGP Model

°  LogGP: no overlap

P0

P1

osend

L

orecv

EEL: end to end latency (1/2 roundtrip)
g: minimum time between small message sends
G: gap per byte for larger messages

°  LogGP: with overlap

P0

P1

g

29 04/14/2015 CS267 Lecture 23

Historical Perspective

0

5

10

15

20

25

T3E
/Shm

T3E
/E-R

eg

T3E
/M

PI

IBM/LAPI

IBM/M
PI

Quadri
cs

/Shm

Quadri
cs

/M
PI

Myri
ne

t/G
M

Myri
ne

t/M
PI

GigE/VIP
L

GigE/M
PI

us
ec

Added Latency

Send Overhead (Alone)

Send & Rec Overhead

Rec Overhead (Alone)

• Potential performance advantage for fine-grained, one-sided programs
• Potential productivity advantage for irregular applications

½ round-trip latency

30

04/14/2015 CS267 Lecture 23

General Observations

° “Overlap” means computing and communicating
simultaneously, (or communication with other
communication, aka pipelining)

° Rest of slide about comm/comp overlap
° The overlap potential is the difference between the

gap and overhead
•  No potential if CPU is tied up throughout message send

-  E.g., no send-side DMA
•  Potential grows with message size for machines with DMA (per

byte cost is handled by network, i.e. NIC)
•  Potential grows with amount of network congestion

-  Because gap grows as network becomes saturated

° Remote overhead is 0 for machine with RDMA
° Need good SW support to take advantage of this

31 04/14/2015 CS267 Lecture 23

GASNet Communications System

GASNet offers put/get communication
° One-sided: no remote CPU involvement required in API

(key difference with MPI)
•  Message contains remote address
•  No need to match with a receive
•  No implicit ordering required

Compiler-generated code

Language-specific runtime

GASNet

Network Hardware

° Used in language runtimes (UPC,
etc.)

° Fine-grained and bulk transfers

° Split-phase communication

32

9

04/20/2013 CS267 Lecture 23

Performance of 1-Sided vs 2-sided Communication: GASNet vs MPI

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

10 100 1,000 10,000 100,000 1,000,000 10,000,000

Size (bytes)

Ba
nd

w
id

th
 (K

B/
s)

gasnet_put_nbi_bulk

MPI Flood

Relative BW
(put_nbi_bulk/MPI_Flood)

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

10 1000 100000 10000000
Size (bytes)

Up
 is

 g
oo

d

°  Comparison on Opteron/InfiniBand – GASNet’s vapi-conduit and OSU MPI 0.9.5

°  Up to large message size (> 256 Kb), GASNet provides up to 2.2X improvement in
streaming bandwidth

°  Half power point (N/2) differs by one order of magnitude
33 04/14/2015 CS267 Lecture 23

(u
p

is
 g

oo
d)

GASNet usually reaches saturation bandwidth before MPI - fewer costs to amortize
Usually outperforms MPI at medium message sizes - often by a large margin

GASNet: Performance for mid-range message sizes

Flood Bandwidth for 4KB messages

1189
547

420

190

702

152

252

(13,196)

750

714231

763
223

679

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Elan3/Alpha Elan4/IA64 Myrinet/x86 IB/G5 IB/Opteron SP/Fed Altix

Pe
rc

en
t H

W
 p

ea
k

MPI

GASNet

34

04/14/2015 CS267 Lecture 23

NAS FT Benchmark Case Study

° Performance of Exchange (All-to-all) is critical
•  Communication to computation ratio increases with faster, more

optimized 1-D FFTs (used best available, from FFTW)
•  Determined by available bisection bandwidth
•  Between 30-40% of the application’s total runtime

° Assumptions
•  1D partition of 3D grid
•  At most N processors for N^3 grid
•  HPC Challenge benchmark has large 1D FFT (can be viewed as 3D

or more with proper roots of unity)

° Reference for details
•  “Optimizing Bandwidth Limited Problems Using One-side

Communication and Overlap”, C. Bell, D. Bonachea, R. Nishtala,
K. Yelick, IPDPS’06 (www.eecs.berkeley.edu/~rajashn)

•  Started as CS267 project

35

Performing a 3D FFT (1/3)

° NX x NY x NZ elements spread across P processors
° Will Use 1-Dimensional Layout in Z dimension

•  Each processor gets NZ / P “planes” of NX x NY elements per
plane

1D Partition

NX

NY

Example: P = 4

NZ

p0
p1

p2
p3

NZ/P

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

04/17/2012 CS267 Lecture 25

36

10

Performing a 3D FFT (2/3)

° Perform an FFT in all three dimensions
° With 1D layout, 2 out of the 3 dimensions are local

while the last Z dimension is distributed

Step 1: FFTs on the columns
 (all elements local)

Step 2: FFTs on the rows
 (all elements local)

Step 3: FFTs in the Z-dimension
 (requires communication)

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

04/17/2012 CS267 Lecture 25

37

Performing the 3D FFT (3/3)

° Can perform Steps 1 and 2 since all the data
is available without communication

° Perform a Global Transpose of the cube
• Allows step 3 to continue

Transpose

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

04/17/2012 CS267 Lecture 25

38

The Transpose
°  Each processor has to scatter input domain to other processors

•  Every processor divides its portion of the domain into P pieces
•  Send each of the P pieces to a different processor

°  Three different ways to break it up the messages
1.  Packed Slabs (i.e. single packed “All-to-all” in MPI parlance)
2.  Slabs
3.  Pencils

°  Going from approach Packed Slabs to Slabs to Pencils leads to
•  An order of magnitude increase in the number of messages
•  An order of magnitude decrease in the size of each message

°  Why do this? Slabs and Pencils allow overlapping communication
and computation and leverage RDMA support in modern networks

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

04/17/2012 CS267 Lecture 25

39

Algorithm 1: Packed Slabs

Example with P=4, NX=NY=NZ=16

1.  Perform all row and column FFTs
2.  Perform local transpose

•  data destined to a remote
processor are grouped together

3.  Perform P puts of the data

Local transpose

put to proc 0

put to proc 1

put to proc 2

put to proc 3

•  For 5123 grid across 64 processors
–  Send 64-1 messages of 512kB each

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

11

Bandwidth Utilization

° NAS FT (Class D) with 256 processors on
Opteron/InfiniBand

• Each processor sends 256 messages of 512kBytes
• Global Transpose (i.e. all to all exchange) only

achieves 67% of peak point-to-point bidirectional
bandwidth

• Many factors could cause this slowdown
-  Network contention
-  Number of processors with which each processor

communicates

° Can we do better?

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Algorithm 2: Slabs

°  Waiting to send all data in one phase
bunches up communication events

°  Algorithm Sketch
•  for each of the NZ/P planes

-  Perform all column FFTs
-  for each of the P “slabs”
 (a slab is NX/P rows)

–  Perform FFTs on the rows in the slab
–  Initiate 1-sided put of the slab

•  Wait for all puts to finish
•  Barrier

°  Non-blocking RDMA puts allow data
movement to be overlapped with
computation.

°  Puts are spaced apart by the amount
of time to perform FFTs on NX/P rows

Start computation
for next plane

plane 0

put to proc 0

put to proc 1

put to proc 2

put to proc 3

•  For 5123 grid across 64
processors
–  Send 512-8 messages

of 64kB each

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Algorithm 3: Pencils
°  Further reduce the granularity of

communication
•  Send a row (pencil) as soon as it is

ready

°  Algorithm Sketch
•  For each of the NZ/P planes

-  Perform all 16 column FFTs
-  For r=0; r<NX/P; r++

–  For each slab s in the plane
•  Perform FFT on row r of slab s
•  Initiate 1-sided put of row r

•  Wait for all puts to finish
•  Barrier

°  Large increase in message count

°  Communication events finely diffused
through computation

•  Maximum amount of overlap
•  Communication starts early

plane 0
0
0
0
0
1
1
1
1
2
2
2
2
3
3
3
3

Start computation
for next plane

•  For 5123 grid across 64
processors
–  Send 4096-64

messages of 8kB each

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Communication Requirements

° 5123 across 64 processors

• Alg 1: Packed Slabs
-  Send 64 messages of 512kB

• Alg 2: Slabs
-  Send 512 messages of 64kB

• Alg 3: Pencils
-  Send 4096 messages of 8kB

With Slabs GASNet is slightly faster than
MPI

GASNet achieves close to peak bandwidth
with Pencils but MPI is about 50% less
efficient at 8k
More overlap possible with 8k messages

With the message sizes in Packed Slabs both
comm systems reach the same peak bandwidth

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

12

Platforms

Name Processor Network Software

Opteron/Infiniband
“Jacquard” @ NERSC

Dual 2.2 GHz Opteron
(320 nodes @ 4GB/
node)

Mellanox Cougar
InfiniBand 4x HCA

Linux 2.6.5, Mellanox
VAPI, MVAPICH 0.9.5,
Pathscale CC/F77 2.0

Alpha/Elan3
“Lemieux” @ PSC

Quad 1 GHz Alpha
21264 (750 nodes @
4GB/node)

Quadrics QsNet1
Elan3 /w dual rail (one
rail used)

Tru64 v5.1, Elan3
libelan 1.4.20, Compaq
C V6.5-303, HP Fortra
Compiler
X5.5A-4085-48E1K

Itanium2/Elan4
“Thunder” @ LLNL

Quad 1.4 Ghz Itanium2
(1024 nodes @ 8GB/
node)

Quadrics QsNet2 Elan4 Linux 2.4.21-chaos,
Elan4 libelan 1.8.14,
Intel ifort 8.1.025, icc 8.
1.029

P4/Myrinet
“FSN” @
UC Berkeley Millennium
Cluster

Dual 3.0 Ghz Pentium 4
Xeon (64 nodes @ 3GB/
node)

Myricom Myrinet 2000
M3S-PCI64B

Linux 2.6.13, GM 2.0.19,
Intel ifort
8.1-20050207Z, icc
8.1-20050207Z

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

04/17/2012 CS267 Lecture 25

45

0.75

1

1.25

1.5

1.75

2

2.25

2.5

P4/M
yri

net/
64

O
pte

ro
n/In

fin
iB

and/256

Alp
ha/Ela

n3/256

Alp
ha/Ela

n3/512

It
aniu

m
2/Ela

n4/256

It
aniu

m
2/Ela

n4/512

S
p

e
e
d

u
p

 o
v
e
r
 N

A
S

 F
o

r
tr

a
n

/
M

P
I

UPC Packed Slabs

UPC Slabs

UPC Pencils

Comparison of Algorithms

°  Compare 3 algorithms against
original NAS FT

•  All versions including Fortran
use FFTW for local 1D FFTs

•  Largest class that fit in the
memory (usually class D)

°  All UPC flavors outperform
original Fortran/MPI
implantation by at least 20%

•  One-sided semantics allow
even exchange based
implementations to improve
over MPI implementations

•  Overlap algorithms spread
the messages out, easing the
bottlenecks

•  ~1.9x speedup in the best
case

up is good

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Time Spent in Communication

°  Implemented the 3
algorithms in MPI using
Irecvs and Isends

° Compare time spent
initiating or waiting for
communication to finish

•  UPC consistently spends
less time in
communication than its
MPI counterpart

•  MPI unable to handle
pencils algorithm in some
cases

312.8 34.1 28.6

M
P

I C
ra

sh
 (P

en
ci

ls
)

0

2

4

6

8

10

12

P4/M
yrin

et/
64

Opte
ro

n/In
fin

iB
and/256

Alp
ha/Ela

n3/256

Alp
ha/Ela

n3/512

It
aniu

m
2/Ela

n4/256

It
aniu

m
2/Ela

n4/512

T
im

e
 S

p
e
n

t
in

 C
o

m
m

 (
s
e
c
o

n
d

s
)

UPC Slabs

UPC Pencils

MPI Slabs

MPI Pencils

do
w

n
is

 g
oo

d

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

Performance Summary

0

200

400

600

800

1000

1200

P4/Myrinet/64

Opteron/InfiniBand/256

Alpha/Elan3/256

Alpha/Elan3/512

Itanium2/Elan4/256

Itanium2/Elan4/512

Platform

M
F
lo

p
s
 /

 P
r
o

c

Best NAS Fortran/MPI

Best MPI (always Slabs)

Best UPC (always Pencils)

up is good

Source: R. Nishtala, C. Bell, D. Bonachea, K. Yelick

04/17/2012 CS267 Lecture 25

48

13

FFT Performance on BlueGene/P

HPC Challenge Peak as of July 09 is
~4.5 Tflops on 128k Cores

•  PGAS implementations
consistently outperform MPI

•  Leveraging communication/
computation overlap yields
best performance

•  More collectives in flight
and more communication
leads to better
performance

•  At 32k cores, overlap
algorithms yield 17%
improvement in overall
application time

•  Numbers are getting close to
HPC record

•  Future work to try to beat
the record

0

500

1000

1500

2000

2500

3000

3500

256 512 1024 2048 4096 8192 16384 32768

G
Fl

op
s

Num. of Cores

Slabs
Slabs (Collective)
Packed Slabs (Collective)
MPI Packed Slabs

G
O
O
D

04/14/2015 CS267 Lecture 23 49

FFT Performance on Cray XT4 (Franklin)

°  1024 Cores of the Cray XT4
•  Uses FFTW for local FFTs
•  Larger the problem size the more effective the overlap

50

G
O
O
D

04/14/2015

CS267 Lecture 25

04/14/2015 CS267 Lecture 23

FFTW – Fastest Fourier Transform in the West

° www.fftw.org
° Produces FFT implementation optimized for

•  Your version of FFT (complex, real,…)
•  Your value of n (arbitrary, possibly prime)
•  Your architecture
•  Very good sequential performance (competes with Spiral)

° Similar in spirit to PHIPAC/ATLAS/OSKI/Sparsity
° Won 1999 Wilkinson Prize for Numerical Software
° Widely used

•  Latest version 3.3.4 (Mar 2014), includes threads, OpenMP
•  Added MPI versions in v3.3 Beta 1 (June 2011)
•  Layout constraints from users/apps + network differences are

hard to support

51 04/14/2015 CS267 Lecture 23

FFTW

• C library for real & complex FFTs (arbitrary size/dimensionality)	

• Computational kernels (80% of code) automatically generated	

• Self-optimizes for your hardware (picks best composition of steps)	

	
= portability + performance	

(+ parallel versions for threads & MPI)	

free software: http://www.fftw.org/!

the “Fastest	

Fourier Tranform	

in the West”	

52

14

04/17/2012

CS267 Lecture 25

FFTW performance
power-of-two sizes, double precision

833 MHz Alpha EV6	
 2 GHz PowerPC G5	

2 GHz AMD Opteron	
 500 MHz Ultrasparc IIe	

53 04/17/2012

CS267 Lecture 25

FFTW performance
non-power-of-two sizes, double precision

833 MHz Alpha EV6	

2 GHz AMD Opteron	

unusual: non-power-of-two sizes	

receive as much optimization	

as powers of two	

…because we	

let the code do the optimizing	

54

04/14/2015

CS267 Lecture 25

FFTW performance
double precision, 2.8GHz Pentium IV: 2-way SIMD (SSE2)

powers of two	

…because we	

let the code write itself	

non-powers-of-two	

exploiting CPU-specific	

SIMD instructions	

(rewriting the code)	

is easy	

55 04/14/2015 CS267 Lecture 23

Why is FFTW fast?
three unusual features

FFTW implements many FFT algorithms: 	

A planner picks the best composition	

by measuring the speed of different combinations.	

The resulting plan is executed	

with explicit recursion: 	

enhances locality 	

3	

1	

2	

The base cases of the recursion are codelets:	

highly-optimized dense code	

automatically generated by a special-purpose “compiler”	

56

15

04/14/2015

CS267 Lecture 25

FFTW is easy to use

{!
!complex x[n];!
!plan p;!

!
!p = plan_dft_1d(n, x, x, FORWARD, MEASURE);!
!...!
!execute(p); /* repeat as needed */!
!...!
!destroy_plan(p);!

}!

Key fact: usually,	

many transforms of same size

are required.	

57 04/14/2015 CS267 Lecture 23

Why is FFTW fast?
three unusual features

FFTW implements many FFT algorithms: 	

A planner picks the best composition	

by measuring the speed of different combinations.	

The resulting plan is executed	

with explicit recursion: 	

enhances locality 	

3	

1	

2	
 The base cases of the recursion are codelets:	

highly-optimized dense code	

automatically generated by a special-purpose “compiler”	

58

04/14/2015 CS267 Lecture 23

But traditional implementation is non-recursive,	

breadth-first traversal:	

log2 n passes over whole array	

FFTW Uses Natural Recursion

Size 8 DFT	

Size 4 DFT	
 Size 4 DFT	

Size 2 DFT	
 Size 2 DFT	
 Size 2 DFT	
 Size 2 DFT	

p = 2 (radix 2)	

59 04/14/2015 CS267 Lecture 23

breadth-first, but with blocks of size = cache	

Traditional cache solution: Blocking

Size 8 DFT	

Size 4 DFT	
 Size 4 DFT	

Size 2 DFT	
 Size 2 DFT	
 Size 2 DFT	
 Size 2 DFT	

p = 2 (radix 2)	

…requires program specialized for cache size	

60

16

04/14/2015

CS267 Lecture 25

Recursive Divide & Conquer is Good

Size 8 DFT	

Size 4 DFT	
 Size 4 DFT	

Size 2 DFT	
 Size 2 DFT	
 Size 2 DFT	
 Size 2 DFT	

p = 2 (radix 2)	

eventually small enough to fit in cache	

…no matter what size the cache is	

(depth-first traversal)	
 [Singleton, 1967]	

61 04/14/2015 CS267 Lecture 23

Cache Obliviousness

• A cache-oblivious algorithm does not know the cache size	

	
— it can be optimal for any machine	

	
 & for all levels of cache simultaneously	

• Exist for many other algorithms, too [Frigo et al. 1999]	

— all via the recursive divide & conquer approach	

62

04/14/2015 CS267 Lecture 23

Why is FFTW fast?
three unusual features

FFTW implements many FFT algorithms: 	

A planner picks the best composition	

by measuring the speed of different combinations.	

The resulting plan is executed	

with explicit recursion: 	

enhances locality 	

3	

1	

2	
 The base cases of the recursion are codelets:	

highly-optimized dense code	

automatically generated by a special-purpose “compiler”	

63

Spiral

° Software/Hardware Generation for DSP Algorithms
° Autotuning not just for FFT, many other signal

processing algorithms
° Autotuning not just for software implementation,

hardware too
° More details at

•  www.spiral.net
•  On-line generators, papers available

04/14/2015 CS267 Lecture 23 64

17

04/17/2012 CS267 Lecture 25 65!

Motifs – so far this semester

The Motifs (formerly “Dwarfs”) from
“The Berkeley View” (Asanovic et al.)

Motifs form key computational patterns

65

Rest of the semester
° Computational Astrophysics (Julian Borrill, LBNL)
° Dynamic Load Balancing (TBD)
° Climate Modeling (Michael Wehner, LBNL)
° Computational Materials Science (Kristin Persson, LBNL)
° Future of Exascale Computing (Kathy Yelick, UCB & LBNL)

04/14/2015 CS267 Lecture 23 66

