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Parallelism is 
growing at 

exponential rate 

Power is leading 
constraint for future 
performance growth 

By 2018, cost of a FLOP will be 
less than cost of moving 5mm 

across the chip’s surface 
(locality will really matter) 

Reliability going down for 
large-scale systems, but 
also to get more energy 

efficiency for small 
systems 

Memory 
Technology 

improvements are 
slowing down 

Application Code Complexity 
■  Application Complexity has Grown 

●  Big Science on leading-edge HPC systems is a multi-
disciplinary, multi-institutional, multi-national efforts! 
(and we are not just talking about particle 
accelerators and Tokamaks) 

●  Looking more like science on atom-smashers 

■  Advanced Parallel Languages are 
Necessary, but NOT Sufficient! 
●  Need higher-level organizing constructs for teams of 

programmers 
●  Languages must work together with frameworks for a 

complete solution! 

Example: Grand Challenge Simulation Science 

Gamma Ray Busts 
Core Collapse 

Supernova 
■  10 Inst x 10 years 
■  Multiple disciplines 

■  GR 
■  Hydro 
■  Chemistry 
■  Radiation Transp 
■  Analytic Topology 

Examples of Future of  
Science & Engineering 
■  Require Large Scale Simulations, 

at edge of largest computing sys 
■  Complex multi-physics codes with 

millions of lines of codes 
■  Require Large Geo-Distributed 

Cross-Disciplinary Collaborations  

NSF Black Hole 
Grand Challenge 
■  8 US Institutions, 

5 years 
■  Towards colliding 

black holes 

NASA Neutron Star  
Grand Challenge 
■  5 US Institutions 
■  Towards  colliding 

neutron stars 
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Community Codes & Frameworks 
(hiding complexity using good SW engineering)   

■  Frameworks (eg. Chombo, Cactus, SIERRA, UPIC, etc…) 
●  Clearly separate roles and responsibilities of your expert programmers from that of 

the domain experts/scientist/users (productivity layer vs. performance layer) 
●  Define a social contract between the expert programmers and the domain scientists 
●  Enforces software engineering style/discipline to ensure correctness 
●  Hides complex domain-specific parallel abstractions from scientist/users to enable 

performance (hence, most effective when applied to community codes) 
●  Allow scientists/users to code nominally serial plug-ins that are invoked by a parallel 

“driver” (either as DAG or constraint-based scheduler) to enable productivity 

■  Properties of the “plug-ins” for successful frameworks (SIAM CSE07) 
●  Relinquish control of main():  invoke user module when framework thinks it is best 
●  Module must be stateless (or benefits from that) 
●  Module only operates on the data it is handed (well-understood side-effects) 

■  Frameworks can be thought of as driver for coarse-grained functional-
style of programming 
●  Very much like classic static dataflow, except coarse-grained objects written in 

declarative language (dataflow without the functional languages) 
●  Broad flexibility to schedule Directed Graph of dataflow constraints 

Framework vs. Libraries 

■  Library 
●  User program invokes library (imperative execution model offers 

limited scheduling freedom) 
●  User defines presents data layout to library (compiler and system 

has limited freedom to reorganize to match physical topology of 
underlying system hardware) 

■  Framework 
●  Framework invokes user plug-in (declarative execution model) 
●  Only operation on data given (well defined scope for side-effects)  
●  Functional semantics provide more scheduling freedom 

Frameworks vs. Libraries 
(Observation by Koushik Sen: view.eecs.berkeley.edu) 

■  A parallel program may be   
composed of parallel         

  and serial        elements 

●  Parallel patterns 
with serial plug-ins 

Parallel Dwarf Libraries 
■  Dense matrices 
■  Sparse matrices 
■  Spectral 
■  Combinational 
■  (Un) Structured Grid 

Parallel Patterns/Frameworks 
■  Map Reduce 
■  Graph traversal 
■  Dynamic programming 
■  Backtracking/B&B 
■  Graphical models 
■  N-Body 
■  (Un) Structured Grid 

●  Serial code invoking 
parallel libraries 

 

n   Composition 
may be 
recursive 

 

Separation of Concerns 
Segmented Developer Roles 

Developer Roles Domain 
Expertise 

CS/Coding 
Expertise 

Hardware 
Expertise 

Application: Assemble solver 
modules to solve science 
problems. (eg. combine hydro+GR
+elliptic solver w/MPI driver for 
Neutron Star simulation) 

Einstein Elvis Mort 

Solver: Write solver modules to 
implement algorithms. Solvers use 
driver layer to implement “idiom for 
parallelism”. (e.g. an elliptic solver 
or hydrodynamics solver) 

Elvis Einstein Elvis 

Driver: Write low-level data 
allocation/placement, 
communication and scheduling to 
implement “idiom for parallelism” 
for a given “dwarf”. (e.g. PUGH) 

Mort Elvis Einstein 
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Separation of Concerns 
Segmented Developer Roles 

Developer Roles Conceptual Model Instantiation 
Application: Assemble 
solver modules to solve 
science problems.  

Neutron Star Simulation: 
Hydrodynamics + GR Solver 
using Adaptive Mesh 
Refinement (AMR) 

BSSN GR Solver + 
MoL integrator + 
Valencia Hydro + 
Carpet AMR Driver + 
Parameter file (params for 
NS) 

Solver: Write solver 
modules to implement 
algorithms. Solvers use 
driver layer to implement 
“idiom for parallelism”.  

Elliptic Solver PETSC Elliptic Solver pkg. 
(in C) 
BAM Elliptic Solver (in C++ & 
F90) 
John Town’s custom BiCG-
Stab implementation (in F77) 

Driver: Write low-level data 
allocation/placement, 
communication and 
scheduling to implement 
“idiom for parallelism” for a 
given “dwarf”.  

Parallel boundary exchange 
idiom for structured grid 
applications 

Carpet AMR Driver 
SAMRAI AMR Driver 
GrACE AMR driver 
PUGH (MPI unigrid driver) 
SHMUGH (SMP unigrid 
driver) 

Framework Taxonomy 

■  Integration is invasive:  how much will you put up with? 

Fully coupled 

Observations on Domain-Specific Frameworks 
■  Frameworks and domain-specific languages 

●  enforce coding conventions for big software teams 
●  Encapsulate a domain-specific “idiom for parallelism” 
●  Create familiar semantics for domain experts (more productive) 
●  Clear separation of concerns (separate implementation from 

specification) 

■  Common design principles for frameworks from SIAM 
CSE07 and DARPA Ogden frameworks meeting 
●  Give up main(): schedule controlled by framework 
●  Stateless: Plug-ins only operate on state passed-in when invoked 
●  Bounded (or well-understood) side-effects: Plug-ins promise to 

restrict memory touched to that passed to it (same as CILK) 

Benefits and Organizing Principles 
■  Other “frameworks” that use same organizing principles (and 

similar motivation) 
●  NEURON (parallel implementation of Genesis neurodyn) 
●  SIERRA (finite elements/structural mechanics) 
●  UPIC and TechX (generized code frameworks for PIC codes) 
●  Chombo: AMR on block-structured grids (its hard) 
●  Common feature is that computational model is well understood and broadly 

used (seems to be a good feature for workhorse “languages”) 
■  Common benefits (and motivations) are 

●  Modularity (composition using higher-level semantics) 
●  Segmenting expertise / Separation of Concerns 
●  Unit Testing: This was the biggest benefit 
●  Performance analysis (with data aggregated on reasonable semantic 

boundaries) 
●  Correctness testing (on reasonable semantic boundaries) 
●  Enables reuse of “solver” components.  Replace “driver” if you have a 

different hardware platform. 
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Benefits cont. 
Enabling Collaborative Development! 

■  They enable computer scientists and computational scientists to 
play nicely together 
●  No more arguments about C++ vs. Fortran 
●  Easy unit-testing to reduce finger pointing (are the CS weenies “tainting 

the numerics”) (also good to accelerate V&V) 
●  Enables multidisciplinary collaboration (domain scientists + computer jocks) 

to enables features that would not otherwise emerge in their own codes! 
–  Scientists write code that seem to never use “new” features 
–  Computer jocks write code that no reasonable scientist would use 

■  Advanced CS Features are trivially accessible by Application 
Scientists 
●  Just list the name of the module and it is available 
●  Also trivially unit-testable to make sure they don’t change numerics 

■  Also enables sharing of physics modules among computational 
scientists 
●  The hardest part is agreeing upon physics interfaces (there is no magic!) 
●  Nice, but not actually not as important as the other benefits (organizing 

large teams of programmers along the lines of their expertise is the  

Location of Some Key Frameworks 

■  Cactus: PDEs on Block Structured Grids 
●  http://www.cactuscode.org/ 

■  PETSc: Linear System Solvers 
●  http://www.mcs.anl.gov/petsc/ 

■  Chombo: Adaptive Mesh Refinement 
●  https://commons.lbl.gov/display/chombo/Chombo+Download+Page 

■  Trillinos: Linear Algebra and Eigensolvers 
●  http://trilinos.org 
 

14 

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center 

Examples: 
CACTUS 

Cactus 

■  Framework for HPC: code development, simulation 
control, visualisation 

■  Manage increased complexity with higher level 
abstractions, e.g. for inter-node communication, intra-
node parallelisation 

■  Active user community, 10+ years old 
» Many of these slides are almost 10 years old! 

■  Supports collaborative development 

■  Is this a language or just structured programming?  
 (Why is it important to answer this question?)  
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Detecting Gravitational Waves 
Will uncover fundamentally new information about the universe 

• LIGO, VIRGO (Pisa), GEO600,… $1 Billion Worldwide 
• Was Einstein right?  5-10 years, we’ll see! 

GR requires solution of dozens of coupled, nonlinear hyperbolic-
elliptic equations with 1000’s of terms (barely have the capability 
to solve after a century of development) 
• Detect GR Waves…pattern matching against numerical    
   templates to enhance signal/noise ratio 
• Understand them…just what are the waves telling us? 

4km 

Hanford Washington Site 

Cactus User Community 
■  General Relativity: worldwide usage 

●  LSU(USA),AEI(Germany),UNAM (Mexico), Tuebingen(Germany), Southampton (UK),  
Sissa(Italy), Valencia (Spain), University of Thessaloniki (Greece), MPA  (Germany), 
RIKEN (Japan),  TAT(Denmark), Penn State (USA), University of  Texas at Austin 
(USA), University of Texas at Brwosville (USA),  WashU (USA), University of 
Pittsburg (USA), University of Arizona (USA),  Washburn (USA), UIB (Spain), 
University of Maryland (USA), Monash  (Australia)  

■  Astrophysics 
●  Zeus-MP MHD ported to Cactus (Mike Norman: NCSA/UCSD) 

■  Computational Fluid Dynamics 
●  KISTI 
●  DLR: (turbine design) 

■  Chemistry 
●  University of Oklahoma: (Chem reaction vessels) 

■  Bioinformatics 
●  Chicago 

Cactus Features 
■  Scalable Model of Computation 

●  Cactus provides ‘idiom’ for parallelism 
–  Idiom for Cactus is parallel boundary exchange for block structured grids 
–  Algorithm developers provide nominally “serial” plug-ins 
–  Algorithm developers are shielded from complexity of parallel implementation 

●  Neuron uses similar approach for scalable parallel idiom  
■  Build System 

●  User does not see makefiles (just provides a list of source files in a given module) 
●  “known architectures” used to store accumulated wisdom for multi-platform builds 
●  Write once and run everywhere (laptop, desktop, clusters, petaflop HPC) 

■  Modular Application Composition System 
●  This is a system for composing algorithm and service components together into a 

complex composite application 
●  Just provide a list of “modules” and they self-organize according to constraints 

(less tedious than explicit workflow) 
●  Enables unit testing for V&V of complex multiphysics applications 

■  Language Neutrality 
●  Write modules in any language (C, C++, F77, F90, Java, etc…) 
●  Automatically generates bindings (also hidden from user) 
●  Overcomes age-old religious battles about programming languages 

 

Cactus components (terminology) 
■  Thorns (modules): 

●  Source Code 
●  CCL: Cactus Configuration Language (Cactus C&C description) 

–  Interface/Types: polymorphic datastructures instantiated in “driver-independent” 
manner 

–  Schedule: constraints-based schedule 
–  Parameter:  must declare free parameters in common way for introspection, 

steering, GUIs, and common input parameter parser. 
■  Driver: Separates implementation of parallelism from implementation of 

the “solver” (can have Driver for MPI, or threads, or CUDA) 
●  Instantiation of the parallel datastructures (control of the domain-

decomposition) 
●  Handles scheduling and implementation of parallelism (threads or whatever) 
●  Implements communication abstraction 
●  Drive must own all of these 

■  Flesh: Glues everything together 
●  Just provide a “list” of modules and they self-assemble based on their 

constraints expressed by CCL  
●  CCL not really a language 
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Idiom for Parallelism in Cactus 
■  The central idiom for the Cactus model of computation is boundary exchange 

●  Cactus is designed around a distributed memory model.   
●  Each module (algorithm plug-in) is passed a section of the global grid. 

■  The actual parallel driver (implemented in a module)  
●  Driver decides how to decompose grid across processors and exchange ghost zone information 
●  Each module is presented with a standard interface, independent of the driver 
●  Can completely change the driver for shared memory, multicore, message passing without requiring 

any change of the physics modules 

■  Standard driver distributed with 
Cactus (PUGH) is for a parallel unigrid 
and uses MPI for the communication 
layer 

■  PUGH can do custom processor 
decomposition and static load 
balancing 

■  Same idiom also works for AMR and 
unstructured grids!!! (no changes to 
solver code when switching drivers) 
●  Carpet (Erik Schnetter’s AMR driver) 
●  DAGH/GrACE driver for Cactus 
●  SAMRAI driver for Cactus 

t=0 

t=100 

AMR Unigrid 

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center 

How Does Cactus Work? 

Primer on PDE Solvers on 
Block Structured Grids 

Scalar waves in 3D are solutions of the hyperbolic 
wave equation:  -φ,tt + φ,xx + φ,yy + φ,zz = 0  

Initial value problem: given data for φ and its first 
time derivative at initial time, the wave equation 
says how it evolves with time 

r 
time 

Scalar Wave Model Problem 

Numerical solve by discretising on a grid, using 
explicit  finite differencing (centered, second order) 

φ n+1
i,j,k = 2φ ni,j,k  - φ n-1

i,j,k 	


+ Δt2/Δx2(φ ni+1,j,k -2 φ ni,j,k + φ ni-1,j,k ) 	


+ Δt2/Δy2(φ ni,j+1,k -2 φ ni,j,k + φ ni,j-1,k )  
+ Δt2/Δz2(φ ni,j,k+1 -2 φ ni,j,k + φ ni,j,k-1 ) 

time 
r 

Numerical Method 
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■  Finite grid, so need to apply outer boundary conditions 

■  Main parameters: 
●  grid spacings: Δt, Δx, Δy, Δz, which coords?, which initial data?  

■  Simple problem, analytic solutions, but contains many 
features needed for modelling more complex problems 

Numerical Method 
c     =================================== 
       program WaveToy 
c     =================================== 
c     Fortran 77 program for 3D wave equation. 
c     Explicit finite difference method. 
c     =================================== 
 
c     Global variables in include file 
      include "WaveToy.h" 
      integer i,j,k 
 
c     SET UP PARAMETERS 
       nx = 30 
      [MORE PARAMETERS] 
 
c     SET UP COORDINATE SYSTEM AND GRID 
       x_origin = (0.5 - nx/2)*dx 
       y_origin = (0.5 - ny/2)*dy 
       z_origin = (0.5 - nz/2)*dz         
 
       

     do I=1,nx 
        do j=1,ny 
           do k=1,nz 
             x(i,j,k) = dx*(i-1) + x_origin 
             y(i,j,k) = dy*(j-1) + y_origin 
             z(i,j,k) = dz*(k-1) + z_origin 
            r(i,j,k) = sqrt(x(i,j,k)**2+y(i,j,k)**2+z(i,j,k)**2) 
          end do 
        end do 
      end do      
 
c    OPEN OUTPUT FILES 
      open(unit=11,file=“out.xl”) 
      open(unit=12,file=“out.yl”) 
      open(unit=13,file=“out.zl”) 
 
c    SET UP INITIAL DATA 
      call InitialData     
      call Output 
 
c    EVOLVING 
      do iteration = 1, nt             
         call Evolve 
         if (mod(iteration,10).eq.0) call Output 
      end do 
 
      stop 
      end 

Example Stand Alone Code: Main.f 

Standalone Serial Program 
 Setting up parameters 
 Setting up grid and coordinate system 
 Opening output files 
 Setting up initial data 
 Performing iteration  10 
 Performing iteration  20 
 Performing iteration  30 
 Performing iteration  40 
 Performing iteration  50 
 Performing iteration  60 
 Performing iteration  70 
 Performing iteration  80 
 Performing iteration  90 
 Performing iteration  100 
 Done 

c     =================================== 
       program WaveToy 
c     =================================== 
c     Fortran 77 program for 3D wave equation. 
c     Explicit finite difference method. 
c     =================================== 
 
c     Global variables in include file 
      include "WaveToy.h" 
      integer i,j,k 
 
c     SET UP PARAMETERS 
       nx = 30 
      [MORE PARAMETERS] 
 
c     SET UP COORDINATE SYSTEM AND GRID 
       x_origin = (0.5 - nx/2)*dx 
       y_origin = (0.5 - ny/2)*dy 
       z_origin = (0.5 - nz/2)*dz         
 
       

     do I=1,nx 
        do j=1,ny 
           do k=1,nz 
             x(i,j,k) = dx*(i-1) + x_origin 
             y(i,j,k) = dy*(j-1) + y_origin 
             z(i,j,k) = dz*(k-1) + z_origin 
            r(i,j,k) = sqrt(x(i,j,k)**2+y(i,j,k)**2+z(i,j,k)**2) 
          end do 
        end do 
      end do      
 
c    OPEN OUTPUT FILES 
      open(unit=11,file=“out.xl”) 
      open(unit=12,file=“out.yl”) 
      open(unit=13,file=“out.zl”) 
 
c    SET UP INITIAL DATA 
      call InitialData     
      call Output 
 
c    ITERATE 
      do iteration = 1, nt             
         call Evolve 
         if (mod(iteration,10).eq.0) call Output 
      end do 
 
      stop 
      end 

Making a “Thorn”  (a Cactus Module) 

Throw the rest of this stuff away  
(less writing) 

And get parallelism, modularity, and 
portability for free 
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Thorn Architecture 

Make  
Information 

Source Code 
 
 

Documentation! 

 
Interface.ccl 

 

Parameter Files 
and Testsuites 

Param.ccl 

Schedule.ccl 
Fortran 
Routines 

C++ 
Routines 

C 
Routines 

Thorn 

Configure CST 

Flesh 

Computational 
Toolkit Toolkit Toolkit 

Operating Systems 
AIX NT 

Linux 
Unicos 

Solaris 
HP-UX 

Thorns 

Cac
tus 

SuperUX Irix 

OSF 

Make 

Abstraction Enables Auto-Tuning 

■  The following example shows how the framework 
abstractions enable auto-tuning of the parallel performance 
of a code without any change to the higher-levels of the 
framework 
●  Normally people accuse abstractions of reducing performance 
●  Framework abstractions *enable* performance tuning!!! 

Dynamic Adaptation (auto-tuning) 

Adapt:!

2 ghosts!

3 ghosts! Compress on!!

■  Automatically adapt to 
bandwidth latency issues 

■  Application has NO 
KNOWLEDGE of machines(s) it 
is on, networks, etc 

■  Adaptive techniques make NO 
assumptions about network 

■  Adaptive MPI unigrid driver 
required NO changes to the 
physics components of the 
application!! (plug-n-play!) 

■  Issues: 
●  More intellegent adaption 

algorithm   
●  Eg if network conditions 

change faster than 
adaption… 

 
Cactus “Task Farming” driver example 
Very similar to “map-reduce” 
 
This example was used to farm out Smith- 
Waterman DNA sequence mapping calculations 
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Fault Tolerance 
■  Need checkpointing/recovery on steroids, need to cope with 

partial failure 
■  Checkpoint is transparent to application (uses introspection) 

 -architecture independent (independent of system HW and SW) 
■  Able to change number of active nodes 
■  Example: keep log of inter-processor messages, so that a 

lost node can be replaced 
■  Contain failure, continue simulation 

Regular checkpointing	

 “Localized” checkpointing	



time	



1
0

1
0 0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33

Clock Time

Ite
ra

tio
ns

/S
ec

on
d

Nomadic Application Codes 
(Foster, Angulo, Cactus Team…) 

Load 
applied 

3 successive 
contract 
violations 

Running 
At UIUC 

 

(migration 
time not to scale) 

 Resource 
discovery 

& migration 

Running 
At UC 

Hybrid Communication Models 
■  New “multicore” driver required no changes to physics components! 
■  Use MPI between nodes, OpenMP within nodes 

■  Common address space enables more cache optimisations 
■  Cactus framework offers  abstraction layer for parallelisation: basic 

OpenMP features work as black box (central idiom) 

Remote Monitoring/Steering:  
Thorn HTTPD and SMS Messaging 

■  Thorn which allows simulation 
any to act as its own web 
server 

■  Connect to simulation from any 
browser anywhere … 
collaborate 

■  Monitor run: parameters, basic 
visualization, ... 

■  Change steerable parameters 
■  See running example    at 

www.CactusCode.org 
■  Get Text Messages from your 

simulation or chat with it on IM!  
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Remote Visualization 

www.cactuscode.org/VizTools 

OpenDX 

IsoView 

gnuplot 

xgraph 

Amira 

LCAVision 

Source
Volume

Visapult 

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center 

Another Framework Example 

PETSc 
Slides from: Barry Smith, Jed Brown, Karl Rupp, 

Matthew Knepley 
 

Argonne National Laboratory 

Computation and Communication Kernels!
MPI, MPI-IO, BLAS, LAPACK!

Profiling Interface!

PETSc PDE Application Codes!

Object-Oriented!
Matrices, Vectors, Indices!

Grid!
Management!

Linear Solvers!
Preconditioners + Krylov Methods!

Nonlinear Solvers,!
Unconstrained Minimization!

ODE Integrators! Visualization!

Interface!

PETSc Software Interfaces and Structure	



Computation and Communication Kernels!
MPI, MPI-IO, BLAS, LAPACK!

Profiling Interface!

PETSc PDE Application Codes!

Object-Oriented!
Matrices, Vectors, Indices!

Grid!
Management!

Linear Solvers!
Preconditioners + Krylov Methods!

Nonlinear Solvers,!
Unconstrained Minimization!

ODE Integrators! Visualization!

Interface!

How to specify the 
mathematics of the 
problem? 

Data Objects	



PETSc Software Interfaces and Structure	
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PETSc Software Interfaces and Structure	



Computation and Communication Kernels!
MPI, MPI-IO, BLAS, LAPACK!

Profiling Interface!

PETSc PDE Application Codes!

Object-Oriented!
Matrices, Vectors, Indices!

Grid!
Management!

Linear Solvers!
Preconditioners + Krylov Methods!

Nonlinear Solvers,!
Unconstrained Minimization!

ODE Integrators! Visualization!

Interface!

How to solve the 
problem? 

Solvers	



KRYLOV SUBSPACE METHODS + PRECONDITIONERS 
R. Freund, G. H. Golub, and N. Nachtigal. Iterative Solution of Linear Systems,pp 57-100. 
ACTA Numerica. Cambridge University Press, 1992.  

Computation and Communication Kernels!
MPI, MPI-IO, BLAS, LAPACK!

Profiling Interface!

PETSc PDE Application Codes!

Object-Oriented!
Matrices, Vectors, Indices!

Grid!
Management!

Linear Solvers!
Preconditioners + Krylov Methods!

Nonlinear Solvers,!
Unconstrained Minimization!

ODE Integrators! Visualization!

Interface!

How to handle Parallel 
computations? 

Support for 
structured and 

unstructured meshes 

PETSc Software Interfaces and Structure	



Computation and Communication Kernels!
MPI, MPI-IO, BLAS, LAPACK!

Profiling Interface!

PETSc PDE Application Codes!

Object-Oriented!
Matrices, Vectors, Indices!

Grid!
Management!

Linear Solvers!
Preconditioners + Krylov Methods!

Nonlinear Solvers,!
Unconstrained Minimization!

ODE Integrators! Visualization!

Interface!

What debugging and 
monitoring aids it 
provides? 

Correctness and 
P e r f o r m a n c e 
Debugging  

PETSc Software Interfaces and Structure	



Compressed 
Sparse Row 

(AIJ) 

Blocked Compressed 
Sparse Row 

(BAIJ) 

Block 
Diagonal 
(BDIAG) 

Dense Other 

Indices Block Indices Stride Other 
Index Sets 

Vectors 

Line Search Trust Region 

Newton-based Methods 
Other 

Nonlinear Solvers 

Additive 
Schwartz 

Block 
Jacobi Jacobi ILU ICC LU 

(Sequential only) Others 

Preconditioners 

Euler Backward 
Euler 

Pseudo Time 
Stepping Other 

Time Steppers 

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Other 

Krylov Subspace Methods 

Matrices 

Distributed Arrays 

Matrix-free 

Some  Algorithmic Implementations in PETSc	
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• #include “petsc.h”  
int main( int argc, char *argv[] )  
{  
  PetscInitialize(&argc,&argv);"

•   PetscPrintf(PETSC_COMM_WORLD,“Hello World\n”);"
•   PetscFinalize();  
  return 0;  
}"

Basic Program setup in PETSc ( C/C++ )	



•     program main"
•     integer ierr, rank"
• #include "include/finclude/petsc.h""
•     call PetscInitialize( PETSC_NULL_CHARACTER, ierr )"
•     call MPI_Comm_rank( PETSC_COMM_WORLD, rank, ierr )"
•     if (rank .eq. 0) then"
•         print *, ‘Hello World’"
•     endif"
•     call PetscFinalize(ierr)"
•     end"

Basic Program Setup in PETSc (Fortran)	



VECTORS

Fundamental objects to 

store fields, right-hand side 
vectors, solution vectors, 

etc. . . 


Matrices

Fundamental Objects to store 

Operators 


Vectors and Matrices in PETSc	



•  PETSc vectors can be sequential (full vector is created in 
every process) or parallel (every process contains a part of 
the vector)


proc 3


proc 2


proc 0


proc 4


proc 1
–  Create a PETSc Vector


VecCreate(MPI_Comm Comm,Vec * v)!
•  comm - MPI_Comm parallel processes

•  v = vector


– Set the PETSc Vector type:

!VecSetType(Vec,VecType)

•  Vector Types can be:

–  VEC_SEQ, VEC_MPI, or VEC_SHARED


–  Set the PETSc vector size:

!VecSetSizes(Vec *v,int n, int N)!
•  Where n or N (not both) could be PETSC_DECIDE


–  Destroy a PETSc Vector (Important for storage)

!VecDestroy(Vec *)!

PETSC:  Some Basic Vector Operations	
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 #include petscvec.h!
 int main(int argc,char **argv)!
  {!
      Vec         x;                    !
      int         n = 20,m=4, ierr;!
      PetscInitialize(&argc,&argv);!
!
       VecCreate(PETSC_COMM_WORLD,&x);!
       VecSetSizes(x,PETSC_DECIDE,n);!
       VecSetFromOptions(x);!
   <-- perform some vector operations -->!
!
     PetscFinalize();!
     return 0;!
}!

PETSC:  Some Basic Vector Operations	



VecCreateMPI(PETSC_COMM_WORLD, m, n, x);!

Or to create a specific MPI vector


Function Name   Operation   

  
VecAXPY(Scalar *a, Vec x, Vec y)   

  

y = y + a*x   

VecAYPX(Scalar *a, Vec x, Vec y)   y = x + a*y   

VecWAXPY(Scalar *a, Vec x, Vec y, Vec w)   w = a*x + y   

VecScale(Scalar *a, Vec x)   x = a*x   

VecCopy(Vec x, Vec y)   y = x   

VecPointwiseMult(V ec x, Vec y, Vec w)   w_i = x_i *y_i   

VecMax(Vec x, int *idx, double *r)   r = max x_i   

VecShift(Scalar *s, Vec x)   x_i = s+x_i   

VecAbs(Vec x)   x_i = |x_i |   

VecNorm(Vec x, NormType type , double *r)   r = ||x||   

  
  

  

PETSC:  Some Basic Vector Operations	



•  Create a PETSc Matrix

MatCreate(MPI_Comm comm, Mat *A)!



•  Set the PETSc Matrix type

MatSetType(Mat *A, MatType matype)!
(see next slides for types of matrices)




•  Set the PETSc Matrix sizes

MatSetSizes(Mat *A, PetscInt m, PetscInt n, PetscInt 
M,!

            PetscInt N )!
•  where m, n are the dimensions of local sub-matrix.  M, N are the 

dimensions of the global matrix A


•  Destroy a PETSc Matrix

MatDestroy(Mat *A)


PETSC:  Some Basic Matrix Operations	



PETSc Matrix Types: 

–  default sparse AIJ (generic), MPIAIJ (parallel), SEQAIJ 

(sequential)

–  block sparse AIJ (for multi-component PDEs): MPIAIJ, 

SEQAIJ

–   symmetric block sparse AIJ: MPISBAIJ, SAEQSBAIJ

–  block diagonal: MPIBDIAG, SEQBDIAG

–  dense: MPIDENSE, SEQDENSE

–  matrix-free

–  many more formats (check documentation)


PETSC:  Some Basic Matrix Operations	
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proc 3 

proc 2 

proc 1 M=8,N=8,m1=3,n1=k1 
rstart=0,rend=4 

M=8,N=8,m2=3,n2=k2 
rstart=3,rend=6 

M=8,N=8,m3=2,n3= k3 
rstart=6,rend=8 

Every process will receive a set of consecutive and non-overlapping  rows, the 
columns are determined by the matrix non-zero structure (max(ni) = N)


PETSC:  Some Basic Vector Operations	



–  Input values to the matrix 



In PETSc a process can input values for blocks of the matrix that are not in its 
local matrix.  PETSc makes sure these values get to the right places and 
corresponding processes.


!MatSetValues( Mat mat, !

! ! ! ! PetscInt m, PetscInt idxm[], !

! ! ! ! PetscInt n, PetscInt idxn[],!

                PetscScalar v[], InsertMode addv)


– idxm is a vector of global row indices and m is the number of rows in idxm


– idxn is a vector of global column indices and n is the number of columns in 
idxn!

– v is an array of m X n values


– addv is either ADD_VALUES (accumulates) or INSERT_VALUES (sets)


PETSC:  Some Basic Matrix Operations	



– Assembling the parallel matrix 



(must do before calling solvers and other operations!)


MatAssemblyBegin (Mat mat, MatAssemblyType type)!


 MatAssemblyType: ! !!

•  MAT_FLUSH_ASSEMBLY use between ADD_VALUES and 
INSERT_VALUES in MatSetValues !

•  MAT_FINAL_ASSEMBLY use after setting all the values in 
the matrix and before the matrix is used in the code





MatAssemblyEnd(Mat mat, MatAssemblyType type)!

PETSC:  Some Basic Matrix Operations	



– Matrix vector multiplication

! !MatMult(Mat A,Vec y, Vec x) (y≠x)


– Matrix viewing

•  MatView(Mat mat, PetscViewer viewer)!

•  PetscViewer some viewer options:

•  PETSC_VIEWER_STDOUT_SELF standard output 

(default)!
•  PETSC_VIEWER_STDOUT_WORLD synchronized standard 

output, only rank 0 prints - others send to rank 0!
•   PETSC_VIEWER_DRAW_WORLD graphical display of 

nonzero structure !

PETSC:  Some Basic Matrix Operations	
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•  VIEWERS provide information on any PETSc conceptual Object


•  VIEWERS can be setup inside the program or at execution time 


•  VIEWERS provide an interface for extracting data and making it available 
to other tools and libraries


–  vector fields, matrix contents 


–  various formats (ASCII, binary)


•  Visualization


–  simple graphics created with X11.


PETSC:  Some Basic Viewer Operations	



MatView(Mat A, PetscViewer v);

With PETSC_VIEWER_DRAW_WORLD

- Other useful viewers can be set through 

PETScViewerSetFormat:


•  PETSC_VIEWER_ASCII_MATLAB	


•  PETSC_VIEWER_ASCII_DENSE	


•  PETSC_VIEWER_ASCII_INFO	


•  PETSC_VIEWER_ASCII_INFO DETAILED	



PETSC:  Some Basic Viewer Operations	



Included in the PETSc Distribution:

1)   $PETSC_DIR/src/mat/tests/ex2.c 

2)   Use of -mat_view_info_detailed, etc

3)    $PETSC_DIR/src/mat/tests/ex3.c

4)   Use of  -mat-view-draw


PETSC:  Some Vector, Viewer and Matrix Examples	

 Linear Systems in PETSc	


•  PETSc Linear System Solver Interface (KSP)

•  Solve:  Ax=b,

•  Based on the Krylov subspace methods with the use of a preconditioning 

technique to accelerate the convergence rate of the numerical scheme.	



•  For left and right preconditioning matrices, ML and MR, respectively	



KRYLOV SUBSPACE METHODS + PRECONDITIONERS	


R. Freund, G. H. Golub, and N. Nachtigal. Iterative Solution of Linear Systems,pp 57-100.	


ACTA Numerica. Cambridge University Press, 1992. 	



(ML
−1AMR

−1 )(MRx) =ML
−1b,

For MR = I 

rL ≡ML
−1b−ML

−1Ax =ML
−1r PETSC Default
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• To solve a Linear System, Ax = b in PETSc, one needs: 

•  Declare x, b as PETSc vectors, and set the RHS b 

•  Declare the matrix A, and explicitly set  the matrix A when appropriate 

•  Set the Solver KSP: 

•  Option 1:  

•   Select the base Krylov subspace based solver 

•   Select the preconditioner (Petsc PC) 

•  Option 2: 

•   Set the solver to use a solver from an external library 

Linear Systems in PETSc	

 Linear Systems in PETSc	



PETSc	



Applicatio
n	



Initializati
on	



Evaluation of A 
and b	



Post-	


Processi

ng	



Solve 
Ax = 

b 
P
C	



KS
P	



Linear Solvers	



PETSc code	

User code	



Main 
Routne	



Schema of the program control flow 

•  Is the key element to manipulate linear solver

•  Stores the state of the solver and other relevant 

information like:

•   Convergence rate and tolerance

•   Number of iteration steps

•   Preconditioners


KSP Object:


PETSc: Linear Solver - KSP Interface	

 PETSc: Linear Solver - KSP Interface	



•  Create a KSP Object

KSPCreate(MPI_Comm comm, KSP *ksp)


•  Set KSP Operators

KSPSetOperators(KSP *ksp, Mat Amat, Mat Pmat,!

! ! ! !MatStructure flag)  
!


 
Amat: is the original matrix from Ax=b


 
Pmat: is the place holder for the preconditioning matrix (can be 


 
 
the same as A)  


 
flag: saves work while repeatedly solving linear systems of the


 
          same size using the same preconditioners.  Possible values: 


 
 
SAME_NONZERO_PATTERN (same pattern for Pmat)

! ! !DIFFERENT_NONZERO_PATTERN (different pattern for Pmat)!
! ! !SAM_PRECONDITIONER (identical Pmat)
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65	



PETSc: Linear Solver - KSP Interface	



•  Solve Linear System

KSPSolve(KSP *ksp, Vec b, Vec x)  
!

•  Get Iteration Number

KSPSolve(KSP *ksp, int *its)  
!

•  Destroy Solver

KSPDestroy(KSP *ksp)  
!

!

66	



PETSc: Linear Solver - KSP Interface	



•  Set the type PETSc KSP solver

KSPSetType(KSP *ksp, KSPType method)  
!

!

•  -ksp_type  [cg,gmres,bcgs,tfqmr,…] 
•  -pc_type  [lu,ilu,jacobi,sor,asm,…] 

More advanced options:

 

•  -ksp_max_it  <max_iters> 
•  -ksp_gmres_restart  <restart> 
•  -pc_asm_overlap  <overlap> 
•  -pc_asm_type  [basic,restrict,interpolate,none] 
•  Many more, use -help to see other options


PETSc: Linear Solver - KSP Interface	



•  Some useful command line parameters to PETSc (run 
time!) 

PETSc: Linear Solver - KSP Interface	



•  Setting up the Preconditioners

KSPGetPC(KSP ksp,PC *pc);!
PCSetType(PC *pc, const PCType type)!
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Use of solvers in external libraries


PETSc: Linear Solver - KSP Interoperable Interface	



Included in the PETSc Distribution:

1)   $PETSC_DIR/src/ksp/ksp/examples/tests/ex2.c 

2)   $PETSC_DIR/src/ksp/ksp/examples/tests/ex5.c 

(understand the use of multigrid in PETSc)


PETSC:  Linear Solver Examples	



Location of Some Key Frameworks 

■  Cactus: PDEs on Block Structured Grids 
●  http://www.cactuscode.org/ 

■  PETSc: Linear System Solvers 
●  http://www.mcs.anl.gov/petsc/ 

■  Chombo: Adaptive Mesh Refinement 
●  https://commons.lbl.gov/display/chombo/Chombo+Download+Page 

■  Trillinos: Linear Algebra and Eigensolvers 
●  http://trilinos.org 
 

71 

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center 

More Opportunities for Data 
Abstractions using Frameworks 

 
Future considerations for framework design 

7
2
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Exascale Strawman Arch 
Based on input from DOE Fast Forward and 
Design Forward Projects 

■  Lets review where things are going in exascale concept designs 
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Hybrid Architectures: 
Moving from side-show to necessity 

Hybrid is the only 
approach that 
crosses the 

exascale finish line 
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Cost of Data Movement Increasing Relative to Ops 

FLOPs will cost less than 
on-chip data movement! 

(NUMA)  

FLO
Ps 

Data Movem
ent 

Can Get Capacity OR Bandwidth 
But Cannot Get Both in the Same Technology 
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Bandwidth\Capacity. 16.GB. 32.GB. 64.GB. 128.GB. 256.GB. 512.GB. 1.TB.
4.TB/s. .. .. .. .. .. ..
2.TB/s. Stack/PNM. .. .. .. .. .. ..
1.TB/s. .. Interposer.. .. .. .. ..

512.GB/s. .. .. .. HMC.organic. .. ..
256.GB/s. .. .. .. .. DIMM.. ..  ..
128.GB/s. .. .. .. .. .. NVRAM..

Cost (increases for higher capacity and cost/bit increases with bandwidth) 

P
o
w
e
r 

Old Paradigm 
•  One kind of memory (JEDEC/DDRx) 

•  ~1 byte per flop memory capacity 
•  ~1 byte per flop bandwidth 

New Paradigm 
•  DDR4: ~1 byte per flop capacity with 

 < 0.01 bytes/flop BW 
•  Stacked Memory: ~1 byte per flop bandwidth 

< 0.01 bytes/flop capacity 
•  NVRAM: More capacity, but consumes more 

Energy for writes than for reads. 
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3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity, 
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication
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Updated CAL AMM Model 

3D Stacked
Memory

(Low Capacity, High Bandwidth)

Fat
Core

Fat
Core

Thin Cores / Accelerators

DRAM
NVRAM

(High Capacity, 
Low Bandwidth)

Coherence DomainCoreIntegrated NIC
for Off-Chip

Communication
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Exascale Node Schematic Model 
(also for all pre-exascale systems) 

Data Locality 
What are the big questions in Fast Forward 

79 
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Data Locality Management 
Vertical Locality Management 

(spatio-temporal optimization) 
Horizontal Locality Management 

(topology optimization) 

81 

Sun Microsystems Coherence 
Domains 

■  Motivation 
●  Data movement cost exceeds 

compute 
●  Cost on-chip now distance dependent 
●  Complexity of enumerating hundreds 

of cores (millions of MPI ranks) 
■  Value Proposition 

●  Reduce cost of data movement 
(simpler compared to MPI 2-sided) 

●  Data centric computation (compute on 
data where it is located… in-situ) 

●  Make this all much simpler to describe 
■  Implementations/Existence proofs 

●  UPC/UPC++:   
●  Co-Array Fortran / CAF2: 
●  RAJA/Kokkos:  NNSA is putting majority of 

its investment behind this path. 

Data Centric / Global Address Space 
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Massively Parallel,Simple

Core
Coherence 

Domain

•  Math: 
•  Old model: move data to avoid flops 
•  New model: use extra FLOPs to avoid data movement 
•  ExaCT Research: Higher order methods and communication avoiding 

•  Pmodels: 
•  Old model: Parcel out work on-node and cache-coherence move data 

(data location follows work).  Ignore distance & topology within node and 
between nodes. 

•  New Model: Operate on data where it resides (work follows data location). 
•  ExaCT Research: Tiling abstractions to express data locality info.  AMR 

modeling to study interconnect/box placement interaction 
•  SDMA/UQ: 

•  Old model: store everything on shared disk and look at it later 
•  New model: do analysis workflow as much as possible in-situ 
•  ExACT Research: Using metaskeleton to evaluate benefits of different 

workflow approaches and their requirements for system-scale architecture. 

Research Thrusts in Data Movement 
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Expressing Hierarchical Layout 
■  Old Model (OpenMP) 

●  Describe how to parallelize loop iterations 
●  Parallel “DO” divides loop iterations evenly among 

processors 
●  . . . but where is the data located?  

■  New Model (Data-Centric) 
●  Describe how data is laid out in memory 
●  Loop statements operate on data where it is 

located 
●  Similar to MapReduce, but need more sophisticated 

descriptions of data layout for scientific codes 

forall_local_data(i=0;i<NX;i++;A) "
"C[j]+=A[j]*B[i][j]);"

84 
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Data-Centric Programming Model 
(current compute-centric models are mismatched with emerging hardware) 

■  Building up a hierarchical layout 
●  Layout block coreblk {blockx,blocky}; 
●  Layout block nodeblk {nnx,nny,nnz}; 
●  Layout hierarchy myheirarchy {coreblk,nodeblk}; 
●  Shared myhierarchy double a[nx][ny][nz]; 

85 

•  Then use data-localized parallel loop 
    doall_at(i=0;i<nx;i++;a){ 

  doall_at(j=0;j<ny;j++;a){ 
    doall_at(k=0;k<nz;k++;a){ 
  a[i][j][k]=C*a[i+1]…> 

•  And if layout changes, this loop remains 
the same 

Satisfies the request of the application developers 
(minimize the amount of code that changes) 

Data Centric Programming 
paradigm is also central to  

“big data” applications. 

Tiling Formulation: abstracts data locality, topology, 
cache coherence, and massive parallelism 

■  Expose massive degrees of parallelism through domain decomposition 
●  Represent an atomic unit of work 
●  Task scheduler works on tiles  

■  Core concept for data locality 
●  Vertical data movement  

–  Hierarchical partitioning 
●  Horizontal data movement 

–  Co-locate tiles sharing the same data by respecting tile topology 
■  Multi-level parallelism 

●  Coarse-grain parallelism: across tiles 
●  Fine-grain parallelism: vectorization, instruction ordering within tile 

■  TiDA: Centralize and parameterize tiling information at the data structures  
●  Direct approach for memory affinity management for data locality 
●  Expose massive degrees of parallelism through domain decomposition  
●  Overcomes challenges of relaxed coherency & coherence domains!!! 

Box 2 

Box 1 

Box 2 

Box 3 

Box 4 

Box 5 

Tile (1,1) Tile (1,2) 

Tile (2,1) Tile (2,2) 

Tile (3,1) Tile (3,2) 

Tiled Box 2 

■  OpenMP allows a user to specify any of these layouts 
■  However, the code needed to express that must be different for 

GPUs vs CPUs."
■  The solvers remain unchanged !!!   

Tiling: Abstraction for Memory Layout 
CAF2, UPC++, Chapel, TiDA, Raja/Kokkos 
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a)   Logical Tiles(CPU)             b) Separated Tiles (GPU)                              c) Regional Tiles       
	

        	

 	

           	



cell            tile	



Separated tiles with halos	



region            box	



Iterating over Tiles 
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do tileno=1, ntiles (tiledA)!
   !

   tl = get_tile(tiledA, tileno)!
   lo = lwb(tl)!
   hi = upb(tl)!

   A => dataptr(tiledA, tileno)!
   B => dataptr(tiledB, tileno)!

  !
   do j=lo(2), hi(2)!

      do i=lo(1), hi(1)!
!  !

         B(i,j)= A(i,j) ...!
      !

      end do!
   end do!
end do!

Tiling loop 

Element Loops 

Loop body remains 
unchanged 

Get data ptrs 

Get tile and 
its range 
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Iterating over Tiles 

89 

do tileno=1, ntiles (tiledA)!
   !

   tl = get_tile(tiledA, tileno)!
   lo = lwb(tl)!
   hi = upb(tl)!

   A => dataptr(tiledA, tileno)!
   B => dataptr(tiledB, tileno)!

  !
   do j=lo(2), hi(2)!

      do i=lo(1), hi(1)!
!  !

         B(i,j)= A(i,j) ...!
      !

      end do!
   end do!
end do!

Tiling loop 

Element Loops 

There are many ways to iterate 
over element and tile loops. 

■  Iterate over the tiles by preserving data locality  
■  Provide a language construct to abstract loop traversal 

●  Execute a tile in any order or execute elements in a tile in any order 
●  Introduce parallelization strategy for tiles and elements 

Loop Traversal 

90 

•  The	
  new	
  loop	
  construct	
  will	
  	
  
–  Respect	
  data	
  layout	
  and	
  topology	
  when	
  

we	
  traverse	
  the	
  loop	
  
•  Morton	
  order,	
  linear	
  order	
  

–  Let	
  compiler	
  and	
  run:me	
  pick	
  the	
  best	
  
traversal	
  strategy	
  

–  Change	
  paralleliza:on	
  strategy	
  without	
  
changing	
  the	
  loop	
  	
  

Related Work: 
•  C++ lambda func in Raja 
•  Functors in Kokkos 

■  The prototype for TiDA targets F90 base language 
●  Native support for multidimensional arrays 

■  Framework 
●  Minimal invasion to the base language and existing codes 

–  We can get quite far without implementing a compiler 
●  Have to implement the optimization variants by hand 

■  Directives 
●  Intermediate step, can be ignored, preferred by apps developers 

■  Language Extension 
●  Changes the type system in a language 
●  Provides the compiler more opportunities to perform code 

transformations  
●  Our ultimate goal 

Library-> Directives->Language 

91 

Tile loops and Element Loops 

do tileno=1, ntiles (tU)!
   tl = get_tile(tU, tileno)!
   lo = lwb(tl)!
   hi = upb(tl)!
!up => dataptr(tU, tileno)!
!dp => dataptr(tD, tileno)!

  !
   do j=lo(2), hi(2)!
!  do i=lo(1), hi(1)!
!  !  up(i,j)= dp(i,j) ...!
!  end do!
!end do!

end do!

This Part 
would go 

away if TIDA 
is a Language 

Construct 

Element 
Loop(s) 

Iteration Space  
(C++11 lambda) 
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TiDA for SMC Proxy App 

■  Usually it is not recommended to tile in X dim  
●  Z partitioning is for NUMA nodes and Y partitioning is for cache reuse 

■  Tiling in X dimension is necessary for SMC because of the large 
working set  
●  About 256 MB for N=256 and #species=9  
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Manual Tiling vs TiDA 

■  TiDA is comparable to manually tiled version of the SMC 
code 
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Heterogeneity / Inhomogeneity 
Async Programming Models? 

Assumptions of Uniformity is 
Breaking 
(many new sources of heterogeneity) 
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■  Bulk Synchronous Execution •  Heterogeneous	
  compute	
  engines	
  (hybrid/
GPU	
  compu:ng)	
  

•  Fine	
  grained	
  power	
  mgmt.	
  makes	
  
homogeneous	
  cores	
  look	
  heterogeneous	
  
•  thermal	
  thro*ling	
  –	
  no	
  longer	
  guarantee	
  determinis2c	
  
clock	
  rate	
  

•  Nonuniformi:es	
  in	
  process	
  technology	
  
creates	
  non-­‐uniform	
  opera:ng	
  
characteris:cs	
  for	
  cores	
  on	
  a	
  CMP	
  
•  Near	
  Threshold	
  Voltage	
  (NTV)	
  

•  Fault	
  resilience	
  introduces	
  
inhomogeneity	
  in	
  execu:on	
  rates	
  
–  error	
  correc2on	
  is	
  not	
  instantaneous	
  
–  And	
  this	
  will	
  get	
  WAY	
  worse	
  if	
  we	
  move	
  

towards	
  so;ware-­‐based	
  resilience	
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Assumptions of Uniformity is 
Breaking 
(many new sources of heterogeneity) 
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•  Heterogeneous compute engines 
(hybrid/GPU computing) 

•  Fine grained power mgmt. makes 
homogeneous cores look 
heterogeneous 
–  thermal throttling – no longer guarantee deterministic 

clock rate 
•  Nonuniformities in process technology 

creates non-uniform operating 
characteristics for cores on a CMP 
–  Near Threshold Voltage (NTV) 

•  Fault resilience introduces 
inhomogeneity in execution rates 
●  error correction is not instantaneous 
●  And this will get WAY worse if we move 

towards software-based resilience 

Bulk Synchronous 
Execution 

 

Just Speeding up Components is Design Optimization 
The really big opportunities for energy efficiency require codesign! 

■  Energy-limited design is a zero-sum-
game 
●  For every feature you ask for, you need to 

give something up 
●  This is the “ground floor” for Co-Design 

■  Improving energy efficiency or 
performance of individual components 
doesn’t really need co-design 
●  Memory is faster, then odds are that the software 

will run faster 
●  if its better, that’s good! 

Bulk	
  Synchronous	
  
Execu:on	
  Model	
  

Bulk Synchronous 
Execution 
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Example Near Threshold Voltage (NTV): Shekhar Borkar The 
really big opportunities for energy efficiency require codesign! 

■  The really *big* opportunities to improve 
energy efficiency may require a shift in how 
we program systems 

–  This requires codesign to evalute the hardware and 
new software together 

–  HW/SW Interaction unknown (requires HW/SW 
codesign) 

■  If software CANNOT exploit these radical 
hardware concepts (such as NTV), then it 
would be better to not have done anything at 
all! 
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Fig: Shekhar Borkar 

Convention
al NTV 

Assumptions of Uniformity is Breaking 
(many new sources of heterogeneity) 

Asynchronous Execution Model Bulk Synchronous 
Execution (later) Bulk	
  Synchronous	
  

Execu:on	
  (now)	
  

In this situation, 
AMR might be the 

solution  
(not the problem) 
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■  Bulk Synchronous: Most of 
the existing HPC universe 

■  Static Dataflow schedule: 
PLASMA/MAGMA 

■  Semi-static schedule:  Most 
AMR libraries (Chombo, 
BoxLib) 

■  Full Dynamic Schedule: OCR, 
HPX, Charm++ 

DAG Scheduling Doesn’t Need to be Dynamic to be useful 
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Opportunities for Asynchronous Execution 
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Pipelining: Cholesky Inversion 

3 Steps: Factor, Invert L, Multiply L’s 
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Bulk Synchronous 
(MPI3+OpenMP4) 

Asynchronous  / DAG Model / static schedule 
(production interface is still topic of research) 

Finding General Purpose programming model to 
express these constructs requires research. 

 
Clear that OMP4 tasking model is not a productive 
way to express DAGs (not for domain scientists at 
least, but could be the underlying model used by a 

library or pmodel) 

Execution Models (what the heck is it?) 

■  What is the parallelism model? 

■  How do we balance productivity and implementation efficiency 

■  Is the number of processors exposed in the model 

■  How much can be hidden by compilers, libraries, tools? 

Examples of parallel execution models 
SPMD 

barrier 

barrier 

barrier 

Dynamic Threads 
fork 

fork 

join 

join 

Event-Driven Vector 
Op 

Op 
Op 

Op 
Op 

Op 

■  Sources of performance heterogeneity 
increasing 
●  Heterogeneous architectures (accelerator) 
●  Thermal throttling 
●  Performance heterogeneity due to transient error recovery 

 
■  Current Bulk Synchronous Model not up to task 

●  Current focus is on removing sources of performance 
variation (jitter), is increasingly impractical 

●  Huge costs in power/complexity/performance to extend the 
life of a purely bulk synchronous model 

Embrace performance heterogeneity:  Study use of 
asynchronous computational models (e.g. LEGION and 
Rambutan, and other dataflow concepts from 1980s) 

Conclusions on Heterogeneity 



4/1/15 

27 

Summary 

■  Computational Science is increasingly carried out in large 
teams formed around applications frameworks 

■  Frameworks enable large and diverse teams to collaborate 
by organizing teams according to their capabilities 

■  Frameworks are modular, highly configurable, and 
extensible 

■  Isolation of applications, solver, and driver layers enables 
re-use in different applications domains, and scalability on 
new parallel architectures 

 

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center 

The End 

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center 

Chapter III 

Addressing Petscale and 
Exascale Challenges 

Addressing Petascale Challenges 
■  Expect ~1 M CPUs, need everything parallel (Amdahl): use 

performance modelling to improve codes 
●  Cactus’ idiom for parallelism is scalable to millions of CPUs 
●  Drivers can evolve without changing physics modules 

■  More cores/node tighten memory bottleneck: use dynamic, 
adaptive cache optimisations 
●  Automatic code generation to select optimal cache strategy 
●  Automatic generation for GP-GPU, Cell, and manycore targets 

■  Probably less memory/processor than today: use hybrid schemes 
(MPI + OpenMP) to reduce overhead 
●  Drivers can be changed dramatically for multicore without requiring changes 

to physics modules  

■  Hardware failures “guaranteed”: use fault tolerant infrastructure 
●  Cactus integrated checkpoint uses introspection to remain application-

independent as well as system independent 
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XiRel: Improve 
Computational Infrastructure 

■ Sponsored by NSF PIF; collaboration between LSU/
PSU/RIT/AEI 

■ Improve mesh refinement capabilities in Cactus, based 
on Carpet 

■ Prepare numerical relativity codes for petascale 
architectures 

■ Enhance and create new physics infrastructure for 
numerical relativity 

■ Develop common data and metadata management 
methods, with numrel as driver application 

Cactus, Eclipse, Blue Waters 
(NSF Track-1 Supercomputing Project) 

cvs/svn	


edit���
compile���
debug	



submit	


monitor	


steer	



local	



remote	



Simulations	



Source code	


gather	


process	


display	



Performance data	



Online databases	


Configuration files	


Performance data	



Application-Level 
Debugging and Profiling 
■ Sponsored by NSF SDCI 
■ As framework, Cactus has complete overview over 

programme and execution schedule 
■ Need to debug simulation at level of interacting 

components, in production situations, at scale 
■ Grid function declarations have rich semantics -- use this 

for visual debugging 
■ Combine profiling information with execution schedule, 

place calliper points automatically 

Remote Visualization 

www.cactuscode.org/VizTools 

OpenDX 

IsoView 

gnuplot 

xgraph 

Amira 

LCAVision 

Source
Volume

Visapult 
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Task Farm/Remote Viz/Steer Capabilities 

Big BH  
Sim 
(LBL, NCSA, PSC, …) 

Visapult 
BWC 

Baltimore 

Current TFM Status in portal…	



Cactus/Charm++ 

Application	



Cactus Framework	



New Charming Driver	

PUGH	

 Carpet	



Charm++	


Also drivers based on 
SAMRAI, PARAMESH	



Summary of Cactus Capabilities 

■  Variety of science domains (highly configurable) 
■  Multi-Physics (modular) 
■  Petascale (tractable programming model for 

massive concurrency, performance, debugging, 
reliability) 

■  Combining HPC (batch systems) and interactivity 
(GUI), where possible 

■  Framework -- for any content 

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center 

Chapter IV 

Extra Material 
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Framework Components 
■  Flesh: The glue that ties everything together (C&C language) 

●  Supports composition of modules into applications (targets non-CS-experts) 
●  Invokes modules in correct order (baseline scheduling) 
●  Implements code build system (get rid of makefiles) 
●  Implements parameter file parsing 
●  Generates bindings for any language (Fortran, C, C++, Java) 

■  Driver: Implements idiom for parallelism 
●  Implements “dwarf-specific” composite datatypes 
●  Handles data allocation and placement (domain decomposition) 
●  Implements communication pattern for “idiom for parallelism” 
●  Implements thread-creation and scheduling for parallelism 

■  Solver/Module: A component implementing algorithm or other composable 
function 
●  Can be written in any language (flesh handles bindings automatically) 
●  Implementation of parallelism externalized, so developer writes nominally serial code 

with correct idiom. Parallelism handled by the “driver”. 
●  Thorns implementing same functionality derived from same ‘abstract class’ of 

functionality such as “elliptic solver” (can have many implementations of elliptic 
solve. Select at compile time and/or at runtime) 

More Information 
■  The Science of Numerical Relativity 

●  http://jean-luc.aei.mpg.de 
●  http://dsc.discovery.com/schedule/episode.jsp?episode=23428000 
●  http://www.appleswithapples.org/ 

■  Cactus Community Code 
●  http://www.cct.lsu.edu  
●  http://www.cactuscode.org/ 
●  http://www.carpetcode.org/ 

■  Grid Computing with Cactus 
●  http://www.astrogrid.org/ 

■  Benchmarking Cactus on the Leading HPC Systems 
●  http://crd.lbl.gov/~oliker 
●  http://www.nersc.gov/projects/SDSA/reports 

Lawrence Berkeley National Laboratory / National Energy Research Supercomputing Center 

Examples: 
Chombo 

AMR 

Block-Structured Local Refinement 

•  Refined regions are organized into rectangular patches.  

•  Refinement in time as well as in space for time-dependent problems. 
•  Local refinement can be applied to any structured-grid data, such as bin-sorted 

particles. 
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Cartesian Grid Representation of Irregular Boundaries 

Advantages: 
•  Grid generation is easy. 

•  Good discretization technology (e.g. finite differences on  rectangular grids, 
geometric multigrid) 

•  Straightforward coupling to AMR (in fact, AMR is essential). 

Based on nodal-point  representation (Shortley and Weller, 1938) or finite-volume 
representation (Noh, 1964). 

Efficient Embedded Boundary Multigrid Solvers 
■  In the EB case, the matrices are not symmetric, but they are sufficiently 

close to M-matrices for multigrid to work (nontrivial to arrange this in 3D). 
■  A key step in multigrid algorithms is coarsening.  In the non-EB case, 

computing the relationship between the locations of the coarse and fine 
data involves simple integer arithmetic. In the EB case, both the data 
access and the averaging operations are more complicated. 

■  It is essential that coarsening a geometry preserves the topology of the 
finer EB representation. 

A Software Framework for Structured-Grid Applications 

•  Layer 1: Data and operations on unions of rectangles - set calculus, 
rectangular array library (with interface to Fortran). Data on unions of 
rectangles, with SPMD parallelism implemented by distributing boxes to 
processors. Load balancing tools (e.g., SFC). 

■  Layer 2: Tools for managing interactions between different levels of 
refinement in an AMR calculation - interpolation, averaging operators, 
coarse-fine boundary conditions. 

■  Layer 3: Solver libraries - multigrid solvers on unions of rectangles, AMR 
hierarchies; hyperbolic solvers;  AMR time stepping. 

■  Layer 4: Complete parallel applications.  

■  Utility Layer: Support, interoperability libraries - API for HDF5 I/O, AMR 
data alias. 

The empirical nature of multiphysics code development places a premium on the 
availability of a diverse and agile software toolset that enables experimentation. We 
accomplish this with a software architecture made up of reusable tested components 

organized into layers. 

Mechanisms for Reuse 

•  Algorithmic reuse. Identify mathematical components that cut across applications. 
Easy example: solvers. Less easy example: Layer 2.  

•  Reuse by templating data holders. Easy example: rectangular array library - array 
values are the template type. Less easy example: data on unions of rectangles - 

“rectangular array” is a template type.  

•  Reuse by inheritance. Control structures (Iterative solvers, Berger-Oliger 
timestepping)  are independent of the data, operations on that data. Use inheritance 
to isolate the control structure from the details of what is being controlled 
(interface classes).  
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•  IntVect i 2 Zd.  Can translate i1 § i2, coarsen  i / s  , refine  i £ s. 

•  Box B ½ Zd is a rectangle: B = [ilow, ihigh].  B can be translated, coarsened, refined.  
Supports different centerings (node-centered vs. cell-centered) in each coordinate 
direction. 

•  IntVectSet I½Zd is an arbitrary subset of Zd.  I can be shifted, coarsened, 
refined.  One can take unions and intersections, with other IntVectSets and 
with Boxes, and iterate over an IntVectSet."

•  FArrayBox A(Box B, int nComps): multidimensional arrays of doubles 
or floats constructed with B specifying the range of indices in space, nComp the 
number of components. Real* FArrayBox::dataPtr returns the pointer to 
the contiguous block of data that can be passed to Fortran. 

Examples of Layer 1 Classes (BoxTools) 

Layer 1 Reuse: Distributed Data on Unions of Rectangles 
 

Provides a general mechanism for distributing data defined on unions of rectangles 
onto processors, and communication between processors. 

■  Metadata of which all processors have a copy: BoxLayout is a collection of 
Boxes and processor assignments:       
DisjointBoxLayout:public BoxLayout is a BoxLayout for which the 
Boxes must be disjoint. 

■  template <class T> LevelData<T> and other container classes hold 
data distributed over multiple processors.  For each k=1 ... nGrids , an 
“array” of type T corresponding to the box Bk is located on processor pk.  
Straightforward API’s for copying, exchanging ghost cell data, iterating over 
the arrays on your processor in a SPMD manner. 

Example: explicit heat equation solver, parallel case 

•  LevelData<T>::exchange(): obtains ghost cell data from valid regions on 
other patches 

•  DataIterator: iterates over only the patches that are owned on the current 
processor. 

First Light on LMC (AMR) Code Control Dependencies 

12
8 
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AMR Utility Layer 

■  API for HDF5 I/O. 
■  Interoperability tools.  We have developed a 

framework-neutral representation for pointers to AMR 
data, using opaque handles.  This will allow us to 
wrap Chombo classes with a C interface and call 
them from other AMR applications. 

■  Chombo Fortran - a macro package for writing 
dimension-independent Fortran and managing the 
Fortran / C interface. 

■  Parmparse class from BoxLib for handling input files. 
■  Visualization and analysis tools (VisIt). 

Spiral Design Approach to Software Development 
 
Scientific software development is inherently high-risk: multiple experimental 
platforms, algorithmic uncertainties, performance requirements at the highest level.  
The Spiral Design approach allows one to manage that risk, by allowing multiple 
passes at the software and providing a high degree of schedule visibility. 

 
Software components are developed in phases. 

•  Design and implement a basic framework for a given algorithm domain (EB, 
particles, etc.), implementing the tools required to develop a given class of 
applications. 

•  Implement one or more prototype applications as benchmarks. 
•  Use the benchmark codes as a basis for measuring performance and evaluating 

design space flexibility and robustness.  Modify the framework as appropriate. 
•  The framework and applications are released, with user documentation, regression 

testing, and configuration for multiple platforms. 

Software Engineering Plan 

•  All software is open source: http://seesar.lbl.gov/anag/
software.html. 

•  Documentation: algorithm, software design documents; Doxygen 
manual generation; users’ guides. 

•  Implementation discipline: CVS source code control, coding standards. 
•  Portability and robustness: flexible make-based system, regression 

testing. 
•  Interoperability: C interfaces, opaque handles, permit interoperability 

across a variety of languages (C++, Fortran 77, Python, Fortran 90).  
Adaptors for large data items a serious issue, must be custom-designed 
for each application. 

Replication Scaling Benchmarks 
■  Take a single grid hierarchy, and 

scale up the problem by making 
identical copies. Full AMR code 
(processor assignment, 
remaining problem setup) is 
done without knowledge of 
replication. 
●  Good proxy for some kinds of 

applications scaleup.  
●  Tests algorithmic weak scalability 

and overall performance.  
●  Avoids problems with interpreting 

scalability of more conventional 
mesh refinement studies with AMR.  
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Replication Scaling of AMR: Cray XT4 Results 

■  97% efficient scaled speedup 
over range of 128-8192 
processors (176-181 seconds). 

■  Fraction of operator peak: 90% 
(480 Mflops / processor). 

■  Adaptivity Factor: 16. 

Regular 

Regular 

PPM gas dynamics solver: 

•  87% efficient scaled speedup 
over range of 256-8192 

processors (8.4-9.5 seconds)."
•  Fraction of operator peak: 45% 

(375 Mflops / processor)."
•  Adaptivity factor: 48."

AMR-multigrid Poisson solver: 

Embedded Boundary Performance Optimization and Scaling 

■  Aggregate stencil operations, which use 
pointers to data in memory and  integer 
offsets, improve serial performance by 
a factor of 100. 

■  Template design 
Implement AMRMultigrid once and re-use 

across multiple operators 
■  Operator-dependent load balancing 
■  space-filling curve algorithm to order 

boxes (Morton) 
Minimization of communication 

■  Relaxing about relaxation 
gsrb vs. multi-color. 
edge and corner trimming of boxes 

■  And many many more 

Communication Avoiding Optimizations 

■  Distributing patches to processors to 
maximize locality. Sort the patches by 
Morton ordering, and divide into 
equal-sized intervals. 

■  Overlapping local copying and MPI 
communications in exchanging ghost-
cell data (only has an impact at 4096, 
8192). 

■  Exchanging ghost-cell data less 
frequently in point relaxation. 

Morton-ordered load balancing 
(slice through 3D grids). 

Berger-Rigoutsos + recursive 
bisection. 

Chombo AMR Capabilities 
■  Single-level, multilevel solvers for cell-centered and node-centered 

discretizations of  elliptic / parabolic systems. 
■  Explicit methods for hyperbolic conservation laws, with well-defined 

interface to physics-dependent components. 

■  Embedded boundary versions of these solvers. 
■  Extensions to high-order accuracy, mapped grids (under development).  

■  AMR-PIC for Vlasov-Poisson. 

■  Applications: 

●  Gas dynamics with self gravity. Coupling to AMR-PIC. 
●  Incompressible Navier-Stokes Equations. 
●  Resistive magnetohydrodynamics. 

■  Interfaces to HDF5 I/O, hypre, VisIt. 

■  Extensive suite of documentation. Code and documentation released in 
public domain. New release of Chombo in Spring 2009 will include 
embedded boundary capabilities (google “Chombo”). 


