Lisp and Symbolic Functionality in an Excel Spreadsheet:
Development of an OLE Scientific Computing Environment

Ronen Gradwohl and Richard Fateman
EECS Department
University of California, Berkeley

August 13, 2002

Abstract

An Excel link to Lisp functionality can provide a window into broader applicability of the
spreadsheet interface to the general development of a scientific computing environment. Given
the attempt by Microsoft to integrate all its applications via OLE, the same kind of technique
can add powerful computation capabilities to other commonly used applications such as word
processing and database programs.

1 Introduction

OLE (Object Linking and Embedding) is Microsoft’s technology which allows different applications
running within Windows to communicate with one another. An OLE server is an object that
represents the functionality of an application, and an OLE client accesses that functionality via
an interface. Our goal is to allow a user whose primary interaction is with Excel, Word, or any
other Office application the power and functionality of Lisp, or, more specifically, a symbolic and
numerical computation package implemented in Lisp.

2 The Excel Interface to Lisp

Our work has been based on an Excel interface, since this seems to have the most immediate appeal
to computation.

2.1 The Current Implementation

Setting up a Lisp OLE server in the background of an Excel Worksheet can take one or two simple
steps, or can be done automatically.

We support two Excel functions that allow access to Lisp functionality. 1ispEval (expr) takes
takes the one argument expr, a Lisp expression, and evaluates it in the server’s Lisp environment.
lispApply(fun,argl, ... ,argn), takes one or more arguments, the first of which is a Lisp
function. The following arguments are the values to which that function will be applied. They can
contain integers or other values, symbols, cells referring to values within the spreadsheet, and even
ranges of cells. lispApply passes the function and a list of all the arguments to the Lisp server.

Multi-dimensional Range objects are passed as lists of lists, with the Range object’s rows being the
nested lists.

2.2 Examples

The data that we need is a superset of the data that is built-in and inherent in Excel’s world view,
and so we must encode some of it as strings. That is, when we pass an expression to Lisp, we must
bypass Excel’s view and quote it, as shown in the following basic examples.

If we insert into a spreadsheet cell the following formula: =1lispEval("(+ 1 2)"), or, equiva-
lently, =lispApply("+", 1, 2), then that cell will evaluate to 3. Thus 3, an ordinary Excel integer
will be displayed in the table.

If we use this formula: =lispEval("(format nil ""~s"" abc)")! we will get abc in the
corresponding cell.

Note that you can define functions within a call to 1ispEval, as in: =lispEval("(defun foo
(&rest r) r)"). You can then follow this by =1ispApply("foo", 1, 23.43, "x", a4, al:c7),
where a4 refers to the corresponding cell in the spreadsheet, al:c7 is a Range object, and x is
presumably a bound variable with a value in the Lisp system. Finally, 1ispApply can also accept
lambda function definitions, as in =1lispApply (" (lambda(x y z) (foo x (bar y z)))", "x",
ad, c7).

2.3 Other Interface Possibilities

From a Lisp perspective we would like to get rid of some of the Excel syntax, while still having access
to its data. Perhaps we would prefer to have something like =1lisp(+ al b2), but unfortunately
the Excel parser will object to this before ever calling Lisp. How about =lisp("(+ al b2)"), or
perhaps =1isp(" (foo b3:d7)")7 In these cases al and b2 refer to the values of the corresponding
cells in the spreadsheet, and b3:d7 refers to a range in the worksheet. This syntax is legal Excel and
has the advantages of being clear and simple. It does, however, present an inconvenient complexity.
Suppose we had the former example in our spreadsheet, and then we changed the value of al1. The
spreadsheet should then recompute the value of any expression depending on ai, as that is some
basic functionality of the Excel spreadsheet. But the al is inside a string, which Excel will not
notice. This complicates our lives, but is not the worst of it. Suppose we added a row at the
top of the spreadsheet, which, in the ordinary semantics of spreadsheets, would change the Lisp
expression to add the values of a2 and b3. Should Excel modify the contents of the string argument
in our Lisp expression? Not only is this difficult, it also has no precedent within Excel functionality.
Hence, we must look elsewhere for a practical solution.

The next approach we considered is to implement something similar to other Add-Ins. In
particular, Maple’s Add-In for Excel [2] suggests that a call to the Lisp server could look like
=lisp("(+ &1 &2)", al, b2). In this example, the &1 is replaced in context by the second
argument, the &2 is replaced by the third argument, and so on. This pattern-matching approach
allows us to use a1l and b2 to refer to the values in the corresponding cells in the spreadsheet. Since
these names are not hidden inside a string, Excel’s normal functionality provides the implementation
to re-evaluate. When al or b2 is modified, the expression gets recalculated. Furthermore, if a row
is added at the top of the spreadsheet, the expression automatically gets changed to =1isp(" (+

!The "" is an escaped " character in Excel.

&1 &2)", a2, b3). Excel will determine which cells get recomputed, providing consistency within
the spreadsheet’s functionality.

A disadvantage of this syntax is that it is ugly, more complicated, and not Lisp-like.

Our implementation of lispEval and lispApply is a somewhat more “Lisp-ish” spin on this
syntax.

A simple extension of this work would allow the users access to a Macsyma system running
in the Lisp server, which could look like =macsymaApply("integrate",al, b2), or perhaps
=macsymaApply("lambda([x,y], 3*x+sin(y))",al, b2). Another possible approach is to set
a cell, say C3, to the (string) lambda([x,y],3*x+sin(y)) and call from another cell, say D3, the
formula =macsymaApply(c3,al,b2). Naturally a version of =macsymaEval(expr) could also be
set up.

3 Future Work

3.1 Additional Features

Since the design of any environment for increasing productivity must place an emphasis on ease
of use we considered some additional features for future implementation. For example, instead
of having to hit control-i and control-t to initiate and terminate the server, we could install
buttons on the toolbar corresponding to these. In fact, it may be even more convenient to only
have one button, which then chooses the appropriate action (this presents a limitation, however,
in that only one Lisp OLE server could be running within each Excel Workbook). You might also
wish to define functions without getting the return value in a spreadsheet cell, so there could be a
user form which would permit input or output from a text box. Furthermore, it may be convenient
to provide a user form or menu item to initialize or customize the back-end Lisp service by loading
files. Thus, the user’s interface with the Lisp server could be customized to an application.

3.2 Error Checking with Exceptions

An obvious void in the current implementation is the lack of error checking.

By default, if you attempt to evaluate a faulty Lisp expression, the error will show up in the
Lisp server’s console, and the spreadsheet will freeze. In order to regain control, you must close
the Lisp console, and then start a new server. This should not be necessary. Instead, the server
should execute code within an error handler with a suitable versatile design. A simple but not
entirely convincing improvement on our implementation is for the Lisp server to execute all code
inside (ignore-errors ...) which would return nil from any erroneous (terminating) input or
an unsyntactic input. A clean termination of an infinite loop would also be a useful safeguard.

A more elaborate interchange of data would require communication with the VBA function that
is accessing the server, and alert the user of the error.

3.3 Application to Microsoft Word

Similarly to Excel, Microsoft Word, Powerpoint, etc. can utilize the Visual Basic macros that link
to a Lisp OLE server. Thus, the user may choose to have that word processing application as
his main point of interaction, and still have the power and functionality of Lisp. Some uses may
include the embedding of Lisp expressions, miniature Lisp consoles, or applications written in Lisp

such as computer algebra systems, within a Word document. The overall effect could be similar to
that of Scientific Workplace [3], a commercial product which merges a WYSWYG word processor
which looks somewhat like TEX with partial access to a computer algebra system (Maple V).

In our combination, the user familiar with Word will have the comfort and advantage of building
upon known applications to access the subtleties of a new application.

4 Acknowledgments

This research was supported in part by NSF grant CCR-9901933 administered through the Elec-
tronics Research Laboratory, University of California, Berkeley. Ronen Gradwohl was supported
by an NSF undergraduate research grant.

5 Appendix

5.1 How to Run the Current Server

These instructions are adapted from the OLE sample code provided by Franz [1], and need be
executed only once on any computer. In order to successfully utilize this Lisp OLE server from
within Excel or any other Office application, the user must have a registered version of Allegro 6.1
or higher, as well as administrator permissions (since it is necessary to modify the Registry).

First, it is necessary to delete the subfolder delivery from the directory containing deliver.cl.
Next, in a Lisp with a compiler, : cd into the directory containing deliver.cl and server.cl. Now,
execute the command :1d deliver.cl, and then, if desired, :exit. In order to be able to use this
server from other applications, you create a reference to it in the Registry. You run the executable
delivery/Register testeval. Finally, in the Excel spreadsheet, hit control-i to initiate the
server (note: this might be changed into a toolbar button). Excel is now ready to accept Lisp
commands in a particular form, which it will pass on to the Lisp OLE server. Finally, in order to
close the server, hit control-t.

When the Lisp OLE server is running, it is possible to evaluate any Lisp command from
within an Excel cell. In an active cell, type in the function =lispEval ("any-lisp-expression").
any-lisp-expression will be evaluated, and the result returned and displayed in the active cell.

5.2 File and Method Descriptions

The file server.cl implements the Lisp server. The notable methods are:

e defclass test-evaluator: this class is of type ole:automaton, and it defines the interface
to the server.

e The ole:def-automethod functions define the evaluation methods that can be called on the
server. In their current implementations, evaluation evaluates the Lisp expression given in
expr, while application applies the function from fun to the list args.

The file deliver.cl creates the application, as well as shortcuts to executables that add and
remove references to the server in the Windows Registry.

In order to use the Lisp server from another application, say Excel, it is necessary to start up
a new server from a Visual Basic for Applications (VBA) macro or function. This is easily done
with the statement Set lispServer = CreateObject("Franz.testeval.1"). It is now a simple
matter to refer to the elements of this interface, with commands such as lispServer.expr and
lispServer.evaluation.

When the VBA macros and functions are completed, it is convenient to save the code as an
Excel Add-In, so the code can be shared. It might be desired to make the code password-protected,
which is an option accessed via Tools on the tool bar. To save the code as an Add-In, first name
the file by choosing File->Properties, and then adding a name to the code. Then, when saving
the file, choose to save it as an Excel Add-In, with extension .xla rather then the usual extension
of .x1s.

References
[1] Franz Inc. http://www.franz.com.
[2] Maple. http://www.maplesoft.com.

[3] Mackichan software swww.mackichan.com.

