
4/1/15

1

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

Frameworks in Complex
Multiphysics HPC Applications

CS267 – Spring 2015

John Shalf
Department Head for Computer Science: Computing Research Division

CTO: National Energy Research Supercomputing Center
Lawrence Berkeley National Laboratory

With contributions from: Gabrielle Allen, Tom Goodale, Eric Schnetter, Ed
Seidel (AEI/LSU), Phil Colella, Brian Van Straalen (LBNL)

April 2, 2015

Technology Challenges
Creating Extremely Complex Machine Architectures

1/23/2013
2

!"

!#"

!##"

!###"

!####"

$%
"&'
(%
"

)*
+,-
.*
/"

!0
0"
12
345
,6"

70
0"
12
345
,6"

(8
345
,69
$)
:;

"

<14
=<"
,2.
*/
41
22
*4
."

>/
1-
-"-
?-
.*
0"

21@"

A#!B"

Internode/MPI+
Communica2on+

On4chip++/+CMP+
communica2on+

Intranode/SMP+
Communica2on+

Pi
co
jo
ul
es
*P
er
*O
pe

ra
/o

n*

Parallelism is
growing at

exponential rate

Power is leading
constraint for future
performance growth

By 2018, cost of a FLOP will be
less than cost of moving 5mm

across the chip’s surface
(locality will really matter)

Reliability going down for
large-scale systems, but
also to get more energy

efficiency for small
systems

Memory
Technology

improvements are
slowing down

Application Code Complexity
■  Application Complexity has Grown

●  Big Science on leading-edge HPC systems is a multi-
disciplinary, multi-institutional, multi-national efforts!
(and we are not just talking about particle
accelerators and Tokamaks)

●  Looking more like science on atom-smashers

■  Advanced Parallel Languages are
Necessary, but NOT Sufficient!
●  Need higher-level organizing constructs for teams of

programmers
●  Languages must work together with frameworks for a

complete solution!

Example: Grand Challenge Simulation Science

Gamma Ray Busts
Core Collapse

Supernova
■  10 Inst x 10 years
■  Multiple disciplines

■  GR
■  Hydro
■  Chemistry
■  Radiation Transp
■  Analytic Topology

Examples of Future of
Science & Engineering
■  Require Large Scale Simulations,

at edge of largest computing sys
■  Complex multi-physics codes with

millions of lines of codes
■  Require Large Geo-Distributed

Cross-Disciplinary Collaborations

NSF Black Hole
Grand Challenge
■  8 US Institutions,

5 years
■  Towards colliding

black holes

NASA Neutron Star
Grand Challenge
■  5 US Institutions
■  Towards colliding

neutron stars

4/1/15

2

Community Codes & Frameworks
(hiding complexity using good SW engineering)

■  Frameworks (eg. Chombo, Cactus, SIERRA, UPIC, etc…)
●  Clearly separate roles and responsibilities of your expert programmers from that of

the domain experts/scientist/users (productivity layer vs. performance layer)
●  Define a social contract between the expert programmers and the domain scientists
●  Enforces software engineering style/discipline to ensure correctness
●  Hides complex domain-specific parallel abstractions from scientist/users to enable

performance (hence, most effective when applied to community codes)
●  Allow scientists/users to code nominally serial plug-ins that are invoked by a parallel

“driver” (either as DAG or constraint-based scheduler) to enable productivity

■  Properties of the “plug-ins” for successful frameworks (SIAM CSE07)
●  Relinquish control of main(): invoke user module when framework thinks it is best
●  Module must be stateless (or benefits from that)
●  Module only operates on the data it is handed (well-understood side-effects)

■  Frameworks can be thought of as driver for coarse-grained functional-
style of programming
●  Very much like classic static dataflow, except coarse-grained objects written in

declarative language (dataflow without the functional languages)
●  Broad flexibility to schedule Directed Graph of dataflow constraints

Framework vs. Libraries

■  Library
●  User program invokes library (imperative execution model offers

limited scheduling freedom)
●  User defines presents data layout to library (compiler and system

has limited freedom to reorganize to match physical topology of
underlying system hardware)

■  Framework
●  Framework invokes user plug-in (declarative execution model)
●  Only operation on data given (well defined scope for side-effects)
●  Functional semantics provide more scheduling freedom

Frameworks vs. Libraries
(Observation by Koushik Sen: view.eecs.berkeley.edu)

■  A parallel program may be
composed of parallel

 and serial elements

●  Parallel patterns
with serial plug-ins

Parallel Dwarf Libraries
■  Dense matrices
■  Sparse matrices
■  Spectral
■  Combinational
■  (Un) Structured Grid

Parallel Patterns/Frameworks
■  Map Reduce
■  Graph traversal
■  Dynamic programming
■  Backtracking/B&B
■  Graphical models
■  N-Body
■  (Un) Structured Grid

●  Serial code invoking
parallel libraries

n  Composition
may be
recursive

Separation of Concerns
Segmented Developer Roles

Developer Roles Domain
Expertise

CS/Coding
Expertise

Hardware
Expertise

Application: Assemble solver
modules to solve science
problems. (eg. combine hydro+GR
+elliptic solver w/MPI driver for
Neutron Star simulation)

Einstein Elvis Mort

Solver: Write solver modules to
implement algorithms. Solvers use
driver layer to implement “idiom for
parallelism”. (e.g. an elliptic solver
or hydrodynamics solver)

Elvis Einstein Elvis

Driver: Write low-level data
allocation/placement,
communication and scheduling to
implement “idiom for parallelism”
for a given “dwarf”. (e.g. PUGH)

Mort Elvis Einstein

4/1/15

3

Separation of Concerns
Segmented Developer Roles

Developer Roles Conceptual Model Instantiation
Application: Assemble
solver modules to solve
science problems.

Neutron Star Simulation:
Hydrodynamics + GR Solver
using Adaptive Mesh
Refinement (AMR)

BSSN GR Solver +
MoL integrator +
Valencia Hydro +
Carpet AMR Driver +
Parameter file (params for
NS)

Solver: Write solver
modules to implement
algorithms. Solvers use
driver layer to implement
“idiom for parallelism”.

Elliptic Solver PETSC Elliptic Solver pkg.
(in C)
BAM Elliptic Solver (in C++ &
F90)
John Town’s custom BiCG-
Stab implementation (in F77)

Driver: Write low-level data
allocation/placement,
communication and
scheduling to implement
“idiom for parallelism” for a
given “dwarf”.

Parallel boundary exchange
idiom for structured grid
applications

Carpet AMR Driver
SAMRAI AMR Driver
GrACE AMR driver
PUGH (MPI unigrid driver)
SHMUGH (SMP unigrid
driver)

Framework Taxonomy

■  Integration is invasive: how much will you put up with?

Fully coupled

Observations on Domain-Specific Frameworks
■  Frameworks and domain-specific languages

●  enforce coding conventions for big software teams
●  Encapsulate a domain-specific “idiom for parallelism”
●  Create familiar semantics for domain experts (more productive)
●  Clear separation of concerns (separate implementation from

specification)

■  Common design principles for frameworks from SIAM
CSE07 and DARPA Ogden frameworks meeting
●  Give up main(): schedule controlled by framework
●  Stateless: Plug-ins only operate on state passed-in when invoked
●  Bounded (or well-understood) side-effects: Plug-ins promise to

restrict memory touched to that passed to it (same as CILK)

Benefits and Organizing Principles
■  Other “frameworks” that use same organizing principles (and

similar motivation)
●  NEURON (parallel implementation of Genesis neurodyn)
●  SIERRA (finite elements/structural mechanics)
●  UPIC and TechX (generized code frameworks for PIC codes)
●  Chombo: AMR on block-structured grids (its hard)
●  Common feature is that computational model is well understood and broadly

used (seems to be a good feature for workhorse “languages”)
■  Common benefits (and motivations) are

●  Modularity (composition using higher-level semantics)
●  Segmenting expertise / Separation of Concerns
●  Unit Testing: This was the biggest benefit
●  Performance analysis (with data aggregated on reasonable semantic

boundaries)
●  Correctness testing (on reasonable semantic boundaries)
●  Enables reuse of “solver” components. Replace “driver” if you have a

different hardware platform.

4/1/15

4

Benefits cont.
Enabling Collaborative Development!

■  They enable computer scientists and computational scientists to
play nicely together
●  No more arguments about C++ vs. Fortran
●  Easy unit-testing to reduce finger pointing (are the CS weenies “tainting

the numerics”) (also good to accelerate V&V)
●  Enables multidisciplinary collaboration (domain scientists + computer jocks)

to enables features that would not otherwise emerge in their own codes!
–  Scientists write code that seem to never use “new” features
–  Computer jocks write code that no reasonable scientist would use

■  Advanced CS Features are trivially accessible by Application
Scientists
●  Just list the name of the module and it is available
●  Also trivially unit-testable to make sure they don’t change numerics

■  Also enables sharing of physics modules among computational
scientists
●  The hardest part is agreeing upon physics interfaces (there is no magic!)
●  Nice, but not actually not as important as the other benefits (organizing

large teams of programmers along the lines of their expertise is the

Location of Some Key Frameworks

■  Cactus: PDEs on Block Structured Grids
●  http://www.cactuscode.org/

■  PETSc: Linear System Solvers
●  http://www.mcs.anl.gov/petsc/

■  Chombo: Adaptive Mesh Refinement
●  https://commons.lbl.gov/display/chombo/Chombo+Download+Page

■  Trillinos: Linear Algebra and Eigensolvers
●  http://trilinos.org

14

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

Examples:
CACTUS

Cactus

■  Framework for HPC: code development, simulation
control, visualisation

■  Manage increased complexity with higher level
abstractions, e.g. for inter-node communication, intra-
node parallelisation

■  Active user community, 10+ years old
» Many of these slides are almost 10 years old!

■  Supports collaborative development

■  Is this a language or just structured programming?
 (Why is it important to answer this question?)

4/1/15

5

17

Detecting Gravitational Waves
Will uncover fundamentally new information about the universe

• LIGO, VIRGO (Pisa), GEO600,… $1 Billion Worldwide
• Was Einstein right? 5-10 years, we’ll see!

GR requires solution of dozens of coupled, nonlinear hyperbolic-
elliptic equations with 1000’s of terms (barely have the capability
to solve after a century of development)
• Detect GR Waves…pattern matching against numerical
 templates to enhance signal/noise ratio
• Understand them…just what are the waves telling us?

4km

Hanford Washington Site

Cactus User Community
■  General Relativity: worldwide usage

●  LSU(USA),AEI(Germany),UNAM (Mexico), Tuebingen(Germany), Southampton (UK),
Sissa(Italy), Valencia (Spain), University of Thessaloniki (Greece), MPA (Germany),
RIKEN (Japan), TAT(Denmark), Penn State (USA), University of Texas at Austin
(USA), University of Texas at Brwosville (USA), WashU (USA), University of
Pittsburg (USA), University of Arizona (USA), Washburn (USA), UIB (Spain),
University of Maryland (USA), Monash (Australia)

■  Astrophysics
●  Zeus-MP MHD ported to Cactus (Mike Norman: NCSA/UCSD)

■  Computational Fluid Dynamics
●  KISTI
●  DLR: (turbine design)

■  Chemistry
●  University of Oklahoma: (Chem reaction vessels)

■  Bioinformatics
●  Chicago

Cactus Features
■  Scalable Model of Computation

●  Cactus provides ‘idiom’ for parallelism
–  Idiom for Cactus is parallel boundary exchange for block structured grids
–  Algorithm developers provide nominally “serial” plug-ins
–  Algorithm developers are shielded from complexity of parallel implementation

●  Neuron uses similar approach for scalable parallel idiom
■  Build System

●  User does not see makefiles (just provides a list of source files in a given module)
●  “known architectures” used to store accumulated wisdom for multi-platform builds
●  Write once and run everywhere (laptop, desktop, clusters, petaflop HPC)

■  Modular Application Composition System
●  This is a system for composing algorithm and service components together into a

complex composite application
●  Just provide a list of “modules” and they self-organize according to constraints

(less tedious than explicit workflow)
●  Enables unit testing for V&V of complex multiphysics applications

■  Language Neutrality
●  Write modules in any language (C, C++, F77, F90, Java, etc…)
●  Automatically generates bindings (also hidden from user)
●  Overcomes age-old religious battles about programming languages

Cactus components (terminology)
■  Thorns (modules):

●  Source Code
●  CCL: Cactus Configuration Language (Cactus C&C description)

–  Interface/Types: polymorphic datastructures instantiated in “driver-independent”
manner

–  Schedule: constraints-based schedule
–  Parameter: must declare free parameters in common way for introspection,

steering, GUIs, and common input parameter parser.
■  Driver: Separates implementation of parallelism from implementation of

the “solver” (can have Driver for MPI, or threads, or CUDA)
●  Instantiation of the parallel datastructures (control of the domain-

decomposition)
●  Handles scheduling and implementation of parallelism (threads or whatever)
●  Implements communication abstraction
●  Drive must own all of these

■  Flesh: Glues everything together
●  Just provide a “list” of modules and they self-assemble based on their

constraints expressed by CCL
●  CCL not really a language

4/1/15

6

Idiom for Parallelism in Cactus
■  The central idiom for the Cactus model of computation is boundary exchange

●  Cactus is designed around a distributed memory model.
●  Each module (algorithm plug-in) is passed a section of the global grid.

■  The actual parallel driver (implemented in a module)
●  Driver decides how to decompose grid across processors and exchange ghost zone information
●  Each module is presented with a standard interface, independent of the driver
●  Can completely change the driver for shared memory, multicore, message passing without requiring

any change of the physics modules

■  Standard driver distributed with
Cactus (PUGH) is for a parallel unigrid
and uses MPI for the communication
layer

■  PUGH can do custom processor
decomposition and static load
balancing

■  Same idiom also works for AMR and
unstructured grids!!! (no changes to
solver code when switching drivers)
●  Carpet (Erik Schnetter’s AMR driver)
●  DAGH/GrACE driver for Cactus
●  SAMRAI driver for Cactus

t=0

t=100

AMR Unigrid

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

How Does Cactus Work?

Primer on PDE Solvers on
Block Structured Grids

Scalar waves in 3D are solutions of the hyperbolic
wave equation: -φ,tt + φ,xx + φ,yy + φ,zz = 0

Initial value problem: given data for φ and its first
time derivative at initial time, the wave equation
says how it evolves with time

r
time

Scalar Wave Model Problem

Numerical solve by discretising on a grid, using
explicit finite differencing (centered, second order)

φ n+1
i,j,k = 2φ ni,j,k - φ n-1

i,j,k 	

+ Δt2/Δx2(φ ni+1,j,k -2 φ ni,j,k + φ ni-1,j,k) 	

+ Δt2/Δy2(φ ni,j+1,k -2 φ ni,j,k + φ ni,j-1,k)
+ Δt2/Δz2(φ ni,j,k+1 -2 φ ni,j,k + φ ni,j,k-1)

time
r

Numerical Method

4/1/15

7

■  Finite grid, so need to apply outer boundary conditions

■  Main parameters:
●  grid spacings: Δt, Δx, Δy, Δz, which coords?, which initial data?

■  Simple problem, analytic solutions, but contains many
features needed for modelling more complex problems

Numerical Method
c ===================================
 program WaveToy
c ===================================
c Fortran 77 program for 3D wave equation.
c Explicit finite difference method.
c ===================================

c Global variables in include file
 include "WaveToy.h"
 integer i,j,k

c SET UP PARAMETERS
 nx = 30
 [MORE PARAMETERS]

c SET UP COORDINATE SYSTEM AND GRID
 x_origin = (0.5 - nx/2)*dx
 y_origin = (0.5 - ny/2)*dy
 z_origin = (0.5 - nz/2)*dz

 do I=1,nx
 do j=1,ny
 do k=1,nz
 x(i,j,k) = dx*(i-1) + x_origin
 y(i,j,k) = dy*(j-1) + y_origin
 z(i,j,k) = dz*(k-1) + z_origin
 r(i,j,k) = sqrt(x(i,j,k)**2+y(i,j,k)**2+z(i,j,k)**2)
 end do
 end do
 end do

c OPEN OUTPUT FILES
 open(unit=11,file=“out.xl”)
 open(unit=12,file=“out.yl”)
 open(unit=13,file=“out.zl”)

c SET UP INITIAL DATA
 call InitialData
 call Output

c EVOLVING
 do iteration = 1, nt
 call Evolve
 if (mod(iteration,10).eq.0) call Output
 end do

 stop
 end

Example Stand Alone Code: Main.f

Standalone Serial Program
 Setting up parameters
 Setting up grid and coordinate system
 Opening output files
 Setting up initial data
 Performing iteration 10
 Performing iteration 20
 Performing iteration 30
 Performing iteration 40
 Performing iteration 50
 Performing iteration 60
 Performing iteration 70
 Performing iteration 80
 Performing iteration 90
 Performing iteration 100
 Done

c ===================================
 program WaveToy
c ===================================
c Fortran 77 program for 3D wave equation.
c Explicit finite difference method.
c ===================================

c Global variables in include file
 include "WaveToy.h"
 integer i,j,k

c SET UP PARAMETERS
 nx = 30
 [MORE PARAMETERS]

c SET UP COORDINATE SYSTEM AND GRID
 x_origin = (0.5 - nx/2)*dx
 y_origin = (0.5 - ny/2)*dy
 z_origin = (0.5 - nz/2)*dz

 do I=1,nx
 do j=1,ny
 do k=1,nz
 x(i,j,k) = dx*(i-1) + x_origin
 y(i,j,k) = dy*(j-1) + y_origin
 z(i,j,k) = dz*(k-1) + z_origin
 r(i,j,k) = sqrt(x(i,j,k)**2+y(i,j,k)**2+z(i,j,k)**2)
 end do
 end do
 end do

c OPEN OUTPUT FILES
 open(unit=11,file=“out.xl”)
 open(unit=12,file=“out.yl”)
 open(unit=13,file=“out.zl”)

c SET UP INITIAL DATA
 call InitialData
 call Output

c ITERATE
 do iteration = 1, nt
 call Evolve
 if (mod(iteration,10).eq.0) call Output
 end do

 stop
 end

Making a “Thorn” (a Cactus Module)

Throw the rest of this stuff away
(less writing)

And get parallelism, modularity, and
portability for free

4/1/15

8

Thorn Architecture

Make
Information

Source Code

Documentation!

Interface.ccl

Parameter Files
and Testsuites

Param.ccl

Schedule.ccl
Fortran
Routines

C++
Routines

C
Routines

Thorn

Configure CST

Flesh

Computational
Toolkit Toolkit Toolkit

Operating Systems
AIX NT

Linux
Unicos

Solaris
HP-UX

Thorns

Cac
tus

SuperUX Irix

OSF

Make

Abstraction Enables Auto-Tuning

■  The following example shows how the framework
abstractions enable auto-tuning of the parallel performance
of a code without any change to the higher-levels of the
framework
●  Normally people accuse abstractions of reducing performance
●  Framework abstractions *enable* performance tuning!!!

Dynamic Adaptation (auto-tuning)

Adapt:!

2 ghosts!

3 ghosts! Compress on!!

■  Automatically adapt to
bandwidth latency issues

■  Application has NO
KNOWLEDGE of machines(s) it
is on, networks, etc

■  Adaptive techniques make NO
assumptions about network

■  Adaptive MPI unigrid driver
required NO changes to the
physics components of the
application!! (plug-n-play!)

■  Issues:
●  More intellegent adaption

algorithm
●  Eg if network conditions

change faster than
adaption…

Cactus “Task Farming” driver example
Very similar to “map-reduce”

This example was used to farm out Smith-
Waterman DNA sequence mapping calculations

4/1/15

9

Fault Tolerance
■  Need checkpointing/recovery on steroids, need to cope with

partial failure
■  Checkpoint is transparent to application (uses introspection)

 -architecture independent (independent of system HW and SW)
■  Able to change number of active nodes
■  Example: keep log of inter-processor messages, so that a

lost node can be replaced
■  Contain failure, continue simulation

Regular checkpointing	

 “Localized” checkpointing	

time	

1
0

1
0 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Clock Time

Ite
ra

tio
ns

/S
ec

on
d

Nomadic Application Codes
(Foster, Angulo, Cactus Team…)

Load
applied

3 successive
contract
violations

Running
At UIUC

(migration
time not to scale)

 Resource
discovery

& migration

Running
At UC

Hybrid Communication Models
■  New “multicore” driver required no changes to physics components!
■  Use MPI between nodes, OpenMP within nodes

■  Common address space enables more cache optimisations
■  Cactus framework offers abstraction layer for parallelisation: basic

OpenMP features work as black box (central idiom)

Remote Monitoring/Steering:
Thorn HTTPD and SMS Messaging

■  Thorn which allows simulation
any to act as its own web
server

■  Connect to simulation from any
browser anywhere …
collaborate

■  Monitor run: parameters, basic
visualization, ...

■  Change steerable parameters
■  See running example at

www.CactusCode.org
■  Get Text Messages from your

simulation or chat with it on IM!

4/1/15

10

Remote Visualization

www.cactuscode.org/VizTools

OpenDX

IsoView

gnuplot

xgraph

Amira

LCAVision

Source
Volume

Visapult

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

Another Framework Example

PETSc
Slides from: Barry Smith, Jed Brown, Karl Rupp,

Matthew Knepley

Argonne National Laboratory

Computation and Communication Kernels!
MPI, MPI-IO, BLAS, LAPACK!

Profiling Interface!

PETSc PDE Application Codes!

Object-Oriented!
Matrices, Vectors, Indices!

Grid!
Management!

Linear Solvers!
Preconditioners + Krylov Methods!

Nonlinear Solvers,!
Unconstrained Minimization!

ODE Integrators! Visualization!

Interface!

PETSc Software Interfaces and Structure	

Computation and Communication Kernels!
MPI, MPI-IO, BLAS, LAPACK!

Profiling Interface!

PETSc PDE Application Codes!

Object-Oriented!
Matrices, Vectors, Indices!

Grid!
Management!

Linear Solvers!
Preconditioners + Krylov Methods!

Nonlinear Solvers,!
Unconstrained Minimization!

ODE Integrators! Visualization!

Interface!

How to specify the
mathematics of the
problem?

Data Objects	

PETSc Software Interfaces and Structure	

4/1/15

11

PETSc Software Interfaces and Structure	

Computation and Communication Kernels!
MPI, MPI-IO, BLAS, LAPACK!

Profiling Interface!

PETSc PDE Application Codes!

Object-Oriented!
Matrices, Vectors, Indices!

Grid!
Management!

Linear Solvers!
Preconditioners + Krylov Methods!

Nonlinear Solvers,!
Unconstrained Minimization!

ODE Integrators! Visualization!

Interface!

How to solve the
problem?

Solvers	

KRYLOV SUBSPACE METHODS + PRECONDITIONERS
R. Freund, G. H. Golub, and N. Nachtigal. Iterative Solution of Linear Systems,pp 57-100.
ACTA Numerica. Cambridge University Press, 1992.

Computation and Communication Kernels!
MPI, MPI-IO, BLAS, LAPACK!

Profiling Interface!

PETSc PDE Application Codes!

Object-Oriented!
Matrices, Vectors, Indices!

Grid!
Management!

Linear Solvers!
Preconditioners + Krylov Methods!

Nonlinear Solvers,!
Unconstrained Minimization!

ODE Integrators! Visualization!

Interface!

How to handle Parallel
computations?

Support for
structured and

unstructured meshes

PETSc Software Interfaces and Structure	

Computation and Communication Kernels!
MPI, MPI-IO, BLAS, LAPACK!

Profiling Interface!

PETSc PDE Application Codes!

Object-Oriented!
Matrices, Vectors, Indices!

Grid!
Management!

Linear Solvers!
Preconditioners + Krylov Methods!

Nonlinear Solvers,!
Unconstrained Minimization!

ODE Integrators! Visualization!

Interface!

What debugging and
monitoring aids it
provides?

Correctness and
P e r f o r m a n c e
Debugging

PETSc Software Interfaces and Structure	

Compressed
Sparse Row

(AIJ)

Blocked Compressed
Sparse Row

(BAIJ)

Block
Diagonal
(BDIAG)

Dense Other

Indices Block Indices Stride Other
Index Sets

Vectors

Line Search Trust Region

Newton-based Methods
Other

Nonlinear Solvers

Additive
Schwartz

Block
Jacobi Jacobi ILU ICC LU

(Sequential only) Others

Preconditioners

Euler Backward
Euler

Pseudo Time
Stepping Other

Time Steppers

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Other

Krylov Subspace Methods

Matrices

Distributed Arrays

Matrix-free

Some Algorithmic Implementations in PETSc	

4/1/15

12

• #include “petsc.h”  
int main(int argc, char *argv[])  
{  
 PetscInitialize(&argc,&argv);"

•  PetscPrintf(PETSC_COMM_WORLD,“Hello World\n”);"
•  PetscFinalize();  
 return 0;  
}"

Basic Program setup in PETSc (C/C++)	

•  program main"
•  integer ierr, rank"
• #include "include/finclude/petsc.h""
•  call PetscInitialize(PETSC_NULL_CHARACTER, ierr)"
•  call MPI_Comm_rank(PETSC_COMM_WORLD, rank, ierr)"
•  if (rank .eq. 0) then"
•  print *, ‘Hello World’"
•  endif"
•  call PetscFinalize(ierr)"
•  end"

Basic Program Setup in PETSc (Fortran)	

VECTORS

Fundamental objects to

store fields, right-hand side
vectors, solution vectors,

etc. . .

Matrices

Fundamental Objects to store

Operators

Vectors and Matrices in PETSc	

•  PETSc vectors can be sequential (full vector is created in
every process) or parallel (every process contains a part of
the vector)

proc 3

proc 2

proc 0

proc 4

proc 1
–  Create a PETSc Vector

VecCreate(MPI_Comm Comm,Vec * v)!
•  comm - MPI_Comm parallel processes

•  v = vector

– Set the PETSc Vector type:

!VecSetType(Vec,VecType)

•  Vector Types can be:

–  VEC_SEQ, VEC_MPI, or VEC_SHARED

–  Set the PETSc vector size:

!VecSetSizes(Vec *v,int n, int N)!
•  Where n or N (not both) could be PETSC_DECIDE

–  Destroy a PETSc Vector (Important for storage)

!VecDestroy(Vec *)!

PETSC: Some Basic Vector Operations	

4/1/15

13

 #include petscvec.h!
 int main(int argc,char **argv)!
 {!
 Vec x; !
 int n = 20,m=4, ierr;!
 PetscInitialize(&argc,&argv);!
!
 VecCreate(PETSC_COMM_WORLD,&x);!
 VecSetSizes(x,PETSC_DECIDE,n);!
 VecSetFromOptions(x);!
 <-- perform some vector operations -->!
!
 PetscFinalize();!
 return 0;!
}!

PETSC: Some Basic Vector Operations	

VecCreateMPI(PETSC_COMM_WORLD, m, n, x);!

Or to create a specific MPI vector

Function Name Operation

VecAXPY(Scalar *a, Vec x, Vec y)

y = y + a*x

VecAYPX(Scalar *a, Vec x, Vec y) y = x + a*y

VecWAXPY(Scalar *a, Vec x, Vec y, Vec w) w = a*x + y

VecScale(Scalar *a, Vec x) x = a*x

VecCopy(Vec x, Vec y) y = x

VecPointwiseMult(V ec x, Vec y, Vec w) w_i = x_i *y_i

VecMax(Vec x, int *idx, double *r) r = max x_i

VecShift(Scalar *s, Vec x) x_i = s+x_i

VecAbs(Vec x) x_i = |x_i |

VecNorm(Vec x, NormType type , double *r) r = ||x||

PETSC: Some Basic Vector Operations	

•  Create a PETSc Matrix

MatCreate(MPI_Comm comm, Mat *A)!

•  Set the PETSc Matrix type

MatSetType(Mat *A, MatType matype)!
(see next slides for types of matrices)

•  Set the PETSc Matrix sizes

MatSetSizes(Mat *A, PetscInt m, PetscInt n, PetscInt
M,!

 PetscInt N)!
•  where m, n are the dimensions of local sub-matrix. M, N are the

dimensions of the global matrix A

•  Destroy a PETSc Matrix

MatDestroy(Mat *A)

PETSC: Some Basic Matrix Operations	

PETSc Matrix Types:

–  default sparse AIJ (generic), MPIAIJ (parallel), SEQAIJ

(sequential)

–  block sparse AIJ (for multi-component PDEs): MPIAIJ,

SEQAIJ

–  symmetric block sparse AIJ: MPISBAIJ, SAEQSBAIJ

–  block diagonal: MPIBDIAG, SEQBDIAG

–  dense: MPIDENSE, SEQDENSE

–  matrix-free

–  many more formats (check documentation)

PETSC: Some Basic Matrix Operations	

4/1/15

14

proc 3

proc 2

proc 1 M=8,N=8,m1=3,n1=k1
rstart=0,rend=4

M=8,N=8,m2=3,n2=k2
rstart=3,rend=6

M=8,N=8,m3=2,n3= k3
rstart=6,rend=8

Every process will receive a set of consecutive and non-overlapping rows, the
columns are determined by the matrix non-zero structure (max(ni) = N)

PETSC: Some Basic Vector Operations	

–  Input values to the matrix

In PETSc a process can input values for blocks of the matrix that are not in its
local matrix. PETSc makes sure these values get to the right places and
corresponding processes.

!MatSetValues(Mat mat, !

! ! ! ! PetscInt m, PetscInt idxm[], !

! ! ! ! PetscInt n, PetscInt idxn[],!

 PetscScalar v[], InsertMode addv)

– idxm is a vector of global row indices and m is the number of rows in idxm

– idxn is a vector of global column indices and n is the number of columns in
idxn!

– v is an array of m X n values

– addv is either ADD_VALUES (accumulates) or INSERT_VALUES (sets)

PETSC: Some Basic Matrix Operations	

– Assembling the parallel matrix

(must do before calling solvers and other operations!)

MatAssemblyBegin (Mat mat, MatAssemblyType type)!

 MatAssemblyType: ! !!

•  MAT_FLUSH_ASSEMBLY use between ADD_VALUES and
INSERT_VALUES in MatSetValues !

•  MAT_FINAL_ASSEMBLY use after setting all the values in
the matrix and before the matrix is used in the code

MatAssemblyEnd(Mat mat, MatAssemblyType type)!

PETSC: Some Basic Matrix Operations	

– Matrix vector multiplication

! !MatMult(Mat A,Vec y, Vec x) (y≠x)

– Matrix viewing

•  MatView(Mat mat, PetscViewer viewer)!

•  PetscViewer some viewer options:

•  PETSC_VIEWER_STDOUT_SELF standard output

(default)!
•  PETSC_VIEWER_STDOUT_WORLD synchronized standard

output, only rank 0 prints - others send to rank 0!
•  PETSC_VIEWER_DRAW_WORLD graphical display of

nonzero structure !

PETSC: Some Basic Matrix Operations	

4/1/15

15

•  VIEWERS provide information on any PETSc conceptual Object

•  VIEWERS can be setup inside the program or at execution time

•  VIEWERS provide an interface for extracting data and making it available
to other tools and libraries

–  vector fields, matrix contents

–  various formats (ASCII, binary)

•  Visualization

–  simple graphics created with X11.

PETSC: Some Basic Viewer Operations	

MatView(Mat A, PetscViewer v);

With PETSC_VIEWER_DRAW_WORLD

- Other useful viewers can be set through

PETScViewerSetFormat:

•  PETSC_VIEWER_ASCII_MATLAB	

•  PETSC_VIEWER_ASCII_DENSE	

•  PETSC_VIEWER_ASCII_INFO	

•  PETSC_VIEWER_ASCII_INFO DETAILED	

PETSC: Some Basic Viewer Operations	

Included in the PETSc Distribution:

1)   $PETSC_DIR/src/mat/tests/ex2.c

2)   Use of -mat_view_info_detailed, etc

3)   $PETSC_DIR/src/mat/tests/ex3.c

4)   Use of -mat-view-draw

PETSC: Some Vector, Viewer and Matrix Examples	

 Linear Systems in PETSc	

•  PETSc Linear System Solver Interface (KSP)

•  Solve: Ax=b,

•  Based on the Krylov subspace methods with the use of a preconditioning

technique to accelerate the convergence rate of the numerical scheme.	

•  For left and right preconditioning matrices, ML and MR, respectively	

KRYLOV SUBSPACE METHODS + PRECONDITIONERS	

R. Freund, G. H. Golub, and N. Nachtigal. Iterative Solution of Linear Systems,pp 57-100.	

ACTA Numerica. Cambridge University Press, 1992. 	

(ML
−1AMR

−1)(MRx) =ML
−1b,

For MR = I

rL ≡ML
−1b−ML

−1Ax =ML
−1r PETSC Default

4/1/15

16

• To solve a Linear System, Ax = b in PETSc, one needs:

•  Declare x, b as PETSc vectors, and set the RHS b

•  Declare the matrix A, and explicitly set the matrix A when appropriate

•  Set the Solver KSP:

•  Option 1:

•  Select the base Krylov subspace based solver

•  Select the preconditioner (Petsc PC)

•  Option 2:

•  Set the solver to use a solver from an external library

Linear Systems in PETSc	

 Linear Systems in PETSc	

PETSc	

Applicatio
n	

Initializati
on	

Evaluation of A
and b	

Post-	

Processi

ng	

Solve
Ax =

b
P
C	

KS
P	

Linear Solvers	

PETSc code	

User code	

Main
Routne	

Schema of the program control flow

•  Is the key element to manipulate linear solver

•  Stores the state of the solver and other relevant

information like:

•  Convergence rate and tolerance

•  Number of iteration steps

•  Preconditioners

KSP Object:

PETSc: Linear Solver - KSP Interface	

 PETSc: Linear Solver - KSP Interface	

•  Create a KSP Object

KSPCreate(MPI_Comm comm, KSP *ksp)

•  Set KSP Operators

KSPSetOperators(KSP *ksp, Mat Amat, Mat Pmat,!

! ! ! !MatStructure flag)  
!

Amat: is the original matrix from Ax=b

Pmat: is the place holder for the preconditioning matrix (can be

the same as A)

flag: saves work while repeatedly solving linear systems of the

 same size using the same preconditioners. Possible values:

SAME_NONZERO_PATTERN (same pattern for Pmat)

! ! !DIFFERENT_NONZERO_PATTERN (different pattern for Pmat)!
! ! !SAM_PRECONDITIONER (identical Pmat)

4/1/15

17

65	

PETSc: Linear Solver - KSP Interface	

•  Solve Linear System

KSPSolve(KSP *ksp, Vec b, Vec x)  
!

•  Get Iteration Number

KSPSolve(KSP *ksp, int *its)  
!

•  Destroy Solver

KSPDestroy(KSP *ksp)  
!

!

66	

PETSc: Linear Solver - KSP Interface	

•  Set the type PETSc KSP solver

KSPSetType(KSP *ksp, KSPType method)  
!

!

•  -ksp_type [cg,gmres,bcgs,tfqmr,…]
•  -pc_type [lu,ilu,jacobi,sor,asm,…]

More advanced options:

•  -ksp_max_it <max_iters>
•  -ksp_gmres_restart <restart>
•  -pc_asm_overlap <overlap>
•  -pc_asm_type [basic,restrict,interpolate,none]
•  Many more, use -help to see other options

PETSc: Linear Solver - KSP Interface	

•  Some useful command line parameters to PETSc (run
time!)

PETSc: Linear Solver - KSP Interface	

•  Setting up the Preconditioners

KSPGetPC(KSP ksp,PC *pc);!
PCSetType(PC *pc, const PCType type)!

4/1/15

18

Use of solvers in external libraries

PETSc: Linear Solver - KSP Interoperable Interface	

Included in the PETSc Distribution:

1)   $PETSC_DIR/src/ksp/ksp/examples/tests/ex2.c

2)   $PETSC_DIR/src/ksp/ksp/examples/tests/ex5.c

(understand the use of multigrid in PETSc)

PETSC: Linear Solver Examples	

Location of Some Key Frameworks

■  Cactus: PDEs on Block Structured Grids
●  http://www.cactuscode.org/

■  PETSc: Linear System Solvers
●  http://www.mcs.anl.gov/petsc/

■  Chombo: Adaptive Mesh Refinement
●  https://commons.lbl.gov/display/chombo/Chombo+Download+Page

■  Trillinos: Linear Algebra and Eigensolvers
●  http://trilinos.org

71

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

More Opportunities for Data
Abstractions using Frameworks

Future considerations for framework design

7
2

4/1/15

19

Exascale Strawman Arch
Based on input from DOE Fast Forward and
Design Forward Projects

■  Lets review where things are going in exascale concept designs

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1/
1/
19

92

1/
1/
19

96

1/
1/
20

00

1/
1/
20

04

1/
1/
20

08

1/
1/
20

12

1/
1/
20

16

1/
1/
20

20

1/
1/
20

24

En
er
gy

pe
rF

lo
p
(p
J)

Heavyweight Heavyweight Scaled Heavyweight Constant

Lightweight Lightweight Scaled Lightweight Constant

Heterogeneous Hetergeneous Scaled Historical

CMOS Projection Hi Perf CMOS Projection Low Power UHPC Goal

1/23/2
013

74

Hybrid Architectures:
Moving from side-show to necessity

Hybrid is the only
approach that
crosses the

exascale finish line

1"

10"

100"

1000"

10000"

DP
"FL
OP
"

Re
gis
ter
"

1m
m"
on
3ch
ip"

5m
m"
on
3ch
ip"

15
mm

"on
3ch
ip"

Off
3ch
ip/
DR
AM

"

loc
al"
int
erc
on
ne
ct"

Cro
ss"
sys
tem

"

2008"(45nm)"

2018"(11nm)"

Pi
co
jo
ul
es
*P
er
*6
4b

it*
op

er
a2

on
*

Cost of Data Movement Increasing Relative to Ops

FLOPs will cost less than
on-chip data movement!

(NUMA)

FLO
Ps

Data Movem
ent

Can Get Capacity OR Bandwidth
But Cannot Get Both in the Same Technology

76
1/23/2
013

Bandwidth\Capacity. 16.GB. 32.GB. 64.GB. 128.GB. 256.GB. 512.GB. 1.TB.
4.TB/s.
2.TB/s. Stack/PNM.
1.TB/s. .. Interposer..

512.GB/s. HMC.organic.
256.GB/s. DIMM..
128.GB/s. NVRAM..

Cost (increases for higher capacity and cost/bit increases with bandwidth)

P
o
w
e
r

Old Paradigm
•  One kind of memory (JEDEC/DDRx)

•  ~1 byte per flop memory capacity
•  ~1 byte per flop bandwidth

New Paradigm
•  DDR4: ~1 byte per flop capacity with

 < 0.01 bytes/flop BW
•  Stacked Memory: ~1 byte per flop bandwidth

< 0.01 bytes/flop capacity
•  NVRAM: More capacity, but consumes more

Energy for writes than for reads.

4/1/15

20

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity,
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

77

Updated CAL AMM Model

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity,
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication

78

Exascale Node Schematic Model
(also for all pre-exascale systems)

Data Locality
What are the big questions in Fast Forward

79

1"

10"

100"

1000"

10000"

DP
"FL
OP
"

Re
gis
ter
"

1m
m"
on
3ch
ip"

5m
m"
on
3ch
ip"

15
mm

"on
3ch
ip"

Off
3ch
ip/
DR
AM

"

loc
al"
int
erc
on
ne
ct"

Cro
ss"
sys
tem

"

2008"(45nm)"

2018"(11nm)"
Pi
co
jo
ul
es
*P
er
*6
4b

it*
op

er
a2

on
*

Cost of Data Movement Increasing Relative to Ops

FLOPs will cost less than
on-chip data movement!

(NUMA)

FLO
Ps

Data Movem
ent

4/1/15

21

Data Locality Management
Vertical Locality Management

(spatio-temporal optimization)
Horizontal Locality Management

(topology optimization)

81

Sun Microsystems Coherence
Domains

■  Motivation
●  Data movement cost exceeds

compute
●  Cost on-chip now distance dependent
●  Complexity of enumerating hundreds

of cores (millions of MPI ranks)
■  Value Proposition

●  Reduce cost of data movement
(simpler compared to MPI 2-sided)

●  Data centric computation (compute on
data where it is located… in-situ)

●  Make this all much simpler to describe
■  Implementations/Existence proofs

●  UPC/UPC++:
●  Co-Array Fortran / CAF2:
●  RAJA/Kokkos: NNSA is putting majority of

its investment behind this path.

Data Centric / Global Address Space

82

1"

10"

100"

1000"

10000"

DP
"FL
OP
"

Re
gis
ter
"

1m
m"
on
3ch
ip"

5m
m"
on
3ch
ip"

15
mm

"on
3ch
ip"

Off
3ch
ip/
DR
AM

"

loc
al"
int
erc
on
ne
ct"

Cro
ss"
sys
tem

"

2008"(45nm)"

2018"(11nm)"

Pi
co
jo
ul
es
*P
er
*6
4b

it*
op

er
a2

on
*

Latency
Optimized

Core
(Fat Cores)

Throughput Optimized Cores
(Thin Cores)

Massively Parallel,Simple

Core
Coherence

Domain

•  Math:
•  Old model: move data to avoid flops
•  New model: use extra FLOPs to avoid data movement
•  ExaCT Research: Higher order methods and communication avoiding

•  Pmodels:
•  Old model: Parcel out work on-node and cache-coherence move data

(data location follows work). Ignore distance & topology within node and
between nodes.

•  New Model: Operate on data where it resides (work follows data location).
•  ExaCT Research: Tiling abstractions to express data locality info. AMR

modeling to study interconnect/box placement interaction
•  SDMA/UQ:

•  Old model: store everything on shared disk and look at it later
•  New model: do analysis workflow as much as possible in-situ
•  ExACT Research: Using metaskeleton to evaluate benefits of different

workflow approaches and their requirements for system-scale architecture.

Research Thrusts in Data Movement

83

Expressing Hierarchical Layout
■  Old Model (OpenMP)

●  Describe how to parallelize loop iterations
●  Parallel “DO” divides loop iterations evenly among

processors
●  . . . but where is the data located?

■  New Model (Data-Centric)
●  Describe how data is laid out in memory
●  Loop statements operate on data where it is

located
●  Similar to MapReduce, but need more sophisticated

descriptions of data layout for scientific codes

forall_local_data(i=0;i<NX;i++;A) "
"C[j]+=A[j]*B[i][j]);"

84

4/1/15

22

Data-Centric Programming Model
(current compute-centric models are mismatched with emerging hardware)

■  Building up a hierarchical layout
●  Layout block coreblk {blockx,blocky};
●  Layout block nodeblk {nnx,nny,nnz};
●  Layout hierarchy myheirarchy {coreblk,nodeblk};
●  Shared myhierarchy double a[nx][ny][nz];

85

•  Then use data-localized parallel loop
 doall_at(i=0;i<nx;i++;a){

 doall_at(j=0;j<ny;j++;a){
 doall_at(k=0;k<nz;k++;a){
 a[i][j][k]=C*a[i+1]…>

•  And if layout changes, this loop remains
the same

Satisfies the request of the application developers
(minimize the amount of code that changes)

Data Centric Programming
paradigm is also central to

“big data” applications.

Tiling Formulation: abstracts data locality, topology,
cache coherence, and massive parallelism

■  Expose massive degrees of parallelism through domain decomposition
●  Represent an atomic unit of work
●  Task scheduler works on tiles

■  Core concept for data locality
●  Vertical data movement

–  Hierarchical partitioning
●  Horizontal data movement

–  Co-locate tiles sharing the same data by respecting tile topology
■  Multi-level parallelism

●  Coarse-grain parallelism: across tiles
●  Fine-grain parallelism: vectorization, instruction ordering within tile

■  TiDA: Centralize and parameterize tiling information at the data structures
●  Direct approach for memory affinity management for data locality
●  Expose massive degrees of parallelism through domain decomposition
●  Overcomes challenges of relaxed coherency & coherence domains!!!

Box 2

Box 1

Box 2

Box 3

Box 4

Box 5

Tile (1,1) Tile (1,2)

Tile (2,1) Tile (2,2)

Tile (3,1) Tile (3,2)

Tiled Box 2

■  OpenMP allows a user to specify any of these layouts
■  However, the code needed to express that must be different for

GPUs vs CPUs."
■  The solvers remain unchanged !!!

Tiling: Abstraction for Memory Layout
CAF2, UPC++, Chapel, TiDA, Raja/Kokkos

87

a)   Logical Tiles(CPU) b) Separated Tiles (GPU) c) Regional Tiles
	

 	

 	

 	

cell tile	

Separated tiles with halos	

region box	

Iterating over Tiles

88

do tileno=1, ntiles (tiledA)!
 !

 tl = get_tile(tiledA, tileno)!
 lo = lwb(tl)!
 hi = upb(tl)!

 A => dataptr(tiledA, tileno)!
 B => dataptr(tiledB, tileno)!

 !
 do j=lo(2), hi(2)!

 do i=lo(1), hi(1)!
! !

 B(i,j)= A(i,j) ...!
 !

 end do!
 end do!
end do!

Tiling loop

Element Loops

Loop body remains
unchanged

Get data ptrs

Get tile and
its range

4/1/15

23

Iterating over Tiles

89

do tileno=1, ntiles (tiledA)!
 !

 tl = get_tile(tiledA, tileno)!
 lo = lwb(tl)!
 hi = upb(tl)!

 A => dataptr(tiledA, tileno)!
 B => dataptr(tiledB, tileno)!

 !
 do j=lo(2), hi(2)!

 do i=lo(1), hi(1)!
! !

 B(i,j)= A(i,j) ...!
 !

 end do!
 end do!
end do!

Tiling loop

Element Loops

There are many ways to iterate
over element and tile loops.

■  Iterate over the tiles by preserving data locality
■  Provide a language construct to abstract loop traversal

●  Execute a tile in any order or execute elements in a tile in any order
●  Introduce parallelization strategy for tiles and elements

Loop Traversal

90

•  The	
 new	
 loop	
 construct	
 will	
 	

–  Respect	
 data	
 layout	
 and	
 topology	
 when	

we	
 traverse	
 the	
 loop	

•  Morton	
 order,	
 linear	
 order	

–  Let	
 compiler	
 and	
 run:me	
 pick	
 the	
 best	

traversal	
 strategy	

–  Change	
 paralleliza:on	
 strategy	
 without	

changing	
 the	
 loop	
 	

Related Work:
•  C++ lambda func in Raja
•  Functors in Kokkos

■  The prototype for TiDA targets F90 base language
●  Native support for multidimensional arrays

■  Framework
●  Minimal invasion to the base language and existing codes

–  We can get quite far without implementing a compiler
●  Have to implement the optimization variants by hand

■  Directives
●  Intermediate step, can be ignored, preferred by apps developers

■  Language Extension
●  Changes the type system in a language
●  Provides the compiler more opportunities to perform code

transformations
●  Our ultimate goal

Library-> Directives->Language

91

Tile loops and Element Loops

do tileno=1, ntiles (tU)!
 tl = get_tile(tU, tileno)!
 lo = lwb(tl)!
 hi = upb(tl)!
!up => dataptr(tU, tileno)!
!dp => dataptr(tD, tileno)!

 !
 do j=lo(2), hi(2)!
! do i=lo(1), hi(1)!
! ! up(i,j)= dp(i,j) ...!
! end do!
!end do!

end do!

This Part
would go

away if TIDA
is a Language

Construct

Element
Loop(s)

Iteration Space
(C++11 lambda)

4/1/15

24

TiDA for SMC Proxy App

■  Usually it is not recommended to tile in X dim
●  Z partitioning is for NUMA nodes and Y partitioning is for cache reuse

■  Tiling in X dimension is necessary for SMC because of the large
working set
●  About 256 MB for N=256 and #species=9

0

5

10

15

20

25

30

35

4 8 16 24 32

Sp
ee

du
p

of Cores

SMC Speedup over 1 Thread (Trestles)

TiDA-LOG

TiDA-SEP

TiDA-REG

OMP

0

5

10

15

20

25

6 12 18 24

Sp
ee

du
p

of Cores

SMC Speedup over 1 Thread (Hopper)

TiDA-LOG

TiDA-SEP

TiDA-REG

OMP

Manual Tiling vs TiDA

■  TiDA is comparable to manually tiled version of the SMC
code

0

5

10

15

20

25

6 12 18 24

Sp
ee

du
p

of Cores

SMC Speedup over 1 Thread (Hopper)

TiDA-REG

OMP

Manually
Tiled

Heterogeneity / Inhomogeneity
Async Programming Models?

Assumptions of Uniformity is
Breaking
(many new sources of heterogeneity)

1/23/2013
96

■  Bulk Synchronous Execution •  Heterogeneous	
 compute	
 engines	
 (hybrid/
GPU	
 compu:ng)	

•  Fine	
 grained	
 power	
 mgmt.	
 makes	

homogeneous	
 cores	
 look	
 heterogeneous	

•  thermal	
 thro*ling	
 –	
 no	
 longer	
 guarantee	
 determinis2c	

clock	
 rate	

•  Nonuniformi:es	
 in	
 process	
 technology	

creates	
 non-­‐uniform	
 opera:ng	

characteris:cs	
 for	
 cores	
 on	
 a	
 CMP	

•  Near	
 Threshold	
 Voltage	
 (NTV)	

•  Fault	
 resilience	
 introduces	

inhomogeneity	
 in	
 execu:on	
 rates	

–  error	
 correc2on	
 is	
 not	
 instantaneous	

–  And	
 this	
 will	
 get	
 WAY	
 worse	
 if	
 we	
 move	

towards	
 so;ware-­‐based	
 resilience	

4/1/15

25

Assumptions of Uniformity is
Breaking
(many new sources of heterogeneity)

97

•  Heterogeneous compute engines
(hybrid/GPU computing)

•  Fine grained power mgmt. makes
homogeneous cores look
heterogeneous
–  thermal throttling – no longer guarantee deterministic

clock rate
•  Nonuniformities in process technology

creates non-uniform operating
characteristics for cores on a CMP
–  Near Threshold Voltage (NTV)

•  Fault resilience introduces
inhomogeneity in execution rates
●  error correction is not instantaneous
●  And this will get WAY worse if we move

towards software-based resilience

Bulk Synchronous
Execution

Just Speeding up Components is Design Optimization
The really big opportunities for energy efficiency require codesign!

■  Energy-limited design is a zero-sum-
game
●  For every feature you ask for, you need to

give something up
●  This is the “ground floor” for Co-Design

■  Improving energy efficiency or
performance of individual components
doesn’t really need co-design
●  Memory is faster, then odds are that the software

will run faster
●  if its better, that’s good!

Bulk	
 Synchronous	

Execu:on	
 Model	

Bulk Synchronous
Execution

99

Example Near Threshold Voltage (NTV): Shekhar Borkar The
really big opportunities for energy efficiency require codesign!

■  The really *big* opportunities to improve
energy efficiency may require a shift in how
we program systems

–  This requires codesign to evalute the hardware and
new software together

–  HW/SW Interaction unknown (requires HW/SW
codesign)

■  If software CANNOT exploit these radical
hardware concepts (such as NTV), then it
would be better to not have done anything at
all!

f

f

f f

f/2

f/2

f/2

f/2

f/4

f/4

f/4 f/4

f

f

f f

f

f

f

f

f

f

f f

Fig: Shekhar Borkar

Convention
al NTV

Assumptions of Uniformity is Breaking
(many new sources of heterogeneity)

Asynchronous Execution Model Bulk Synchronous
Execution (later) Bulk	
 Synchronous	

Execu:on	
 (now)	

In this situation,
AMR might be the

solution
(not the problem)

4/1/15

26

■  Bulk Synchronous: Most of
the existing HPC universe

■  Static Dataflow schedule:
PLASMA/MAGMA

■  Semi-static schedule: Most
AMR libraries (Chombo,
BoxLib)

■  Full Dynamic Schedule: OCR,
HPX, Charm++

DAG Scheduling Doesn’t Need to be Dynamic to be useful

101

Opportunities for Asynchronous Execution

102

P
ip

e
lin

in
g
: C

h
o
le

sk
y
 In

v
e
rsio

n

3
 S

te
p
s: F

a
c
to

r, In
v
e
rt L

, M
u
ltip

ly
 L

’s

7

$#
(&��(&(&�� �))!

�������?�
��
�4;81>7D��-/?;=5E-?5;:�-8;:1��
?���

���/;=1>�
$#

(&���(&(&��-:0� �))!
��

(41�9
-?=5C�5>��

�C��

�?581�>5E1�5>��

�C��

��

$5<185:10������
?����

J.Dongarra

P
ip

e
lin

in
g
: C

h
o
le

s
k
y
 In

v
e
r
s
io

n

3
 S

t
e
p
s
: F

a
c
t
o
r
, In

v
e
r
t
 L

, M
u
lt

ip
ly

 L
’s

7

$#
(&

��(&
(&

�� �)
)
!
�������?�
��

�
4;81>7D��-/?;=5E-?5;:�-8;:1��
?���

���/;=1>�
$#

(&
���(&

(&
��-:0� �)

)
!
��

(41�9
-?=5C�5>��

�C��

�?581�>5E1�5>��

�C��

��

$5<185:10������
?����

Pipelining: Cholesky Inversion

3 Steps: Factor, Invert L, Multiply L’s

7

$#(&��(&(&�� �))!�������?�
��
�4;81>7D��-/?;=5E-?5;:�-8;:1��
?���

���/;=1>�
$#(&���(&(&��-:0� �))!��
(41�9-?=5C�5>��

�C��

�?581�>5E1�5>��

�C��

��

$5<185:10������
?����

Pipelining: Cholesky Inversion

3 Steps: Factor, Invert L, Multiply L’s

7

$#(&��(&(&�� �))!�������?�
��
�4;81>7D��-/?;=5E-?5;:�-8;:1��
?���

���/;=1>�
$#(&���(&(&��-:0� �))!��
(41�9-?=5C�5>��

�C��

�?581�>5E1�5>��

�C��

��

$5<185:10������
?����

Bulk Synchronous
(MPI3+OpenMP4)

Asynchronous / DAG Model / static schedule
(production interface is still topic of research)

Finding General Purpose programming model to
express these constructs requires research.

Clear that OMP4 tasking model is not a productive
way to express DAGs (not for domain scientists at
least, but could be the underlying model used by a

library or pmodel)

Execution Models (what the heck is it?)

■  What is the parallelism model?

■  How do we balance productivity and implementation efficiency

■  Is the number of processors exposed in the model

■  How much can be hidden by compilers, libraries, tools?

Examples of parallel execution models
SPMD

barrier

barrier

barrier

Dynamic Threads
fork

fork

join

join

Event-Driven Vector
Op

Op
Op

Op
Op

Op

■  Sources of performance heterogeneity
increasing
●  Heterogeneous architectures (accelerator)
●  Thermal throttling
●  Performance heterogeneity due to transient error recovery

■  Current Bulk Synchronous Model not up to task

●  Current focus is on removing sources of performance
variation (jitter), is increasingly impractical

●  Huge costs in power/complexity/performance to extend the
life of a purely bulk synchronous model

Embrace performance heterogeneity: Study use of
asynchronous computational models (e.g. LEGION and
Rambutan, and other dataflow concepts from 1980s)

Conclusions on Heterogeneity

4/1/15

27

Summary

■  Computational Science is increasingly carried out in large
teams formed around applications frameworks

■  Frameworks enable large and diverse teams to collaborate
by organizing teams according to their capabilities

■  Frameworks are modular, highly configurable, and
extensible

■  Isolation of applications, solver, and driver layers enables
re-use in different applications domains, and scalability on
new parallel architectures

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

The End

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

Chapter III

Addressing Petscale and
Exascale Challenges

Addressing Petascale Challenges
■  Expect ~1 M CPUs, need everything parallel (Amdahl): use

performance modelling to improve codes
●  Cactus’ idiom for parallelism is scalable to millions of CPUs
●  Drivers can evolve without changing physics modules

■  More cores/node tighten memory bottleneck: use dynamic,
adaptive cache optimisations
●  Automatic code generation to select optimal cache strategy
●  Automatic generation for GP-GPU, Cell, and manycore targets

■  Probably less memory/processor than today: use hybrid schemes
(MPI + OpenMP) to reduce overhead
●  Drivers can be changed dramatically for multicore without requiring changes

to physics modules

■  Hardware failures “guaranteed”: use fault tolerant infrastructure
●  Cactus integrated checkpoint uses introspection to remain application-

independent as well as system independent

4/1/15

28

XiRel: Improve
Computational Infrastructure

■ Sponsored by NSF PIF; collaboration between LSU/
PSU/RIT/AEI

■ Improve mesh refinement capabilities in Cactus, based
on Carpet

■ Prepare numerical relativity codes for petascale
architectures

■ Enhance and create new physics infrastructure for
numerical relativity

■ Develop common data and metadata management
methods, with numrel as driver application

Cactus, Eclipse, Blue Waters
(NSF Track-1 Supercomputing Project)

cvs/svn	

edit���
compile���
debug	

submit	

monitor	

steer	

local	

remote	

Simulations	

Source code	

gather	

process	

display	

Performance data	

Online databases	

Configuration files	

Performance data	

Application-Level
Debugging and Profiling
■ Sponsored by NSF SDCI
■ As framework, Cactus has complete overview over

programme and execution schedule
■ Need to debug simulation at level of interacting

components, in production situations, at scale
■ Grid function declarations have rich semantics -- use this

for visual debugging
■ Combine profiling information with execution schedule,

place calliper points automatically

Remote Visualization

www.cactuscode.org/VizTools

OpenDX

IsoView

gnuplot

xgraph

Amira

LCAVision

Source
Volume

Visapult

4/1/15

29

Task Farm/Remote Viz/Steer Capabilities

Big BH
Sim
(LBL, NCSA, PSC, …)

Visapult
BWC

Baltimore

Current TFM Status in portal…	

Cactus/Charm++

Application	

Cactus Framework	

New Charming Driver	

PUGH	

 Carpet	

Charm++	

Also drivers based on
SAMRAI, PARAMESH	

Summary of Cactus Capabilities

■  Variety of science domains (highly configurable)
■  Multi-Physics (modular)
■  Petascale (tractable programming model for

massive concurrency, performance, debugging,
reliability)

■  Combining HPC (batch systems) and interactivity
(GUI), where possible

■  Framework -- for any content

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

Chapter IV

Extra Material

4/1/15

30

Framework Components
■  Flesh: The glue that ties everything together (C&C language)

●  Supports composition of modules into applications (targets non-CS-experts)
●  Invokes modules in correct order (baseline scheduling)
●  Implements code build system (get rid of makefiles)
●  Implements parameter file parsing
●  Generates bindings for any language (Fortran, C, C++, Java)

■  Driver: Implements idiom for parallelism
●  Implements “dwarf-specific” composite datatypes
●  Handles data allocation and placement (domain decomposition)
●  Implements communication pattern for “idiom for parallelism”
●  Implements thread-creation and scheduling for parallelism

■  Solver/Module: A component implementing algorithm or other composable
function
●  Can be written in any language (flesh handles bindings automatically)
●  Implementation of parallelism externalized, so developer writes nominally serial code

with correct idiom. Parallelism handled by the “driver”.
●  Thorns implementing same functionality derived from same ‘abstract class’ of

functionality such as “elliptic solver” (can have many implementations of elliptic
solve. Select at compile time and/or at runtime)

More Information
■  The Science of Numerical Relativity

●  http://jean-luc.aei.mpg.de
●  http://dsc.discovery.com/schedule/episode.jsp?episode=23428000
●  http://www.appleswithapples.org/

■  Cactus Community Code
●  http://www.cct.lsu.edu
●  http://www.cactuscode.org/
●  http://www.carpetcode.org/

■  Grid Computing with Cactus
●  http://www.astrogrid.org/

■  Benchmarking Cactus on the Leading HPC Systems
●  http://crd.lbl.gov/~oliker
●  http://www.nersc.gov/projects/SDSA/reports

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center

Examples:
Chombo

AMR

Block-Structured Local Refinement

•  Refined regions are organized into rectangular patches.

•  Refinement in time as well as in space for time-dependent problems.
•  Local refinement can be applied to any structured-grid data, such as bin-sorted

particles.

4/1/15

31

Cartesian Grid Representation of Irregular Boundaries

Advantages:
•  Grid generation is easy.

•  Good discretization technology (e.g. finite differences on rectangular grids,
geometric multigrid)

•  Straightforward coupling to AMR (in fact, AMR is essential).

Based on nodal-point representation (Shortley and Weller, 1938) or finite-volume
representation (Noh, 1964).

Efficient Embedded Boundary Multigrid Solvers
■  In the EB case, the matrices are not symmetric, but they are sufficiently

close to M-matrices for multigrid to work (nontrivial to arrange this in 3D).
■  A key step in multigrid algorithms is coarsening. In the non-EB case,

computing the relationship between the locations of the coarse and fine
data involves simple integer arithmetic. In the EB case, both the data
access and the averaging operations are more complicated.

■  It is essential that coarsening a geometry preserves the topology of the
finer EB representation.

A Software Framework for Structured-Grid Applications

•  Layer 1: Data and operations on unions of rectangles - set calculus,
rectangular array library (with interface to Fortran). Data on unions of
rectangles, with SPMD parallelism implemented by distributing boxes to
processors. Load balancing tools (e.g., SFC).

■  Layer 2: Tools for managing interactions between different levels of
refinement in an AMR calculation - interpolation, averaging operators,
coarse-fine boundary conditions.

■  Layer 3: Solver libraries - multigrid solvers on unions of rectangles, AMR
hierarchies; hyperbolic solvers; AMR time stepping.

■  Layer 4: Complete parallel applications.

■  Utility Layer: Support, interoperability libraries - API for HDF5 I/O, AMR
data alias.

The empirical nature of multiphysics code development places a premium on the
availability of a diverse and agile software toolset that enables experimentation. We
accomplish this with a software architecture made up of reusable tested components

organized into layers.

Mechanisms for Reuse

•  Algorithmic reuse. Identify mathematical components that cut across applications.
Easy example: solvers. Less easy example: Layer 2.

•  Reuse by templating data holders. Easy example: rectangular array library - array
values are the template type. Less easy example: data on unions of rectangles -

“rectangular array” is a template type.

•  Reuse by inheritance. Control structures (Iterative solvers, Berger-Oliger
timestepping) are independent of the data, operations on that data. Use inheritance
to isolate the control structure from the details of what is being controlled
(interface classes).

4/1/15

32

•  IntVect i 2 Zd. Can translate i1 § i2, coarsen i / s , refine i £ s.

•  Box B ½ Zd is a rectangle: B = [ilow, ihigh]. B can be translated, coarsened, refined.
Supports different centerings (node-centered vs. cell-centered) in each coordinate
direction.

•  IntVectSet I½Zd is an arbitrary subset of Zd. I can be shifted, coarsened,
refined. One can take unions and intersections, with other IntVectSets and
with Boxes, and iterate over an IntVectSet."

•  FArrayBox A(Box B, int nComps): multidimensional arrays of doubles
or floats constructed with B specifying the range of indices in space, nComp the
number of components. Real* FArrayBox::dataPtr returns the pointer to
the contiguous block of data that can be passed to Fortran.

Examples of Layer 1 Classes (BoxTools)

Layer 1 Reuse: Distributed Data on Unions of Rectangles

Provides a general mechanism for distributing data defined on unions of rectangles
onto processors, and communication between processors.

■  Metadata of which all processors have a copy: BoxLayout is a collection of
Boxes and processor assignments:
DisjointBoxLayout:public BoxLayout is a BoxLayout for which the
Boxes must be disjoint.

■  template <class T> LevelData<T> and other container classes hold
data distributed over multiple processors. For each k=1 ... nGrids , an
“array” of type T corresponding to the box Bk is located on processor pk.
Straightforward API’s for copying, exchanging ghost cell data, iterating over
the arrays on your processor in a SPMD manner.

Example: explicit heat equation solver, parallel case

•  LevelData<T>::exchange(): obtains ghost cell data from valid regions on
other patches

•  DataIterator: iterates over only the patches that are owned on the current
processor.

First Light on LMC (AMR) Code Control Dependencies

12
8

4/1/15

33

AMR Utility Layer

■  API for HDF5 I/O.
■  Interoperability tools. We have developed a

framework-neutral representation for pointers to AMR
data, using opaque handles. This will allow us to
wrap Chombo classes with a C interface and call
them from other AMR applications.

■  Chombo Fortran - a macro package for writing
dimension-independent Fortran and managing the
Fortran / C interface.

■  Parmparse class from BoxLib for handling input files.
■  Visualization and analysis tools (VisIt).

Spiral Design Approach to Software Development

Scientific software development is inherently high-risk: multiple experimental
platforms, algorithmic uncertainties, performance requirements at the highest level.
The Spiral Design approach allows one to manage that risk, by allowing multiple
passes at the software and providing a high degree of schedule visibility.

Software components are developed in phases.

•  Design and implement a basic framework for a given algorithm domain (EB,
particles, etc.), implementing the tools required to develop a given class of
applications.

•  Implement one or more prototype applications as benchmarks.
•  Use the benchmark codes as a basis for measuring performance and evaluating

design space flexibility and robustness. Modify the framework as appropriate.
•  The framework and applications are released, with user documentation, regression

testing, and configuration for multiple platforms.

Software Engineering Plan

•  All software is open source: http://seesar.lbl.gov/anag/
software.html.

•  Documentation: algorithm, software design documents; Doxygen
manual generation; users’ guides.

•  Implementation discipline: CVS source code control, coding standards.
•  Portability and robustness: flexible make-based system, regression

testing.
•  Interoperability: C interfaces, opaque handles, permit interoperability

across a variety of languages (C++, Fortran 77, Python, Fortran 90).
Adaptors for large data items a serious issue, must be custom-designed
for each application.

Replication Scaling Benchmarks
■  Take a single grid hierarchy, and

scale up the problem by making
identical copies. Full AMR code
(processor assignment,
remaining problem setup) is
done without knowledge of
replication.
●  Good proxy for some kinds of

applications scaleup.
●  Tests algorithmic weak scalability

and overall performance.
●  Avoids problems with interpreting

scalability of more conventional
mesh refinement studies with AMR.

4/1/15

34

Replication Scaling of AMR: Cray XT4 Results

■  97% efficient scaled speedup
over range of 128-8192
processors (176-181 seconds).

■  Fraction of operator peak: 90%
(480 Mflops / processor).

■  Adaptivity Factor: 16.

Regular

Regular

PPM gas dynamics solver:

•  87% efficient scaled speedup
over range of 256-8192

processors (8.4-9.5 seconds)."
•  Fraction of operator peak: 45%

(375 Mflops / processor)."
•  Adaptivity factor: 48."

AMR-multigrid Poisson solver:

Embedded Boundary Performance Optimization and Scaling

■  Aggregate stencil operations, which use
pointers to data in memory and integer
offsets, improve serial performance by
a factor of 100.

■  Template design
Implement AMRMultigrid once and re-use

across multiple operators
■  Operator-dependent load balancing
■  space-filling curve algorithm to order

boxes (Morton)
Minimization of communication

■  Relaxing about relaxation
gsrb vs. multi-color.
edge and corner trimming of boxes

■  And many many more

Communication Avoiding Optimizations

■  Distributing patches to processors to
maximize locality. Sort the patches by
Morton ordering, and divide into
equal-sized intervals.

■  Overlapping local copying and MPI
communications in exchanging ghost-
cell data (only has an impact at 4096,
8192).

■  Exchanging ghost-cell data less
frequently in point relaxation.

Morton-ordered load balancing
(slice through 3D grids).

Berger-Rigoutsos + recursive
bisection.

Chombo AMR Capabilities
■  Single-level, multilevel solvers for cell-centered and node-centered

discretizations of elliptic / parabolic systems.
■  Explicit methods for hyperbolic conservation laws, with well-defined

interface to physics-dependent components.

■  Embedded boundary versions of these solvers.
■  Extensions to high-order accuracy, mapped grids (under development).

■  AMR-PIC for Vlasov-Poisson.

■  Applications:

●  Gas dynamics with self gravity. Coupling to AMR-PIC.
●  Incompressible Navier-Stokes Equations.
●  Resistive magnetohydrodynamics.

■  Interfaces to HDF5 I/O, hypre, VisIt.

■  Extensive suite of documentation. Code and documentation released in
public domain. New release of Chombo in Spring 2009 will include
embedded boundary capabilities (google “Chombo”).

