
A Review of Mathematica

RICHARD J. FATEMAN�

(fateman@cs.Berkeley.EDU )

Computer Science Division, University of California, Berkeley, CA 94720, USA

(Received: 16 November 1990)

(Revised: 16 September 1991)

The Mathematica computer system is reviewed from the perspective of its contribu-
tions to symbolic and algebraic computation, as well as its stated goals. Design and
implementation issues are discussed.

1 Introduction

The Mathematica1 computer program is a general system for doing mathematical com-
putation described in Wolfram (1988, 1991). It includes a command language, a program-
ming language, and a calculation environment that is oriented toward symbolic as well as
numeric mathematics.

The back cover of the manual (Wolfram (1991)) provides excerpts from rave notices like
\The importance of [Mathematica] cannot be overlooked ... it so fundamentally alters
the mechanics of mathematics." |The New York Times. Fortune says \... it will do,
instantaneously, virtually all of applied mathematics ... " Taubes (1988).

Hype aside, the program is without question interesting to mathematicians, computer
scientists, and engineers because of its combination of a number of technologies that
have arisen in initially separate contexts|numerical and symbolic mathematics, graphics,
and modern user interfaces. The exploitation of the PostScript language for plotting
contributed to its natural �t into the package of programs initially released for the NeXT
workstation.

Not all commentary on Mathematica has been uncritical. For example, reviews in
Science (Foster & Bau (1989)) and Notices of the AMS (Herman (1988), Simon (1990))
compare Mathematica's features, reliability and e�ciency to similar programs for alge-
braic and/or numerical interactive manipulation. Additional commentary on the program
includes Hoenig (1990), Vogel (1989). A perceptive book review of the reference man-
ual (�rst edition) has also appeared (McCurley (1990)). Electronic-mail messages on
various semi-public bulletin boards (in particular netnews: sci.math.symbolic) have
discussed features and bugs of Mathematica as well as similar programs. There is also an
active mailing list speci�cally for Mathematica users (mathgroup@yoda.ncsa.uiuc.edu).
Such forums provide opportunities for valuable exchanges but, especially as \subscribers"
become more numerous, the continuing unedited message streams overwhelm the large
picture. Therefore there appears to be value in a more widely available and more de-
tailed commentary on Mathematica, speci�cally from the perspective of its context and
contribution to technology.

�This work has been supported in part by the following: the National Science Foundation under grant
numbers CCR-8812843 and CDS-8922788, through the Center for Pure and Applied Mathematics and the
Electronics Research Laboratory (ERL) at the University of California at Berkeley; the Defense Advanced
Research Projects Agency (DoD) ARPA order #4871, monitored by Space & Naval Warfare Systems
Command under contract N00039-84-C-0089, through ERL; and grants from the IBM Corporation, the
State of California MICRO program, and Sun Microsystems.

1Mathematica is a trademark of Wolfram Research Inc. (WRI).

1



In order not to keep the reader in suspense, my major conclusion is that Mathematica
has many aws. Some of them are substantial and are unlikely to be repaired because
they reect decisions rather than oversights. The gaps between claims and actuality are
substantial. These gaps are not all inherent in the nature of mathematical algorithms or
representations since competing commercial programs often provide correct answers where
Mathematica fails.

One way of improving the state of the art in automating mathematics is to examine
current programs critically; our purpose in this review is, in part, to direct attention to
shortcomings and suggest improvements.

2 Preliminaries

This review occasionally assumes the reader has a more-than-casual familiarity with
Mathematica, and is certainly no substitute for a primer on the subject. Careful study of
the major reference (Wolfram (1988, 1991)) may be an adequate substitute for experience
in using the program.

Four themes permeate this review corresponding to areas of technology to which Math-
ematica potentially could make a contribution:

� the �eld of symbolic and algebraic computation,

� the �eld of numerical computing,

� programming language and human-computer interface design, and

� the organization of mathematical information.

These should be kept in mind as the discussion proceeds, but �rst a brief historical
perspective seems in order.

3 Prior Art in Mathematica

The idea, of using computers for symbolic rather than numerical (arithmetical) compu-
tation, actually predates the electro-mechanical computer. Ada, Countess of Lovelace and
patron of Charles Babbage, inventor of the \Analytical Engine", suggested such usage in
1844 (see Knuth (1969)). It took over a century for the �rst actual symbolic computation
to be cited in the literature. (see van Hulzen & Calmet (1983) or Barton and Fitch (1972)
for a survey.)

The more recent tradition of the �eld of Symbolic and Algebraic Manipulation (SAM)
by computer has had a small but loyal following at least since the early 1960's. Members
of the Association for Computing Machinery (ACM) joined together to form a Special
Interest Group (SIGSAM) in 1965.

Chronologically, Mathematica probably should be considered as about \third-generation"
among algebra systems, placing it among the (more-or-less) contemporary general-purpose
systems such as Derive (The Soft Warehouse (1991)), Maple V (Symbolic Computation
Group 1990), and AXIOM, (previously referred to as Scratchpad II (Computer Algebra
Group (1988))). These are not necessarily better than the second-generation hold-overs
| in particular, Macsyma (Moses (1979), Mathlab Group (1983), Pavelle (1985), Fate-
man (1989)), provides answers when Mathematica sometimes does not; another second-
generation system with a wide following is Reduce 3 (Hearn (1984)). These recent systems
were built upon research results plus practical experience in using second-generation sys-
tems of the late 1960's, including ALTRAN, CAMAL, PL/I-FORMAC, Mathlab, Scratch-
pad I, Symbolic Mathematical Laboratory, SAC-1, SIN, and others. An early comparison

2



of some of these systems is still worth reading for background (Barton and Fitch (1972)).
Stepping back further in time, the �rst generation systems of the early-to-mid 1960's in-
cluded ALPAK, FORMAC, Formula Algol, PM, SAINT, SNOBOL and LISP. There are
also numerous other \special purpose" systems such as Schoonschip, Sheep, Trigman and
Cayley referenced in Buchberger (1983).

Although there are ample historical precedents for Mathematica's symbolic facilities,
and a clear intellectual debt, there is virtually no acknowledgment of prior software or al-
gorithms in Wolfram's reference (Wolfram (1988, 1991)). Indeed, the �rst edition (p. xvvii)
indicates in passing that Mathematica \represents a synthesis of several di�erent kinds of
software" including some 16 systems. These are not mentioned in the second edition at
all. Algorithm documentation receives similar treatment. If you want to know about the
\Risch algorithm" (mentioned on page 528 of the �rst edition, expurgated from all but
the index for the second edition) or how factoring is done, you won't �nd any information
or references.

Although space limitations prevent us from providing details and full references, it is
clear that recent developments in other areas have either inspired or paralleled the facili-
ties in Mathematica. These include user interfaces such as the Macintosh environment or
other window systems; alternative mathematics display and manipulation systems such
as Mathscribe (Soi�er & Smith (1986)), CaminoReal (Arnon et al. (1988)), Theorist
(Bonadio (1990)), Milo and FrameMaker (Avitzur (1988)); operating systems and lan-
guages with interprocess communication, display technology (PostScript in particular);
and programming language ideas (object-oriented programming, pattern matching, func-
tional programming).

An important point here is that Mathematica arrived riding the crest of a wave: a mass
market newly-formed from the appearance of vastly improved low-cost computing hard-
ware. That mass market was a large part of what Mathematica's precursors (Macsyma,
Reduce, Maple, etc.) lacked. Mathematica became news partly because it was new, and
not because it was that much better than its predecessors.

In summary, Mathematica is more evolutionary than revolutionary. Not only does it
depend heavily on unacknowleged prior art and technology, it is in many respects not so
advanced as older systems.

4 Examination of the Objectives

Stephen Wolfram, the principal designer of the system and author of the user documen-
tation (Wolfram (1988, 1991)) for the system, speci�es several objectives for Mathematica
which are summarized or paraphrased below. This review addresses each of the objectives.
Occasionally there will be a comparison to other systems; however, the claims of Mathe-
matica are made in relation to mathematics, and rarely with reference to other computer
programs. It seems appropriate to try to review the system in that light.

Objectives of Mathematica

� To provide a system for doing interactive symbolic mathematical calculations (in-
teractive Mathematica); (x5)

� To provide a repository for mathematical exposition and education (Notebooks);
(x6)

3



� To provide a programming language which uni�es ideas from procedural program-
ming, functional programming, rule-based programming, object-oriented program-
ming and constraint-based programming; (xx7, 8)

� To provide facilities for exact symbolic computation and arbitrary-precision numer-
ical computation; (xx9, 10)

� To provide a repository for information on the simpli�cation and manipulation of
mathematical functions, polyhedral objects, etc. (Libraries); (x11)

� To provide high-quality plotting from algebraic or discrete computations in a format
that can be further manipulated (PostScript); (x12)

� To provide built-in functionality (data types) for algebraic manipulation of formulas
comprising polynomials, rational functions, the usual functions of elementary calcu-
lus, advanced functions of physics (\special functions"), functions of number theory,
combinatorics, as well as composite data structures (lists, matrices, literal functions
and arguments, etc.) and debugging; (xx13, 14)

In the �nal sections we discuss some general issues about the relationship of Mathemat-
ica to mathematics.

5 The Interactive System

Mathematica is intended to be used primarily as an interactive program supporting the
day-to-day computational needs of a mathematician or scientist. For the most part it
�ts into a traditional model typical of the last 25 years of time-sharing, or the last 10
years of standard data entry into personal computers. The user types a line or more,
and after some computation a display is produced. Given the possibilities that have
developed recently, it is somewhat surprising that Mathematica hasn't progressed much
beyond line-at-a-time input; for an example of what more could be done, see Milo (Avitzur
(1988)) or Theorist (Bonadio (1990)), or MathScribe (Soi�er & Smith (1986)) or even
the considerably older research system DREAMS (Foster (1984)). Each of these systems
allows some use of pointing devices for selection of mathematical expressions. (By contrast,
experimental input systems based on tablets and character recognition have just recently
resurfaced as \palm-top" computer systems. The intuitive attractiveness of hand-writing
of mathematics for raw input|rather than keying in new text and selecting already-
displayed material | has never been exploited successfully in past experimental systems.
Experience indicates that a combination of typing and pointing seems to work better.)
In editing of commands, Mathematica allows selections only of linear text-strings. In its
parser as well as its display of equations (limited to �xed-width character-grid typewriter-
font \2-D" expressions) Mathematica seems more like Macsyma (circa 1968) than a system
taking advantage of bit-mapped workstations.

Because of the interactive nature of most uses of Mathematica, the intuitiveness of the
system and the user-visible programming language is very important. The two components
are discussed in separate sections on the display (in the next section) and a more extensive
subsequent section on the programming language.

An advertised novelty in Mathematica is its separation of a front-end \interactive"
component from a back-end \computational" component. In practice both parts of the
program often run side-by-side in the same computer, but in principle, they could be run-
ning on distinct machines. Mathematica was not the �rst system to try this separation
since there were prior experiments with the Maple system, and indeed the current commer-
cial version (Maple V) has such a separation. Even so, the separation in Mathematica has

4



still-unrealized potential. Feedback from mouse-input on plots has been demonstrated on
some platforms, but only in recent versions of the program, or on advanced workstations
(e.g. Silicon Graphics' systems).

Overall, the notion of (say) a Macintosh front-end attached to a supercomputer back-
end sounds better than it really is in practice. Supercomputers generally do not run
symbolic mathematics programs particularly well. Running both front- and back-end
parts of Mathematica on a fast remote computer works well, assuming there is a \front-
front-end" such as an X11 window system to display the graphics. Since such a window
system is probably in use anyway, and it can be totally ignorant of and unlicensed for
Mathematica, it may be preferable.

Mathematica is potentially appropriate for use as an interactive front-end to other
programs written in C or other languages. Through a \foreign function" interface, it is
possible to link to other systems. It appears to be non-trivial to get this to work, however.

6 Notebooks and the Display

Mathematica runs on a variety of machines, and the quality of the user interface varies
across a spectrum from the universal but workable ASCII-terminal mode to specially-tuned
versions for the Apple Macintosh and NeXT lines of computers.

The most sophisticated interface model provided is called a Notebook. The user types
commands as text into an outline processor. That is, there is an option of suppressing
details of display of material at lower levels. The computer generates additional text
and displays into the outline. The graphics sections can be re-displayed as PostScript
and edited. Since the Notebooks can be exchanged between computers, there is a simple
technique for reproducing results and building up a library, at least if the Notebooks are
properly constructed so as not to conict in the user's space of objects. Although this
is undoubtedly a useful approach, in some respects it is not as advanced for modeling of
mathematical problem solving as some other programs such as Milo (Avitzur (1988)) or
Theorist (Bonadio (1990)). These programs o�er facilities missing in Mathematica: they
allow the \text" parts of the mathematics to be data objects in a system where algebraic
expressions can be selected, manipulated, linked to other expressions, etc. They provide
interactive type-setting of mathematical expressions. In addition, Theorist supports ani-
mation and rotation of surfaces. Although Mathematica provides these latter facilities on
a subset of its platforms, it lacks the pencil-and-paper quality of interaction that these
other products o�er.

Although it is possible to import descriptive material from other programs into a Note-
book, including digitized pictures or typeset formulas, the linkage is rather roundabout.
Perhaps in the future it will be possible to run a TeXForm version of an equation through
TEX and put it directly into the notebook. This would certainly create a better environ-
ment for Notebooks as an alternative mode of publication of mathematics. In fact, there
are nine books cited by Wolfram (Wolfram (1991) page xviii) which describe the use of
Mathematica in scienti�c or educational contexts, and some of them are clearly dependent
upon Notebooks as an interface. The design of Notebooks seems more supportive of pre-
sentation of information than interaction, and this may be just �ne. One colleague �nds
the Notebooks to be the best new feature of Mathematica compared to other symbolic
mathematics systems. On the other hand, another serious Mathematica user indicated to
me that he found the Notebook front-end to be a hindrance. It may very well be a matter
of previous experience and developed preferences.

Incidentally, a Notebook will likely contain only a fragmentary record of computations
so it departs somewhat from the tradition of the \laboratory notebook" containing all raw
data, experimental results etc. It is more like a showcase.

5



7 Programming Language

7.1 Overview

The challenge of making computers truly useful (and perhaps making programmers
obsolete) is often couched in terms that make it sound like a programming language issue:
All one would need is to create the right syntax and semantics to banish all the problems
of applications programming.

That solution is not here yet, but the approaches to the challenge through the years can
be characterized as mixtures from three streams:

� The elaborate all-inclusive language (like PL/I, Ada, Common Lisp)

� The extensible language (C, Algol-68, Common Lisp)

� The language oriented to a speci�c application (PostScript, JCL).

Mathematica falls mostly in the �rst camp in that it has adapted in some way nearly ev-
ery construction appearing in some general language, and it certainly is elaborate. But it
includes some extension techniques, and has certainly packaged together some application-
speci�c subroutines. The evidence to date is that, super�cially at least, Mathematica is
actually fairly comforting to an experienced programmer|most of the familiar tools, as
well as some others, are there. There are generally several ways of writing \equivalent"
programs using di�erent programming paradigms. More so than in other languages, dif-
ferent paradigms may di�er by orders of magnitude in resource consumption. Since no
particular programming style is imposed on the programmer, some programmers will use
the numerous syntactic shortcuts to produce \write-only" programs (so called because
they become incomprehensible shortly after being written). Indeed, the fact that there
are so many variations possible is especially discomforting for a programmer concerned
about e�ciency. Because there is such limited information available on the internal algo-
rithms and data structures in Mathematica, there is sometimes no alternative to trying
various versions of an algorithm and timing them. The fact that details might change is
not a good excuse|such information could be part of release notes, for example.

Mathematica does not have an extensible syntax. It uses all the non-alphabetic sym-
bols of the ASCII character set, and quite a few multi-character symbols. Mathematica's
designers did not choose the more conventional wisdom that it may be advisable to leave
some characters \for the users" for possible syntax extension. Techniques for such exten-
sion are fairly easy to adopt using the parser model used by both Macsyma and Reduce
(see Pratt (1973)), and is advocated in Common Lisp, as well. Mathematica builds a
complete syntactic box, for good or ill. You can't tinker with it unless you write a new
front-end processor.

From a mathematician's point of view, J. R. Kudera (Kudera (1988)) comments \...
computer mathematics languages are ghastly to use" and that \Problems that lend them-
selves to this kind of computation [user-written programs] simply do not occur often
enough to allow users to develop pro�ciency." Thus intuitiveness is important: when a
system deviates substantially from common mathematical notation and semantics as well
as from conventional programming, it becomes positively hazardous.

Nevertheless, programming seems inevitable since the system constructors simply can-
not anticipate all needs. In the next several sections we look in more detail at various
aspects of Mathematica's approach to the support of programming.

6



7.2 Object-Oriented Programming

The programming language specialist may observe that Mathematica's version of this
popular supports neither hierarchies nor inheritance. This omission considerably weakens
the faithfulness to the notion of object-orientedness (for those who care). Type-based dis-
patch of operations is nicely integrated linguistically with the pattern matcher, however.
What the programmer may think of as a function de�nition is, in some senses, equivalent
to a pattern-match and replacement rule associated with an object, usually the main op-
erator (or Head) of the function, but alternatively one of its operands. Thus instead of
re-programming some central simpli�cation routine to handle a new user-de�ned symbol
f[...],and its arguments it is possible to associate, in some piecewise fashion, simpli�ca-
tion rules with f itself. For example f[x_Integer]:= 0 /;x<0 de�nes simpli�cation of f
at negative integer values. The approach of using some kind of \local" control based on
the operator (e.g. f) for simpli�cation is actually fairly common and appears in one of
the �rst algebraic simpli�cation programs, Korsvold (1965).

7.3 Contexts and Information Hiding

Any modern programming language intended for building large systems must provide
information-hiding capabilities. Mathematica uses its notion of Contexts for this purpose.
The major construction for modular system building appears to resemble packages in Com-
mon Lisp, and even uses the delimiters BeginPackage and EndPackage. In Mathematica
it is possible to delimit sections of code by Begin and End brackets, identifying a context
in which public names (those exported to external or Global contexts) and private names
(those local to this context) are separated. Unfortunately, this is less e�ective than one
might wish, because entering and exiting a Context (by setting the $ContextPath) does
not have the e�ect one might expect.

For example, one might wish to assert the rule that logs of products should be re-written
as sums of logs.

Log[x_*y_] := Log[x] + Log[y]

But just saying this in the Global context is dangerous. In particular, system programs
that rely on a certain behavior from Log may be damaged. Therefore one might wish to
contain it in a context, for example:

Begin["logsimp`"]
Log[x_*y_] := Log[x] + Log[y]
End[]

However, this rule is placed on the Global Log symbol, rather than the logsimp`Log
symbol, and the system does not distinguish between a rule that rewrites Log[x_*y_] and
one which re-writes Log[logsimp`x_*logsimp`y_]. Thus this packaging does not limit
the e�ect of the Log rule, and one must presumably explicitly delete and re-assert such
rules when needed (or explicitly apply them when appropriate). Merely asserting them
once for all time leads to generally unforeseeable consequences. We found, for example,
such a rule had the e�ect of breaking the Integrate command.

This appears to limit severely the utility of rule-based programming as a technique for
adding general information to the system. The programmer has three choices:

� Avoid the use of any of the same function symbols as the system;

� Use patterns only as a front-end to the Mathematica system;

7



� (and/or) Use patterns only as a back-end to the real Mathematica system.

This front or back-end usage might include converting all Logs to logs for special
simpli�cation, and then converting back to Logs.

Perhaps another example will illustrate the di�culty of this approach: If you teach
the system that x + 1 > x, then the system does not use this information to compute
max(x; x+1). How can one �x this short of reprogramming the system function Max as well
as all the proprietary system functions that use some internal version of comparison? By
the way, this obvious inequality is not true for all possible x representable in Mathematica;
Consider x =1.

A subtle point, perhaps not intended to be noticed by the casual fan of Mathematica,
is that the rule on the back cover of Wolfram (1988) de�nes simpli�cation for log, not
Log, thereby not interfering with built-in rules. This trick of using lower-case names does
not work very well if one wishes to alter, by rules, any built-in functions, or functions like
Factorial or Plus, which do not have lower-case equivalents in their usual representation
as ! and + respectively.

It is possible to group rules and apply them together, as illustrated by programs in
the on-line library as well as in Maeder (1988). Such grouping of rules as in the trig-
simpli�cation routines eliminates \cross-talk" by limiting scope. Unfortunately, such tricks
weaken the possible synergy of rules. If the idea behind rules is to have them take e�ect
when appropriate, without speci�c attention by the programmer, the necessity for grouping
vitiates the concept.

One experienced Mathematica hand advised me not to modify any built-in functions.
This simple piece of advice carries with it implicitly the idea that if you don't like what
Mathematica does with the Log function, you are free to program anything and everything
you want about the log function. But then you'll have to change Integrate which returns
answers in terms of Log to (say) integrate which returns answers in terms of log. If you
choose to di�erentiate the result, you have a choice of changing log to Log temporarily, or
propagating your changes throughout your program: de�ning rules for the di�erentiation
and numerical evaluation (etc.) of log { in e�ect writing a \shadow" Mathematica. This
is made rather di�cult because the system's internal functioning is hidden for proprietary
reasons. Even if you are willing to pay the substantial penalty in performance, you cannot
tell how much functionality must be recreated.

An attempt to make extensive use of Mathematica rules in de�ning a system using
abstract data types is reported by Buchberger (1991) who found it resulted in frustratingly
slow computation.

Two other shortcomings in Contexts are worth noting: Mentioning a name before read-
ing in the package de�ning it shields the name in the package from the global environment,
e�ectively disabling the package. Debugging, never easy in Mathematica, becomes even
harder when packages and contexts are involved. Also, printing out a program de�ned in
another context (see, for example, the data associated with the Bessel functions in version
1.2) involves the repeated display of fully-quali�ed and rather lengthy context names.

7.4 Spaces mean Multiplication

This is perhaps a minor point, but annoying in its own way. In the Mathematica pro-
gramming language, one can use spaces or even adjacency to signal multiplication. This
idea, used by Wolfram in his earlier SMP system, is initially appealing|that one can
simply write 2 x or even 2x instead of 2*x. It looks like the traditional mathematical
convention. But is it? Consider that it implies that sin x or even sin(x) is a product,
equal to x * sin. The Scratchpad II system (Computer Algebra Group (1988)), following

8



another mathematical convention, interprets sin x, sin(x) and sin.x as function appli-
cations. Mathematica requires the syntactic construction sin[x] or sin@x or x//sin for
function application, and just to make sure you use the built-in function, you must capital-
ize the �rst letter: Sin[x]. This departure from conventional notation may be of special
concern to a teacher whose students may be struggling with notation in the �rst place.
There is a weak argument that most potential users have not had experience \typing"
conventional mathematics in any notation, and therefore requiring square-brackets may
not be objectionable.

What else goes wrong, though?

A few things. For example, a++ * ++b, which to those familiar with the C programming
language appears to be the computation of a*(b+1) leaving a set to a+1, as well as b to
b+1, cannot be written in Mathematica as a++ ++b, since that space does not stand for
multiplication. Rather it stands for nothing: Mathematica parses this expression as the
necessarily meaningless (a++)++ * b. Even the author of the output-printing program
was confused on this, since echoing back the �rst expression (by typing Hold[a++ * ++b])
displays the non-equivalent Hold[a++ ++b]. This particular inconsistency of the display
with the internal form was reported as a bug some time ago, but its existence suggests a
design error in that the parser and display should not have access to inconsistent prece-
dences. In a well-designed system the two closely related subsystems would use the same
precedence data, stored in one place.

The precedence of the space as multiplication is not adhered to. (As another example,
3! ++a results in an error: Factorial is write protected).

As a matter of clarity, I suspect the physicist who is used to writing 1=2� may be lured
into writing 1/ 2Pi which is actually the rather di�erent �=2.

Finally, the accidental omission of a semicolon or comma will not be caught by a syntax
check. The forms f[a b], f[a,b] and even f[a;b] are all unexceptional syntactically.

My conclusion is that insisting on the use of an asterisk is preferable, because leaving
it out brings up too many problems. One reader suggests as an alternative inserting
parentheses when there is any doubt. This advice is hardly likely to be followed by those
who need it.

7.5 Other Syntactic oddities

The version 1.2 valid input form (a,b) is not documented. It is not a List, but
Sequence[a,b]. Sequences are most naturally produced by pattern matches involving a
collection of arguments. (If f[x__] is matched to f[a,b,c] then x is Sequence[a,b,c])
A Sequence has the remarkable property that f[1,2,Sequence[a,b]]means f[1,2,a,b].
One consequence is that f@(a,b) is mapped to the same form as f[a,b], but the per-
haps easily mistyped f(a,b) is somewhat unexpectedly mapped into a*b*f. (Explana-
tion: f(a,b) = f*(a,b) = Times[f, Sequence [a,b]] = Times[f,a,b]). If you type
f(0,x) you get 0. A simple �x for this problem is to be less clever and forbid the al-
ternative input-syntax of (a,b) for Sequence[a,b]. Version 2.0 has adopted this �x.
You still should beware that f(0) is 0, regardless of the de�nition of f. Note that the
Head function does not work on a Sequence since Head[Sequence[a,b]] is equivalent to
Head[a,b], which is meaningless.

As another example, if you want to rede�ne factorial for certain values, you might think
to do

Unprotect [Factorial]; big!=bigfact

but that won't work. Here you need the space:

9



big! =bigfact

because the language includes a not-equals operator (!=). Finally, the expression

4/. 4->5

which means \substitute 5 for 4 in the expression 4," returns 5. It has a rather di�erent
meaning from the expression without the space in it;

4/.4->5

which returns the rule 10.->4 because 4/.4 is 10. What's the point in all this? Simply
that it is potentially quite confusing to see a modern programming language design in
which the meaning of \white space" is not only signi�cant but has puzzlingly di�erent
meanings depending on context.

7.6 Procedures, Functions, Patterns, E�ciency

There are attractive aspects to the method used to de�ne procedures. Were it not for
the di�culties caused by errors in semantics, and the almost inevitable ine�ciency which
results from the reliance on matching, it would be even more attractive. In a nutshell, the
approach is to

� Incorporate control structures from all of C, Lisp, APL and functional programming.

� Unify the three notions: a mathematical function f(x); a pattern f[x_]; and a
procedure invocation. Thus f(3) is \implemented" by a pattern match of f[3]
which results in a temporary binding of x to 3. The evaluation of the right-side
of a rule provides the semantics for the function. (Mathematica has other ways of
viewing function objects meant as programs, based on the lambda calculus and Lisp.
You can express �(x; y):(x+ y) as Function[Plus[Slot[1], Slot[2]]] or, in the
runic syntax #1+#2&.)

Unfortunately many di�culties with details crop up.

7.6.1 Rules and Patterns

Basically, any algebraic system that tries to implement mathematics by transforma-
tions on (mostly) uninterpreted trees, is going to fall into pits. Consider the plausible rule
x_ - x_ := 0.
This might be considered universally true, regardless of the pattern which x matches.
Yet it is not true where each apparently identical syntactic expression can really be
di�erent. For instance, it would be an error to simplify Infinity - Infinity to 0.
Indeed, Mathematica returns Indeterminate. And yet to Mathematica, the expres-
sions f[Infinity]-f[Infinity], f[RealInterval[{0,1}]]-f[RealInterval[{0,1}]]
and Random[Integer,n]-Random[Integer,n] are each 0 (although the latter provokes
an error message).

Similarly, two occurrences of O(x2) are not semantically identical because each may
imply a di�erent asymptotic constant. In particular, O(x2)� O(x2) = O(x2) would seem
most plausible. In fact, the use of the equality for that expression is an unfortunate
convention; a more formalistic approach would use a notation perhaps reminiscent of set
inclusion (Graham et al. (1989)).

The problem here is fairly deep, and quite important. How could one modify the
rule that x_ - x_ :=0 to make it correct? Perhaps by saying that x must satisfy some

10



predicate? What should that predicate be? Mathematica supports examination of the
Head of the expression tree that is denoted by x, and this will sometimes work. If x is
an integer, one might agree the rule applies. But if x denotes (say) an expression headed
by Plus, one must examine in principle all components to see if any of them are among
the \dangerous" kind indicated above. Mathematica has no handle on this problem, and
the kind of handle that is necessary is probably based on global information regarding
the type of an expression. This problem is eliminated by systems which assign types to
expressions, such as Scratchpad II (see Computer Algebra Group (1988)) or Newspeak
(Foderaro (1983)).

Mathematica encourages the user to de�ne functions by writing collections of transfor-
mation rules, each of which has a pattern, a replacement, and optionally, some conditions.
This mechanism has a long history as a model of computation, and each formalism in the
past has had to de�ne the order in which rules are applied. This order has a strong bearing
on the real semantics of a rule set, since di�erent orderings can change the answers or even
cause an in�nite loop.

How are Mathematica's rules ordered?

The manual explains that the most explicit rules are used in preference to the most
general. Yet it is clear that except for very simple cases, Mathematica has not got the
slightest clue as to which rules are more speci�c. Maeder (1988) p. 59 points out \...Math-
ematica cannot always �nd out which of the rules is more special than the other and it
might fail to reorder them accordingly." If the rules are not ordered correctly, it may be
fairly painful to write patterns to make sure that the pre-conditions for matching do not
overlap. Furthermore, if you \cover up" a built-in operator with rules, and then you wish
to refer to the built-in routine, you have no direct access to the system's prior de�nition.
In version 2.0, WRI apparently gave up on getting the ordering right and the user is given
a chance to rearrange the rules by setting (for example) DownValues explicitly (see p. 266
of the 2nd edition of the manual). It is implausible that users would �nd this a convenient
way of \correcting" a rule set.

Mathematica's patterns provide the mechanism for the \left-hand sides" of rules. The
notation for 1-, 2- and 3-blank \match variables" with optional attached predicates is
compact and relatively easy to read. The handling of defaults appears more general
than other computer algebra systems; the handling of commutative operators is probably
no messier than necessary. One can hope that the implementation is no costlier than
necessary. The integration of the pattern matcher into the language extension facilities is
super�cially neat. The idea of so-called \up-rules" to avoid clogging common operators
(especially Plus and Times) with rules, is a clever heuristic. This allows, for example, rules
that pertain to the addition or multiplication of special functions to reside with the special
functions, not with the common operators. This means that in principle the simpli�cation
of sums is not slowed down unnecessarily by having to look at inapplicable rules, even if
they are nominally rules a�ecting sums. These problems have been addressed, for the most
part less e�ectively, by numerous earlier programs. (A sample would include Cooperman
(1986), Fenichel (1966), Greif (1985), Hearn (1976), Jenks (1976), Mathlab Group (1983),
McIsaac (1985)). Whether the melding of rules and conditions that have side-e�ects can
actually be put together in an e�cient full-evaluation mechanism appears to be an open
question. Mathematica doesn't quite match its speci�cations in this regard (see x8.3).
Yet even viewed as transformations of trees, there are tricky issues in pattern matching.

Consider, for example, the transformations to contract certain expressions involving
factorials: Simplify n(n � 1)! to n!. A rather economical and readable version of this
transformation (given that one must �rst understand that n_ is a match variable that
matches anything, and is referred to as n on the right-hand side) is

11



n_ * (n_ -1)! := n!
Placing this rule on Factorial rather than Times is a good idea:

Factorial/: n_ * (n_ -1)! := n!
since this would only a�ect the speed of simpli�cation of products involving Factorial.
A version that is more generally applicable, and works on (h � 2)(h � 3)! also, uses a
condition.

Factorial/: n_ * m_! := n! /; n==m+1
Indeed, there is a rule equivalent to this latter piece of code in Mathematica's combinatorial
simpli�cation library, along with some slightly more ambitious rules:

Factorial/:
(n_)!/(m_)! := Product[i, {i, m+1, n}] /; n - m > 0 && IntegerQ[n-m]

Factorial/:
(n_)!/(m_)! := 1/Product[i, {i, n+1, m}] /; m - n > 0 && IntegerQ[m-n]

Factorial/:
(k_)! k1_ := (k1)! /; k1 - k == 1 (*equivalent to our rule *)

Consider now the problem of reducing n=(n!) to 1=(n� 1)!. It would seem that a rule

Factorial /: n_/(n_!) := 1/(n-1)!
would do the trick. Unfortunately, one gets the error message:

n_
TagSetDelayed::notag: Tag Factorial not found in -----.

(n_)!

This means that the rule cannot be placed on Factorial because it is not among the
top two levels of Heads in the left-hand-side. Indeed, only Times and Power qualify, and
neither one of those is an attractive choice, being too common. (The expression looks like
Times[n_,Power[Factorial[n_],-1]]). The point of this illustration is that the up-rule
idea only delays by one level the potential exponential growth of rule-sets to implement
complex simpli�cations. Delaying the problem by one level is a heuristic that may turn
out to be window-dressing if programmers make heavy use of the facility. How much
degradation would be caused by implementing it for deeper nesting? What would be the
bene�t?

Consider reducing to zero the expression

m!2(m+ 1)2 � (m+ 1)!2:

The rules do not work, and one presumably has to try for a new rule involving powers,
perhaps of the form

n_^e_ * m_!^f_ := n^f1[e,f]*m!^f2[e,f] /; pred(e,f,n,m)
where the details of the predicate to be applied, as well as the functions f1 and f2, are,
for the moment, unimportant. (Properly formulated, this rule covers one of the earlier
rules.) Again what is signi�cant here is that the \up-rule" technique won't work two
levels down: this rule must either be placed on Times, or on Power, and neither option
is attractive. Thus, while the Mathematica pattern matcher appears to be handy for
patching the simpli�cation rules, it is probably unwise to expect this technique to provide
simple and e�cient implementation of all new code. There is continuing active research
into understanding the limitations and techniques for term-rewriting systems. The ad hoc
melding of rules as supported in Mathematica, regardless of the sophistication of pattern
matching, is certainly not going to guarantee important properties (including termination).
The double issue of J. Symb. Comp. 3, 1 and 2 (1987) discusses rewriting techniques and

12



applications. Yet the evidence of the past several decades casts strong doubt on the
idea that an e�cient version of mathematical knowledge can be imparted to a symbolic
system primarily by rule-transformations on trees. The more fundamental approach of
transforming expressions into canonical forms when possible has been shown to be quite
e�ective. (For factorials this is probably best done by a calculus of di�erence and shift
operators.)

7.6.2 E�ciency

There are a number of factors contributing to ine�ciency in any computer algebra
system. Perhaps the major factor is that most systems, including Mathematica, are in-
terpreter based. Consequently, a simple program that can just as easily be expressed in
a compiled language (e.g. C), runs orders of magnitude slower than if programmed in C.
(see, for example, Buchberger (1991), where basic list structure operations are shown to
execute 3000 { 8000 times slower). One trick is to write such programs in C, and call them
from the interpreter.

There are other factors:

� Generality. Even with a compiler (introduced in version 2.0) it is unreasonable to
expect compilation, considering Mathematica's elaborate semantics, to reach the
same kinds of speeds as compiled C or Fortran. Consequently, although it may
be convenient to express a simple \do" loop in Mathematica, it will be slow in
execution. The version 2.0 compiler is useful only for speeding up the numerical
machine-precision real evaluation of expressions in plotting, numerical integration,
or similar functions.

� Evaluation Model. Mathematica claims to implement in�nite evaluation all the time,
even for local variables. This means that when a variable is evaluated, a bit-vector is
checked (see x8.4) and possibly the entire structure may have to be traversed even if
nothing happens. Data structure operations that would normally be expected to be
constant-time depend on the size of the expression. For example, Part[stuff,1] or
stuff[[1]] evaluates all of stuff even though all that is needed is the �rst sub-part.
This can be very expensive, as illustrated in the next section.

� Data Structures. Mathematica implements List objects as arrays. Consequently,
extracting an item from a list based on its index has a cost that is independent
of the index. Yet adding an element to the front or back of a list (Prepend or
Append) depends on the length of the list, since the old array must be copied to a
new location. Counter to the intuition one might have from other uses of the word
List, adding to the front or the back appears to be equally expensive. Furthermore,
picking out the ith element of a list requires that all the elements be re-evaluated,
so that indexing is itself not constant time, but a function of the length of the list
and the complexity of the elements in it. Consider, for example, a table of 106 zeros
set up by h=Table[0,{10^6}]. The statement h[[5]]=h[[5]]+1 takes 4.3 seconds
on a Sun SPARC 1+, because all the elements of h are re-evaluated. Computing a
histogram this way would be painfully slow. (see also x8.4).
It is formally possible to concoct an abstraction of a linked list by \function calls"
in a Prolog-like form. That is,

list[a_,b__]:=cons[a,list[b]]
list[a_] :=cons[a,nil]
list[] := nil
car[cons[a_,b_]]:= a
cdr[cons[a_,b_]]:= b (*etc. *)

13



but this is quite ine�cient, and few of the built-in features would work on this data.

You do not have much choice about the substantial overhead caused by the generality
of the mechanism for function calls, each of which constitutes a pattern match.
(Mathematica's Function notation may perhaps be a faster choice when anonymous
functions are adequate to some purpose).

� Size. Within �xed memory resources, the more space taken by system code the less
is available for user programs or data. Mathematica has gotten substantially larger
from its �rst version to version 2.0 and, if for no other reason, it may be slower as a
consequence of paging or other memory-based activities.

On the other hand, there are several sources of e�ciency in a high-level language.

� The built-in algorithms and appropriately chosen data-structures may provide an
advantage over naive programs. For example, an arbitrarily clever test for primality,
perhaps even coded in assembly language, could be included as a built-in command.

� High-level programming constructs provided to anticipate common sequences of low-
level operations can eliminate repetitive interpretation. For example, a single com-
mand to map the operation of addition over a list would be faster than an iterative
program indexing through the same list.

� Some expressions known to be evaluable to numbers can be compiled in a conven-
tional fashion (especially in contexts such as plotting or numerical root-�nding).

� Results can be \cached" for re-use, making it possible to reduce the complexity of
some styles of heavily-recursive programming.

Mathematica uses each of these tactics. Other computer algebra programs make di�er-
ent cuts through the morass of decisions, and it is certainly possible to �nd signi�cantly
faster, as well as signi�cantly slower programs for comparable computations. An easily ac-
cessible paper (Simon (1990)) compares four systems, including Mathematica, and may be
of interest as a view of their e�ectiveness in solving problems on some concrete examples.

8 Major Semantic Problems

8.1 Canonicality

Wolfram (1988, p. 212-213) (1990, p. 269-270) seems to argue that, because it is theo-
retically impossible to have a program that reduces all expressions to canonical form, that
the set of transformations provided (basically, Expand, Factor, Simplify), are su�cient.

Even within the class of expressions with decidable zero-equivalence procedures, the
user is left somewhat at loose ends trying to �gure out which combination of commands
might be e�ective in mapping the di�erence of two possibly-equal expressions to zero, and
thereby directing the result of an If expression the right way. The description of Simplify
in Mathematica (\Simplify[expr] performs a sequence of algebraic transformations on
expr, and returns the simplest form it �nds.") fails to inspire con�dence. Especially in the
realm of rational functions (since in this case the answers are easily computed), the failure
to use canonical simpli�cations can be a source of wrong answers: programs which depend
on zero-equivalence being decided correctly can be misdirected. Any routine that does
divisions can fall prey to this problem. While commands such as Factor and Simplify
provide a nominal zero-equivalence decision-making capability, they must be called explic-
itly, and they do not, in general, take advantage of the possibility of the far more compact

14



representation and manipulation that limited domains a�ord. Particular problems in-
volving complicated expressions and their negatives inside radicals are repeatedly cited as
di�culties in public \bug reports" in the network newsgroup sci.math.symbolic. This
is discussed further in section 15.1.

8.2 Dummy arguments in patterns are global

As we have discussed earlier, Mathematica combines function de�nitions and pattern
matching with an interesting technique. A simple program de�nition f[x_]:= ... looks
like a pattern-match and replacement for the expression f[...]. This simpli�es the def-
inition of a function over distinct structural cases (or types of arguments) by allowing
more elaborate \dummy argument" speci�cations. Thus one can de�ne f on a special case
expression where x_ would match Sin[...] as f[Sin[y_]]:= .... One can de�ne f for
integer arguments by f[x_Integer]:=..., etc.

Among algebraic manipulation systems perhaps Scratchpad I (Jenks (1984)) is a pre-
cursor, although other programming languages including ML, Prolog, and SNOBOL have
similar notions. Another place the merging of the concept of matching and parameter pas-
sage appears is in the destructuring of lambda-list arguments to defmacro in Lisp (Steele
(1984, 1990)). Unfortunately, the analogy, or the implementation of the analogy, leaves a
lot to be desired. The principal objection is that a change to the dummy variable x on
the right side of the rule f[x_]:=(x=3) followed by f[y] changes the value of the global
variable y. A cleaner treatment would be to make x serve as a \bound variable" within
the pattern.

Problems with evaluation may also be related to the design error in binding explained
in the next section, or might be independent.

8.3 Binding of variables

Here is a simple program:

g[x_]:=Block[{a},a=1+x]

This is a programmuch simpli�ed from what one might write in the course of computing an
elaborate function, and it seems to be very straightforward. The result of g[3] is 4 and of
g[s] is 1+s. But why then is g[a] not a+1? It is 251+Hold[1+a], with a warning message
about \Recursion depth exceeded". This is one result of a Mathematica \feature" which
can have drastic destructive e�ects:2 Any time you compose a (presumably more serious)
program with local variables, you may have a conict with a name that occurs within the
actual parameters. In the Mathematica manual, section 2.5.10, Advanced Topic: Function
Arguments and Local Variables, Wolfram admits, \Sometimes it can be very confusing to
have the name of a local variable conict with a value you give for a function argument.
The best way to solve this problem is somehow to have the names of the local variables
that appear in your functions be such that they will never appear in the values of function
arguments." That is, you could try to avoid this conict by programming, for example:

g[x_]:=Block[{afunnyvar},afunnyvar=1+x]

But this can rapidly get tiresome; potentially recursive functions lead to constructions like
Block[{v=Unique["s"]},... in version 1.2's Laplace transform package, and even this
is not necessarily e�ective.

2To quote from Maeder (1988) p. 8 \The more subtle ones [problems] become only apparent in the
context of a longer session with Mathematica and are then normally very hard to �nd." Actually, it
appears that his proposed solution is a work-around for a bug, corrected by the introduction of Module.

15



Maeder suggests avoiding the accidental \capture" of variable bindings by using the
construction

Begin["`Private`"]
f[x_] := Block[{`a},a=x+1]
End[]

The user's variable a, or to be more verbose, Global`a is then never the same as the identi-
�er Global`Private`a that is used inside the body of f. However, typing f[`Private`a]
still causes an error, so the problem is not really solved. You can elaborate on the Context
names to reduce the likelihood that names will conict (you then have to worry about
two programmers accidentally chosing the same Context name), but you cannot really
eliminate the problem as is done by, for example, Pascal. By the way, if you make the
mistake of trying to look at a program in some Context, on-line, you will be deluged by
the repetition of Context quali�cations on every name. This is quite painful.

Apparently this scoping was �nally recognized as wrong, and a real solution appears in
version 2.0. (also described by Maeder (1991) p. 8.) Using Module instead of Block one
de�nes

g[x_]:=Module[{a},a=1+x]

and this works as expected: g[a] = 1+a. The new problem is that every time the Module
is entered, new names are produced, presumably taking up system resources of time and
perhaps space. This can be seen by trying the program

h[x_]:=Module[{a},Print[a]]

which prints a di�erent value (looking like a$12) each time it is invoked. Even if they
are removed eventually as Temporary objects, the overhead is certainly much higher than
stack-allocation of variables in a classical Algol-like language.

Consider another example, also �xed in version 2.0, based on the de�nition of the
function h[j_] := Sum[h[k],{k,0,j-1}]. This has problems with the local variable k.
Mathematically speaking it is reasonable that h[0] returns 0, and it would seem that
h[1] should return Sum[h[k],fk,0,0g] or just h[0], which is 0. However Mathematica
1.2 wrote

General::itervar: In iterator {k,0,0-1}, variable k already has a value

followed by a 230-line message related to in�nite recursion.

Although these speci�c examples, all reported as bugs, have been �xed, and Module
repairs the defective Block, the misunderstanding persists.

Even though the role of the variable k in Limit[f[k],k->b] is very much like the
role of k above, in this case the global value of the symbol (try k=3) interferes with its
use as a bound variable in the limit. Furthermore, D[Sum[a[i],{i,1,n}],a[i]] returns
Sum[1,{i,1,n}] while D[Sum[a[i],{i,1,n}],a[j]] returns 0. The bound variable i is
somehow capturing an instance of i from outside the summation.

As a sidelight, might one really wish to write a program g[x_,y_]:=(x=y) which when
invoked as g[r,3] actually sets the value of r to 3? Attitudes toward programming by
side-e�ects on parameters vary. Purists condemn it and point out it is not necessary.
Others have grown up in a culture that permits or even encourages it. Fortran, and
among computer algebra systems, Maple, make use of it. Common Lisp provides multiple-
value returns to allow a somewhat disciplined approach to returning several values from
a function, reducing the need for side-e�ects (or returning temporary structures of val-
ues requiring destructuring) merely to return extra results. In my view, Mathematica

16



should strongly discourage the use of side-e�ects, given that it cannot keep track of them
e�ectively. The next section explains the problem.

8.4 In�nite evaluation

The evaluation process in Mathematica has several di�culties. Although it would be
hard to discern from the documentation, the design (a) uses fallible heuristics and (b)
injects some non-determinism into its results. As a consequence, Mathematica's evaluation
techniques can be problematical. This section reviews the process and its consequences to
the system semantics.

When presented with an expression h[a1; a2; � � �] the system (recursively) evaluates the
head of the expression h to f , then the arguments3 a1 to b1, a2 to b2, etc., in turn.
Next, attributes and transformation rules as appropriate for application to f [b1; b2; � � �]
are examined and additional changes may be made to the expression, perhaps through
more evaluation of the right-hand sides of rules.

If anything has changed from the original expression, h[a1; a2; � � �] it is claimed that the
system \e�ectively starts the evaluation sequence over again."

In fact, it often doesn't re-evaluate, because that would be quite costly. Instead the
system predicts whether an additional evaluation will change anything. Sometimes the
prediction fails. (I am grateful to David Jacobson, as well as public discussion by S.
Wolfram for illuminating these points).

The prediction is apparently not even entirely deterministic. The only user-visible hint
about this problem is in the description of the Update command which can be called to
re-evaluate symbols \under special circumstances that rarely occur in practice." The only
speci�c special circumstance mentioned in the manual (Wolfram (1991)) is the case of
change to a global value changing the outcome of a Condition de�ning a symbol's value.
The simplest example of this is f[x_] := x /; globflag. If the global ag globflag
is False and you evaluate f[3], it evaluates to itself. A subsequent change to globflag
should cause an instance of f[3] to be re-evaluated. It won't.

The basic problem is that the presence of side-e�ects makes it virtually impossible to
tell if evaluation is really complete. Consider

count = 0
g[x_] := x /; ++count > 100

In an actual in�nite evaluation system, g[3] would evaluate to 3. In Mathematica it
evaluates to g[3]. Only after 100 forced re-evaluations will it return 3.

The notion of \e�ective re-evaluation" is based on placing a time-stamp on each ex-
pression which evaluates to itself. \Time" in this case is simply a function that increases
monotonically as computing proceeds. Note that if enough objects are produced, the sys-
tem might over-run a �xed-width time-stamp �eld. On a MIPS M/120 processor using
version 1.2, executing Do[k=1,{12200}] takes about 1 second. If the time-stamp is stored
in an unsigned 32-bit word (as we speculate is done here), then executing Do[k=1,{2^32}]
would over-run the time-stamp in about 4 days. As explained below, an inappropriate
time-stamp might provoke an error, thus causing a long-running computation to fail mys-
teriously.

Assuming we do not encounter such an unlikely problem, the result of evaluating an
expression E is simply E if E previously evaluated to itself and if E's time-stamp is
su�ciently up-to-date.

3unless they are \held."

17



The notion of \su�ciently up-to-date" appears to be implemented approximately as
follows: Every symbol in the system is stored in a hashed symbol table, using buckets
for chaining. Each symbol-table bucket has a �eld which is updated to the current time
when any symbol in the bucket is changed in any way. If the time-stamp on an expression
E is at least as recent as all the symbol-table buckets of the symbols which occur in E,
then that is deemed recent enough. This is clearly wrong. Even symbols not occurring
explicitly in an expression can, by changing, cause an expression to no longer self-evaluate
(e.g. count above).

Also, since any change to a symbol will update the time-stamp on all the symbol-table
bucket occupants, coincidences of shared hash-buckets a�ect evaluation. Such coincidences
cause re-evaluation of expressions (and consequent side e�ects) in a manner not predictable
by the user, who has no way of determining which symbols share a hash-table bucket.

An aside: Why use this per-hash-bucket time-stamp? Presumably to keep the checking
cost down. If there are b hash-buckets, then instead of descending through the tree of an
expression to identify and check all its leaves, the evaluation mechanism can be based on
a vector of b bits, associated with each expression. Then if the vector v associated with
E has a \1" in position p, there is some dependence on some symbol in hash-bucket p. If
the time-stamp on hash-bucket p is more recent than E, a full evaluation must be done,
along with a recomputation of v.

Note that if the user or the system suspects that something \unusual" has happened
that a�ects expressions involving x, then a call to Update[x] sets the time-stamp on the
symbol-table bucket associated with x to \now." This will cause any expression E using
x or any other symbol in the same bucket to be fully evaluated when E is next evaluated.

There are a number of tactics that can be used to make checking each of the bits' hash-
buckets faster, although they may translate into (much) increased time when changing
values.

Removing the in�nite evaluation heuristics (especially the assumption on failed rules)
may force the cost of evaluation to escalate substantially. Unfortunately this may be the
cost of getting an in�nite-evaluation answer right. An alternative might be to forbid cer-
tain kinds of \state alterations" or side-e�ects in the condition part of a rule|directly
or indirectly, rather than merely advising against them. Note that the side e�ects might
occur during the evaluation of the parameters, and hence in the evaluation of an entirely
di�erent function. Identifying such side-e�ects \automatically" would ordinarily not be
computationally feasible, unfortunately. Another choice would be to use a better under-
stood evaluation scheme that has stood the test of time in some other language. At a
minimum, the documentation should clearly identify the pitfalls.

9 Numerical calculation

We start with a brief example (suggested by W. Kahan):

In[1]:= p=314159265358979323;
q=314159265358979323.;
r=314159265358979323.00000000000000000000;
s=p+0.00000000000000000000;

In[2]:= {Tan[s],N[Tan[p]],Tan[q],Tan[r]}

Out[2]= {1.59981, 1.59981, ComplexInfinity, -1.1297926523089085443}

In[3]:= {p==q, q==r, r==s, r==p}

18



Out[3]= {True, True, True, True}

At �rst sight, the values of p, q and r all look the same. Adding zero to p should not alter
its value much. However, Mathematica can see di�erences here, even though it claims all
the values are equal. (Incidentally, the last value in Out[2] is correct.)

To continue the example, recalling that p and q are equal,

In[4]:= {N[Tanh[p]],Tanh[q]}

General::ovfl: Overflow occurred in computation.

Out[4]= {1., 0.}

Since tanhx ! 1 as x!1, the answer 1 is correct; the overow error message suggests
that a poor method is being used for computing tanh of large arguments. Although the
number 0: is the result of the overow, the answer does not indicate it. Only by computing
its Accuracy, can you discover that \no digits are correct". (The comparable results from
version 1.2 are even worse, incidentally.)

Should we care about such discrepancies? Yes! Numerical calculation in the context of
a symbolic system should be done in a manner that places special importance on making
decisions correctly. A system which cannot deal correctly with numerical constants will
ultimately have di�culty with symbolic computation. You need not explicitly use its
numerical subsystem to run into problems.

As part of a symbolic calculation, a subroutine may determine that an expression is
a constant, but it is generally through careful numerical calculation that it can tell if
(for example) the constant is positive. Such a determination is often quite important.
Mathematica version 2.0 seems to distrust its own numerical system to such an extent
that it refuses to determine the sign of e � �. (This is an improvement over version 1.2
which apparently gets the sign wrong since it simpli�es

p
(e� �)2 to e� �; in version 2.0

you must use PowerExpand to force this error.) What does it mean for a system to \know"
all about constants, if it cannot answer simple questions about them?

9.1 Accuracy and precision

Mathematica uses the terms accuracy and precision in non-standard ways. By conven-
tion, as well as by informal usage, accuracy indicates the accomplishment of a goal of
\closeness to the truth." If v is the correct value and v0 is the computed value, then two
measures for accuracy are absolute error: v � v0 and relative error: (v � v0)=v. Precision
is the exactitude of an assertion, even though the assertion might be false. For example,
the statement that � = 22=7 is quite precise, although it is not very accurate. Precision
is generally discussed in terms of binary or decimal digits provided in a representation of
a number; it refers to the e�ort used to carry out detailed operations, but not whether
some goal of correctness is accomplished.

Mathematica associates attributes of Precision and Accuracy with each number, un-
like Fortran or C in which a variable has a precision attribute. Mathematica de�nes
Accuracy as the number of decimal digits to the right of the decimal point, and Precision
as the total number of signi�cant decimal digits. The term \signi�cant" is not de�ned,
however. In Mathematica's terminology, 3.01 meters is more Accurate but less Precise
than 301.0 centimeters4. In Mathematica, the number written as 3.0 is a representation of

4In this discussion we ignore the fact that Mathematica generally uses machine \hardware" oating-

19



any number greater than 295/100 and less than 305/100. That is, 3.0 is like an interval|a
number which rounds to 3.0 when printed with two decimal digits. The numbers which
you might type in as 3.0 and 3.00 are di�erent, since they represent di�erent intervals|
although as we have seen, Mathematica does not always respect this distinction since they
are equal under comparison..

Mathematica computes using arbitrary-precision arithmetic, presumably when neces-
sary. Its decision mechanism for determining when this is necessary is not always ob-
vious or correct. For example, what is a good approximation to sin of a large in-
teger apparently close to a multiple of �? Sin[3141592653589793238.] yields 0, to
Accuracy 0; Sin[3141592653589793238.00] yields �0:45 to Accuracy 2; but the ex-
pression N[Sin[3141592653589793238]] yields �0:641653 to Accuracy 16. The most
Accurate is the least accurate. In discussions with Wolfram Research employees, they
defend their usage of the terms by reiterating \Accuracy is de�ned as the number of sig-
ni�cant digits to the right of the decimal place." and that \Your paradoxes result from
associating the everyday meaning of accurate with the well-de�ned concept of Accuracy."
This is reminiscent of Lewis Carroll: \`When I use a word,' Humpty Dumpty said in rather
a scornful tone, `it means just what I choose it to mean|neither more nor less' " [Through
the Looking Glass, 1872]

It is not di�cult to compute these functions correctly: there are several packages for
computing arbitrary-precision transcendental functions in the open literature (see for ex-
ample Brent (1978), Wyatt et al. (1976), Fateman (1976), Bailey (1991)).

As another example, this one illustrating a debatable choice for the use of Precision,
consider the function f[h_]:=N[N[Pi,2 h]-N[Pi,h],3*h] which one might use to look
at digits of � as computed by Mathematica. The function f plausibly would give the
di�erence between a 2h-digit approximate value for � and an h-digit value, computed to
3h digits. Computing f[50] returns the value 0. (Accuracy 49, Precision 0). Clearly
only about h-digit computation is being done. What one might hope would work better
(in version 2.0 and later using SetPrecision) is

g[h_]:=SetPrecision[N[Pi,2 h],3 h]-SetPrecision[N[Pi,h],3 h]

but oddly enough, g[50] returns 0, to Accuracy 149. The explanation for this is presumably
that the value of � is apparently being \cached" to 2h digits, and the subsequent \lower
precision" version of Pi actually has hidden digits that correspond to more places than
deserved when it is re-precisioned to 3h digits. As a consequence, the value of N[Pi,50]
is not a constant, but depends on what has been computed before.

Before discussing one alternative model, we present some remarkable puzzles|consequences
of Mathematica's arithmetic|based on examples discovered by David Jacobson of Hewlett-
Packard Laboratories.

Consider the iteration si := 2si�1 � 3si�1
2. This iteration converges from a starting

value of s0 = 0:3 rather rapidly toward sn = 1=3. Indeed, with any number x replacing
3 in that formula, the iteration proceeds to compute an approximation to 1=x from a
suitable starting value. See what happens in Mathematica (2.0).

In[1]:= s[i_]:=s[i]=2 s[i-1] - 3 s[i-1]^2;

In[2]:= s[0]= SetAccuracy[3/10,18] (* Use "bigfloats" *)

point arithmetic for \small" numbers such as 3.0 and 3.00; that is, all numbers 3.0...0 with fewer than
16 zeros are the same, but each is subtly di�erent from 3.0...0 with 16 zeros. We assume that rules for
calculation are those speci�ed for the software extension to arbitrary precision in Mathematica.

20



Out[2]= 0.3

In[3]:= {s[1],s[2],s[20],s[30],s[40]}

Out[3]= {0.33, 0.3333, 0.333333, 0.3, 0.}

In other words, given a convergent iteration that mathematically gains accuracy at each
step as it approaches 1=3, the computation begins to veer away to 0. It ends up at a
stationary point at 0. Furthermore, even though they print di�erently, all the iterates
beyond s[4] are pairwise Equal in Mathematica.

This is apparently not a bug, but a feature. WRI argues that the Accuracy of the results
is decreased at each iteration. One way of thinking of this is as though the arithmetic
were in some sense subject to experimental error. This is supposed to protect the user
from believing inaccurate results.

Such a scheme might be valuable if it worked. On the other hand its utility would seem
to be rather low if one could increase the Accuracy of a number by averaging it with itself
100 times. But this is just what happens, as seen below.

In[1]:= r=q=1.00000000001000000;

In[2]:= Do[q=(q+q)/2,{100}];

In[3]:= q

Out[3]= 1.00000000001000000000342263224918264460733208674

In[4]:= {Accuracy[r],Accuracy[q]}

Out[4]= {17, 47}

This \bug" was �xed in version 2.0, so that now to exhibit the aberrant behavior, line 2
should be Do[q=((q+q)+(q+q))/4,{100}]; instead. Making such errors more obscure in
succeeding versions of the system will not make them go away, unfortunately. Incidentally,
((q+q)+(q+q)) is always re-written as q+q+q+q whether you like it or not.

In either version of the system, the value of q has increased in Accuracy by 30 decimal
digits.

This general approach, sometimes called signi�cance arithmetic, attempts to propagate
\fuzz" in operations on numbers like 1:23?:::? and 3:45?:::? where ? indicates an unknown
digit. Unfortunately, making this system secure under operations requires rules that are
quite pessimistic, and generally results in too large a loss of \signi�cant digits" to sustain
a chain of numerical computation. Less pessimistic rules as implemented in Mathematica
not only provide rather poor control of uncertainty, but can lead to nonsensical results.
According to W. Kahan, it is a \folk theorem" that under any implementation of signi�-
cance arithmetic there must exist chains of operations that lead to either an unwarranted
loss of signi�cance, or to a gain in signi�cance, or both. The real problem is then that
users will be lulled into a false sense of security. Somewhat less damaging, but certainly
disconcerting, users may also be given answers much worse than they deserve. The rate of
gain plus the rate of loss in bits per operation must exceed one. David Jacobson's examples
above illustrate Mathematica's susceptibility to the consequences of this theorem.

Is there a way out of this? Certainly one can attempt to �gure out by some independent
calculation, the actual accuracy of every variable at the end of each iteration, and replace
it by an equal, but more or possibly less \Accurate" value by using SetAccuracy and/or

21



SetPrecision. But then not only has the Mathematica design failed to perform its
intended automatic error analysis, it has in fact made it advisable to perform such error
analysis where previously it was not needed! Indeed, in a tutorial on Mathematica's
arithmetic, Keiper (1990) illustrates the necessity, in computing the value of a Chebyshev
polynomial, to repeatedly compute the appropriate precision in intermediate calculations.
Keiper also explicitly sets the accuracy of the �nal result. Each of these resettings requires
copying over the value into a newly created number, and so is not a trivial operation.

Consider for all computational purposes that each number representable in a oating-
point hardware format in the computer means an exact rational number. That's it. No
special hidden \precision" or \accuracy". The number 3.0 has the same numerical value
as the integer 3.

For very long strings of digits, the hardware is inadequate, so we are inevitably forced to
a software \arbitrary-precision" system to extend the model of numbers. Such a system
allows a number of bits in the \fraction" or \mantissa" of the representation beyond
almost any expected useful range, and generally allows a very much larger, and perhaps
arbitrary-precision, exponent range. Usually such a system controls the fraction length
for all calculations by some global setting, but other techniques can be used to combine
numbers with di�erent fraction lengths. Some well-known systems (Fortran) associate
precision with the name of a variable. The precision of operations can be controlled by
observing the precision of the destination variable, as well as explicit requested precisions
along the way.

An straight-forward extension of numbers to arbitrary precision does not address accu-
racy explicitly in the number system, but (if it is to be dealt with at all) requires auxiliary
information to be computed. There is no illusion that the con�dence in numbers is related
to their representation. The typical technique for increasing certainty in a sequence of
calculations is to increase the number of bits in the fraction as represented, improve the
input data if possible, and repeat the computation.

Arbitrary-precision oating-point arithmetic along this model is implemented in Mac-
syma, Maple, and Reduce. It is used in packages by Brent (1978) and Bailey (1991).
One of the advantages of this system is that it can actually be used for the treatment of
inexact values better than in the default system in Mathematica. For example, if x is in
the interval [2.94,3.01], then x lies in the closed interval between the two exact (not fuzzy)
numbers 294/100 and 301/100. Interval arithmetic has a substantial literature and is used
in a number of computer packages (see Moore (1979)). Iterative algorithms and notions
of convergence generally must be recast for interval computation. Although Mathemat-
ica version 2.0 introduces a notation for intervals, namely RealInterval, a critique of
this aspect of the system will have to wait until the bugs are �xed and only the features
remain.

On a related topic, since Mathematica allows machine oating-point numbers, it must
deal with the IEEE binary oating-point standard In�nity and Not-a-Number (NaN) rep-
resentations. One can obtain such an expression by computing 0/0, which Mathematica
identi�es as Indeterminate. Combining two of these quantities by addition, multiplica-
tion, etc., generally yields Indeterminate. So far, so good. Unfortunately, this value
has Precision and Accuracy of Infinity, and any two Indeterminates test equal (==).
Consequently, regardless of what you might wish, 00 is equal to 0=0. The IEEE 754
speci�cation requires that NaN symbols compare as unequal to everything, including
themselves. There is also, in Mathematica, a notion of ComplexInfinity, which is re-
turned by the Limit program, even when RealInfinity or, (to use a notation included in
the system) DirectedInfinity[1] would be more appropriate.

22



9.2 Numerics|A summary

In summary, although the immediate symptoms arise from the way Mathematica com-
putes the Precision and Accuracy of the result of additions and multiplications, the
actual problem is its version of arithmetic turns out to be a bad idea. Making the model
more useful would require an admission of the incorrectness of the model being promoted.
Wolfram Research is aware of the anomalies above (as illustrated by the somewhat inef-
fective changes in version 2.0) but appears to be unmotivated to change to a model that
has fewer problems, such as the one above. Mathematica fails to satisfy a reasonable
set of criteria for oating-point arithmetic and dealing with uncertainty in the context of
symbolic and arbitrary-precision computations. Certainly identity operations should not
ratchet up or down in precision.

In a well-designed system, exact numbers should not cause di�culties. Systems should
not make misleading representations about oating-point numeric data any more than for
other data. It should be possible to independently certify numbers to be of some partic-
ular accuracy or precision, regardless of the method of their computation. Presumably
\machine-precision" oating-point numbers should be incorporated in a manner that will
be at least as good as numerical subroutine libraries, and allow for fast computation.
And special values like 1 should be handled with a view toward preservation of correct
computations.

Finally, lulling the user into a false sense of security is a far greater defect in a symbolic-
numerical computing system than in a purely numerical system. A symbolic system has
(at least in principle) the tools to provide correct answers.

10 Integration

Symbolic integration has always seemed of particular interest in computer algebra sys-
tems. Integration can show systems in a good light because it is now easy to compute
solutions to nearly all problems encountered in a �rst calculus course. Yet, success with
such problems does not mean the domain is \solved." On the contrary, many important
problems cannot be handled either by methods taught to freshman calculus students, or
by the more powerful but still only partly e�ective algorithms implemented by systems.

In an attempt to correct some of the aws in earlier versions, Mathematica 1.2 includes
a package for de�nite integrate (DefiniteIntegr) which, when read in, uses piecewise in-
tegration and correctly provides the answer to the problem Integrate[1/x^2,{x,-1,1}],
namely 1, rather than the totally incorrect answer, �2, it provided previously. But it
takes special e�ort to get the right answer (reading in the library), which is most unfor-
tunate.

Also unfortunate is the very large number of known instances in which Mathematica
produces incorrect results for purely symbolic (rather than numerical) integrals. One
example is all that space here allows: A computation which incorrectly returns 0 in version
1.2, is the following:

I =

Z
�

��

1� x cos t

1 + x2 � 2x cos t
dt

Actually, the value of this integral depends on the value of the parameter x. For example,
if x is set to 1=2, Mathematica 1.2 correctly computes the answer as 2� rather than 0.

In a later version of Mathematica, the errors caused by too quickly simplifying the
square-root of perfect-squares that are generated in this problem are avoided by not sim-

23



plifying roots. The answer is given as

�

�
1� x2 +

q
(�1 + x2)2

�
q
(�1 + x2)2

:

This solution is too conservative in simplifying; the remedy is apparently to advise the
user to apply PowerExpand to simplify and/or to commit errors. This has two bene�ts
for the Mathematica authors: (a) The analysis necessary to see if the simpli�cation can

be done is now \avoided." For example, the system transforms
p
32 ! 3, but

p
�2 is

unchanged. (b) Any errors in expanding powers are now committed explicitly by the user.

Neither of these bene�ts is of great use to the customer. Indeed, the most likely situation
is that the user is less well equipped than the system to determine the validity of the
transformations in PowerExpand. The choice of branches can sometimes be made from
the context of the computation, but such context is not generally available in Mathematica.

Incidentally, the unsimpli�ed integration answer above is still arguably wrong for x = 1.
Substituting 1 for x in the answer gives Indeterminate as a result of computing a 1/0
expression. Using the Limit program gives 0 even though the directional limits from above
and below give di�erent answers of 0 and 2� at x = 1; and �nally, if you compute the
integral with x = 1 from �rst principles the answer is neither 0 nor 2� but �.

11 Libraries

The packaging mechanism seems to be an unhappily complex one, but perhaps no worse
than that available in most other languages. Common Lisp however seems to have a more
e�ective technique for organization of modules in its Object System (CLOS, Steele (1990)).
Mathematica is not unique among interactive programs intending to provide access to large
libraries of scienti�c programs. It does, however, fail to address adequately three issues:

1. Quality of numerical routines:

It would be preferable to have only the highest quality numerical routines. Often
well-known mathematical formulas su�er from disasterous numerical instability, or
are unreliable with respect to choice of complex branches.

Because Mathematica has arbitrary-precision oating-point numbers, the design of
a correct routine for some of its more esoteric functions may have to break new
ground (or alternatively, be unnecessarily slow or inaccurate). On the other hand,
the availability of extra-precise arithmetic may ease the implementor's task.

Lacking any documentation, and faced with the evidence of past bug reports, it is
di�cult to be con�dent in the quality of the routines. Occasionally the correctness
of their intentions is hard to assess.

It would raise the quality of the routines if Mathematica were to adopt en masse the
product of several decades of scienti�c computing analysis from one of the reputable
software libraries.

2. Accessibility of symbolic or other algorithms that might be in disk library �les:

The situation in version 2.0 has improved somewhat from the past, when programs
basically had to be loaded manually before the system had any information about
them. Version 2.0 introduces \stubs" as a partial remedy. A stub attribute for a
name causes (at parse time) the loading of an associated �le de�ning that name.
Still, the system presupposes that the user knows more about names of appropriate

24



functions and packages than is likely to be the case. A better solution may be
di�cult, but the problem remains.

3. E�ciency in retrieval of the most appropriate data:

Mathematica seems to have barely scratched the surface in these matters. For ex-
ample, the incorporation of large tables of integrals using Mathematica's pattern-
matcher is problematical in terms of e�ectiveness and speed. Although it is plausible
to add a handful of special integration rules by patterns, experiments have suggested
that adding a large table would require very general patterns whose appropriateness
can be eliminated only after the application of side-conditions. The look-up process
in such a table is extremely costly and cannot easily be optimized. There are un-
doubtedly other approaches to incorporating information, but pattern-matching is
the technique Mathematica promotes most extensively. The e�ectiveness of this \in
the large" remains to be demonstrated.

There may, of course, be alternative approaches developed for library building but
Mathematica's current framework for the integration of large amounts of mathematical
knowledge is rather disappointing.

12 Plotting

Mathematica's adaptive plotting of curves in a plane is somewhat e�ective, choosing
more points at areas of high curvative than other places, and not rendering exceptionally
distant points. This is not in itself a novelty since, for example, Maple (version 4.1) already
had such a feature. Undoubtedly any plotting program can be fooled by some functions.
De�ning functions by rules, logical statements or other discontinuous expressions provides
enormous opportunity for generating di�cult problems. Even relatively routine-looking
expressions can provide di�culties. Consider the curve (taken from a problem set by W.
Kahan to stymie plotting functions), y(x) := 1+x2+0:0125 log j1�3(x�1)j for 0 < x < 2.
Mathematica does no better than other programs in �nding the very narrow slot, in an
otherwise parabolic function, that at x = 4=3 dives to �1. The slot's width is on the
order of 10�4 units. Although it is discovered in plotting from 0.0 to 2.0, it is entirely
missed if the plot range is 0.1 to 2.0.

Adaptive plotting for surfaces would presumably be even more useful, but this is not
provided.

The surface rendering algorithms seem to be highly e�ective, and the chosen default
settings often work. When they do not, some study of the options is necessary; substan-
tial exibility is provided. There is a high level of interest in Mathematica simply for
its graphics facilities, and the ease with which curves and surfaces can be speci�ed. It
is not unique in these capabilities since numerous other (purely numerical) systems such
as Matlab (Mathworks (1988)) have high-quality plotting routines. Using PostScript as a
device-independent intermediate form for plots is somewhat novel; other programs (includ-
ing Maple and Macsyma) tend to use PostScript only for communicating with hard-copy
devices.

A feature that is missing from Mathematica, but is present in Milo (Avitzur (1988))
and Theorist (Bonadio (1990)) is interactive re-plotting, where one can specify a \rubber-
band" rectangular region of interest and have that section blown up (or replotted) for
more detail. Re-displaying a graph in Mathematica with a di�erent PlotRange can re-
scale and clip out a section, but does not provide new intermediate points to justify the
detail. Indeed providing such an interactive facility might be a challenge to Mathematica
implementation, given the separation of front- and back-end processing in the design.
The linkage, which might in the most general case require �guring out what kinds of

25



modi�cations the user has inserted in a PostScript text, or where new points must be
calculated relative to mouse-positions, may be daunting, and would probably require a
rather di�erent representation. The interface in Theorist is simple, provides menu-driven
or mouse-directed changes such as zooming in, changing the viewpoint on 3-d graphs, or
coloration. Maple version V provides a less elaborate setting but also allows for the very
useful real-time rotation of surface plots|a feature lacking in Mathematica.

13 Data types and operations

Mathematica is not set up to deal with data types except in a rather super�cial way. It
has been found quite useful in other computer algebra systems, and indeed in programming
languages generally, to have a deeper notion of types. Mathematica supports \surface"
type checks only, and does not understand their relationships. For example, although an
integer is (mathematically speaking) a special case of a rational number, Mathematica does
not recognize this. A pattern for x_Rational will not match 3. Although Mathematica has
a program for testing for the super�cial appearance of a polynomial PolynomialQ, it does
not know that (x2� 1)=(x+ 1) is a polynomial in x. It does not have a polynomial \data
type" at all. Contrast this to other systems|Maple has a structured type polynom(R,V)
which corresponds to the class of expressions in the variables V whose coe�cients are of type
R. That is, polynom(integer,x) speci�es univariate polynomials in x whose coe�cients
are integers.

Scratchpad handles types in a di�erent way, being strongly typed. A value belongs to
only one type in which a clearly de�ned set of operations are available. A type is assigned
to each expression by the system top-level interpreter if none is supplied by the user; types
are an essential part of every manipulation.

There is a real dilemma presented by Mathematica's design: Consider what would
happen if you were to try to incorporate a data type for compactness of representation or
speed. Let us say you wished to write a much faster PolynomialExpand command.

On the one hand, the system could be changed to include a polynomial data type. It
could be included the way Complex is a data type, or it could be super�cially simulated
by construction of a new \function." That is, one could use Poly[x,4,5,6] to represent
4x2 + 5 � x+ 6 (for a discussion of such representations and speed, see Fateman (1991)).

But then the semantics of the Mathematica system require that a user be able to alter
the simpli�cation of such components as Plus and Times| how could you assure that user
patterns, as well as the built-in evaluation mechanism would always match forms including
Poly as appropriate? Since patterns are based on syntactic forms, and the new data type
proposal has removed or changed those forms, the pattern mechanism in place will not
work. Perhaps a whole new pattern matcher could be built to match the \abstraction" of
a polynomial?

It appears that the complexity of such changes to the matcher and other parts of the sys-
tem are hidden from the user, who is consequently prohibited from making such important
changes.

Further subsections here elaborate on the consequences of the design.

13.1 Expressions

Mathematica makes no use of the well-de�ned type structure that is easily imposed on a
major part of the mathematical domain of the system. The manual claims that every ob-
ject is an expression which can be used anywhere in the system. This is a considerable over-
simpli�cation of what in fact is provided, but this kind of belief has probably led the imple-
mentors to neglect checking for appropriate classes of data when needed. Such checking is,

26



in many cases, rather di�cult because of the system design. Sometimes expressions either
make no sense, or have to be treated rather di�erently depending upon details which may
be unexamined in general. For example, consider a function f(x) with a discontinuity at
0. Take the limit of f(x) as x approaches 0. Version 1.1 of Mathematica was clearly unpre-
pared for the task since it proceeded to compute what was reasonable for analytic functions,
but unreasonable here. That is, it computed a Taylor series. Limit[If[x==0,1,0],x->0]
yielded If[O[x]^4+False*x+O[x]^3+Equal^(0,0),[0,0],1,0]. This kind of error can
be �xed on a case by case basis, but the notion that the Limit evaluation program should
be constructed as a collection of manipulations of data-representations, without mathe-
matical semantics, was, and still is, fundamentally inadequate. The next version of the
system �xed the particular example of the limit of If, but without addressing the general
problem. As a somewhat random example, but anticipating the next section, consider
Limit[O[x]^4,x->3]. Probably this should be unde�ned. Mathematica 1.1 gave 0. Ver-
sion 1.2 gives Indeterminate. Version 2.0 leaves the expression unevaluated.

Resolving some of these questions \once and for all" is hindered by the fact that Math-
ematica does not have a canonical simpli�cation policy (see x8.1, also Moses (1971)).
The Simplify command initially worked at most for algebraic (not transcendental, ex-
ponential, or log) expressions. Even so, -(-1+q)/(1+q) withstood Simplify, and needed
ExpandNumerator to reduce it to (1-q)/(1+q). In version 2.0, Simplify is more powerful.
Yet, how many ad hoc simplify-like commands are needed? In some other systems, the
appropriate use of data structures would produce simpli�ed expressions as a consequence
of the abstraction and representation in use. Operations on these forms would be well
de�ned.

13.2 Series

Although Mathematica uses a single format for expressions based on pre�x trees, at
least one sub-area is specialized, and uses the standard form to encode data more like a
list of terms. These are expressions with the head Series. Although it is my view that
special mathematical notions can well deserve special forms, this one was integrated into
the system in a hazardous way.

Given two Series that agree to a certain order, their di�erence should be equal to the
next (omitted) term. Yet in version 1.2 the expression

Series[Sin[x],{x,0,2}] - Series[Tan[x],{x,0,2}]

comes out 0, rather than O(x)^3. Correcting version 1.2 by putting a rule on Subtract
produced errors in other parts of the system. N[Series[...]] fails. This bug was �xed
in version 2.0, but its presence is indicative of the kinds of patches that will haunt the
system unless there is a more formal approach to special data types. A new data type in
version 2.0, RealInterval promises to be a major problem in this regard, since all the
operations of the system must be extended to a new set of objects for which numerous
built-in assumptions fail.

Even the latest version I've tried, which says correctly that Sin[O[x]^4] = O[x^4]
and Sin[Pi/2+O[x]^4] = 1+O[x^4], erroneously believes that Cos[O[x]^4]=1. Certainly
these are bugs to be ironed out, but is there an end in sight?

The semantics for big-O notation (see, for example, Graham et al. (1989)) can be dealt
with formally, but such a formal treatment necessarily points out that the use of the
big-O notation is inconsistent with the usual meaning of \=". Given f(x) = O(x) and
g(x) = O(x), Mathematica correctly says that f[x]-g[x] is O(x) but mistakenly believes
that f[x]==g[x].

27



13.3 Other Datatypes

If another type of data structure such as Poisson series|a structure used in celestial
mechanics that can be thought of as similar to Fourier series|were to be introduced, how
would the addition of two di�erent series be handled? Or even the addition of two series
in di�erent variables or about di�erent expansion points? These are touchy areas and
cannot be dismissed by allowing the user to guess which of several possible mathematical
conventions might hold. The informal use of rules to de�ne combinations is quite error
prone and ine�cient. A further di�culty is that any operations on novel data-types left
unde�ned may fall into the pit of Mathematica's notion of generic operations. Leaving
the current set of generic operations unaltered is risky; on the other hand, modifying
the generic operations requires skill and may slow the system down substantially. To be
practical, it may also require access to proprietary code.

Is there a good solution? The correspondence between mathematical concepts and data
abstractions, and then between abstractions and representations, has a rather substantial
literature, especially among the Scratchpad implementors. Formal systems take this seri-
ously, and there are successes to be observed. Multiple representations in Macsyma add to
its power (and complexity). While each of these approaches has problems, Mathematica
seems to have taken a very super�cial step toward integrating the creation of new data
structures into the system. It could do better.

14 Debugging

While it is not our primary objective to complain about particular hardware/software
implementations of Mathematica, when a system design itself may be interfering with the
ability to debug programs, it rises to the level where it should be noted in a general review.

In the past, our experience in debugging user programs with the standard kernel on
several early versions of the system were quite negative. If you succeeded in interrupting
the computation from the keyboard, something that was not always possible, you were
thrown into a break in which you could not examine values, compute values, or do anything
but print the name of the (usually internal) program that was interrupted, or the sequence
of programs (without arguments), being executed. One had the choice sometimes of
continuing, aborting the computation or exiting from Mathematica. These options and
these pieces of information were meager.

Beginning in version 1.2 and continuing in 2.0, a redesign of debugging has changed
the situation. Now the On tracing command ordinarily produces excessively verbose data.
By using Trace rather than On, a user may �lter this ood: it is possible to provide a
pattern to compare with the forms so that only matching expressions will be printed. This
requires a sensitive touch and some prescience about what will be relevant to see.

It is apparently possible to still �nd non-interruptible loops in Mathematica, in which
case no debugging is really possible, and a \crash with loss of data" is about the only way
to halt a computation.

Finally, the spelling correction facility can painfully slow, especially when �rst inad-
vertently invoked and especially on smaller-memory systems. Mercifully it is possible to
disable it.

15 Abuse of Mathematics

While many of Mathematica's intellectual ancestors make logical hash of mathematical
ambiguities or boundary values, probably no other system has documentation so bold
as to assert that the system, rather than mathematical tradition, should determine the

28



meaning of (for example) multiple-valued inverses (Wolfram (1988) page 358) or that it
is the human user of the system who has primary responsibility to check the input (and
perhaps the output) of the system (Wolfram (1988) page 425: \You have to be careful,
however, when the integration region contains a singularity." ).

While one can be philosophical about this and (to quote W. N. Venables), \Like cars
and knives and most other useful things, symbolic manipulation systems in general, and
Mathematica in particular, are inherently dangerous and not for the reckless." it is cer-
tainly possible to include some safety measures. The competitors to Mathematica are not
without fault; they tend, however, to be more cautious. For example, Macsyma checks to
see if n = �1 before returning the value xn+1=(n+ 1) for

R
xndx. Mathematica does not.

DERIVE �nesses this problem by returning (xn+1 � 1)=(n + 1) which yields the correct
limit as n ! �1.

16 Which weaknesses are easily �xed? Which are permanent?

Certainly one can �nd errors of implementation, or ine�ciencies, or situations in which
programs in Mathematica were written to be e�cient but insu�ciently general. Improving
Mathematica's algorithms may �x certain problems, and if past experience is any guide,
occasionally will insert new ones.

In well-de�ned areas such as the division of arbitrary-precision integers, the factorization
of polynomials over the integers, and so on, one assumes that past identi�ed bugs in
Mathematica either have been or will eventually be repaired. Thus, other than reporting
and classifying known problems of this kind to some maintenance person, and perhaps
devising work-arounds, the customer has little choice but to wait for the �x to arrive.
This is, of course, the situation with almost any piece of software that is not available in
source code; and even with source code, most people would not be well equipped to �nd
and repair bugs.

The more di�cult problems have to do with errors of design, implementation errors that
are particularly widespread (in the code) and whose �xes have major impact on the speed
of the system, or areas where retraction of claims in the documentation are needed.

Such areas are reviewed below.

16.1 Errors of Design

These areas have been mentioned previously.

� Scope of names: blocks, packages, rules

In addition to problems already indicated with local programming variables in Block
which is �xed by using Module, Mathematica seems to have a problem dealing with
quanti�ed mathematical variables. Most mathematicians would agree that the use
of the literal x in limx!a f(x) is locally bound, and that this expression is entirely
equivalent to limz!a f(z). The puzzle is how to specify the result of z = f[x]
followed by Limit[z,x->a]. Is the x inside f[x] the same as the x inside the
Limit?

Although each of several built-in constructions using bound variables may be patched
(eventually), there is still confusion inherent in Mathematica's language concerning
local and global programming variables and mathematical indeterminates with the
same printed name. The de�nition of Hold and related commands (now including
Evaluate, ReleaseHold, and Unevaluated) suggests more than anything else that
the system is still out of control.

29



� In�nite Evaluation

This technique is too expensive to apply correctly, and somewhat haphazard when
implemented heuristically. It appears to be one of the more negative and unforeseen
consequences of relying heavily on rules as though they were procedure calls.

� Model of numerical calculation

It is possible to perform arithmetic on approximate quantities of di�erent precision
by using the wider precision, and padding the lower precision with zeros (of whatever
radix is being used in the representation). It is also possible to truncate or round
the wider precision to be cruder, and perform only the crude arithmetic. As we have
illustrated, Mathematica's attempt to predict numerical errors is awed.

Furthermore, without interval arithmetic implemented in a sensible (and subtle)
way, the \problem of constants" becomes intractable instead of merely occasionally
unsolvable. Such questions as the resolution of

p
x2 ! x � sign(Real(x)) cannot be

handled until this problem is solved together with at least linear inequalities.

� Stark data model

The data model is that of a basically uninterpreted tree. Mathematica does not
support representing and computing with an expression which is to be treated as
(for example) real-valued. It has no support for \declaring" that x can assume only
positive integer values, and that for example x > 0 or x � (x+ 1) is an even integer.
If it is told that x > 0 it does not know that x < 0 is false, nor will it object to
setting x to a complex number. At least primitive versions of such representations
are necessary if the system is to proceed automatically in simplifying expressions
such as Sqrt[x^2].

Even though piecewise-de�ned functions are a basic representation scheme for intro-
ducing new functions, there is no useful way of di�erentiating such functions, even
if they are piecewise di�erentiable.

Since only surface types are handled, Mathematica often does not hesitate to respond
with meaningless results when given unexpected, but not necessarily incorrect, in-
puts. Because features which are accidents of the implementation are mostly un-
documented and are not necessarily mathematically consistent they are presumably
subject to undocumented revision in the future.

It would appear possible in principle to add piecemeal all the rules that might be
needed to provide the equivalent of the Macsyma \assume" facility (Mathlab Group
(1983)). A careful examination of such a programme quickly leads to the conclusion
that much of the built-in functionality of the simpli�er component of Mathematica
would have to be papered over, and the e�ciency would be very poor.

� Lack of canonical forms

While we have earlier indicated problems with the decidability issues in Mathemat-
ica's simpli�er, there is another consideration worth mentioning under the general
topic of \canonical forms."

In fact, for very signi�cant types of calculations, especially those with more structure
than polynomials, it is sometimes imperative to provide special canonical compact
encodings for e�cient processing. A prime example of this is Poisson series, used
for computations in celestial mechanics and areas where computations with simi-
larly large (many thousand terms) sine-cosine series are important. Of the \general
purpose" computer algebra systems, Macsyma is apparently still unique in incorpo-
rating alternative encodings comparable to those used in special-purpose systems.

30



Other systems including Reduce and Maple, as well as Mathematica can \simu-
late" the form of a Poisson series using a general tree-like representation similar to
that used for every other object, but this simulation is orders of magnitude slower
and uses many times more storage than necessary (special purpose systems such
as Schoonschip are described in Buchberger (1983)). In Mathematica there are no
canonical compressed data forms comparable to Macsyma's CRE (canonical rational
expression) form, or Poisson series. The only case where a somewhat compressed
form is used is Mathematica's Series form. This is built out of the usual list struc-
ture, but is printed as a sum with a \big-O" term. This form is a mixed blessing
because it is poorly integrated into the system; its problems suggest that integration
of any additional special forms will also cause design di�culties.

� Reliance on the user

The user is cautioned, \You have to be careful, however, when the integration region
contains a singularity." (Wolfram (1988, 1991)). Actually, it would be helpful if the
system were more careful, and not only for integration.

In version 2.0, the PowerExpand function is provided so that the user can commit
errors explicitly that in version 1.2 were committed automatically. Unfortunately
the user may be quite unprepared to determine the necessary information (about
signs of subexpressions in ranges) that determine the legality of the transformations.

M. Monagan points out that for some functions, e.g. LinearSolve, one can pass
a ZeroTest to the function. It doesn't stop Mathematica from returning wrong
answers, but again merely \passes the bug" on to the user.

� Defective model of equality

Often identities, invariants, or axioms don't hold in Mathematica. If a==b or the
even stronger assertion that a===b is True, then for any deterministic, side-e�ect-
free function f, once should expect that f[a]==f[b]. Mathematica does not match
this expectation.

� Documentation

Although it may seem that the documentation (Wolfram (1988, 1991)) is quite a
superior part of the Mathematica package, there are subtle omissions. For example,
the precise algorithms used for most of the routines are not described or even hinted
at. The rationale given by Wolfram (March, 1991, in a lecture at the University
of California at Berkeley) was that such lack of speci�cation was a positive feature.
Speci�city would hinder the implementors|they would not be able to replace an old
routine with a new one with di�erent characteristics (e.g. time complexity). Wol-
fram asserted that it was more important to implement new features than document
the old. These arguments are not especially convincing: the same arguments were
o�ered in the context of Macsyma's reference manual twenty years ago, and the doc-
umentation is still lacking. By contrast, Maple system documentation of algorithms
is extensive and on-line.

16.2 Errors of Implementation

� Non-uniformity of approach.

Although much of Mathematica could in principle be written in its \own" language,
a barrier has been placed in the implementation for reasons of e�ciency and security.
The user has little chance of altering the behavior of the system in fundamentally
e�cient ways. The only handles available are those provided by using ags already

31



anticipated by the developers. By contrast, even though Maple is also a proprietary
system, most of the source code is available for examination, and is in a language
the user can write in.

� Full-evaluation and Update.

As previously noted, it appears that this is implemented with heuristics that are
sometimes wrong in order to be fast. Even so, it is probably slower and certainly
harder to explain than single evaluation.

� Bugs and Debugging.

There seem be a large number of barriers to e�ective debugging of user-written
code and rules because of the many ways rules can interact. A programmer is well-
advised to make frequent use of the Clear command to remove the e�ects of partially
debugged code during development.

� Complexity of code.

It may be di�cult and expensive for WRI to repair design defects that are only
now being recognized. There are some 180,000 lines of C code in version 1.2 and
more than 350,000 in version 2.0. If each programmer must become familiar with
a substantial portion of this corpus before contributing to it, the prospect of real
improvement will decline, and the prospect of introducing bugs will increase. A
complex environment for developers cannot be healthy.

By contrast, the comparable system Maple has a kernel of about 20,000 lines of C,
with most of the higher-level command capability de�ned through programs which
can be easily printed in source-code form as part of the on-line documentation.

In the course of evaluating Mathematica, we at Berkeley have generated voluminous
correspondence (nearly one megabyte|450 text pages) reporting bugs in version 1.1,
1.2 and (beta) releases of 2.0. Many bugs survive in 2.0, and additional ones have
appeared. Although we have had version 2.0 (beta) only a few months, about 1=3
of the bug reports are on this (beta) system. Some bugs are, of course, simple to
repair or inconsequential. Others may be quite critical to applications.

16.3 Unjusti�ed Claims

From the academic point of view, this last type of error has great potential for damage:
there are many problems for which Mathematica appears to claim complete solutions, but
is not even as good as other programs (for example, in symbolic integration, solution of
equations, simpli�cation, numerical evaluation). Mathematica certainly does not \know"
all of mathematics, nor is it apparent that it could form the basis for a program that
approached such a lofty goal.

A user of this system might erroneously believe that if Mathematica cannot solve a
problem, no other program (or human, perhaps) can do so. Users of Mathematica may
prematurely abandon the technology because the �rst system they tried was insu�cient.
(This phenomenon was prevalent among early FORMAC users (see Tobey et al. (1965)),
who typically ran out of memory on the 32K word IBM 7094 rather rapidly, and assumed
that if this quite powerful system (for that time) couldn't solve their problem, it was not
solvable.)

In brief, there is a risk that the audience for symbolic mathematical computation will
believe that \whatever Mathematica has done, has been `done' as best as possible" and
thereby believe that any shortfall is inherent in the technology, and not the particular
program.

32



On the other hand, the general awareness of symbolic computing has been vastly im-
proved, and this may be more than fair compensation to academics or others interested
in the �eld.

17 Conclusions

This review is hardly the �nal word on Mathematica, a program we expect to continue
to change even as it has changed substantially during the writing of this commentary. In
fact, we hope that some improvements in the program were prompted by earlier drafts of
this paper. In the interests of brevity, almost all mentions of earlier bugs now �xed have
been dropped. In a few places some discussion of features of \obsolete" versions of the
system remain for the following reasons:

� In some sense, every user has an \old" version. The as-yet-unreleased version (as we
write, 2.0 is not yet generally available) cannot be reviewed satisfactorily.

� Looking at the aws of the past gives some insight into the aws of the future.

It is possible that having raised the consciousness of the public to symbolic mathematics,
the Mathematica programwill then also evolve to satisfy all the various criticisms indicated
here, as well as other criticisms. Alternatively, or in addition, commercial or academic
\rivals" may provide new or better solutions to these problems.

For those persons waiting eagerly for mathematicians to be replaced by a universal
computer program that \does mathematics", it is our opinion that this will require the
development of technology that does not yet exist. Continuing research should learn from
the Mathematica experience in combining symbolic mathematics in a general scienti�c in-
formation and programming environment with applications for research and development,
teaching, and even entertainment.

18 Acknowledgments

Opinions expressed in this paper are the author's and do not necessarily represent the
views of government sponsors or others mentioned below. The author wishes to thank
numerous persons for enlightening discussions, comments on earlier drafts of this review,
and access to preprints or technical reports. These include Paul Abbott, Bruno Buch-
berger, Robert Campbell, Bruce Char, Steven Christensen, Gene Cooperman, James H.
Davenport, Sam Dooley, David Jacobson, G. H. Gonnet, R. W. Gosper, Dan Grayson, W.
Kahan, Silvio Levy, Roman Maeder, Kevin McCurley, Kevin McIsaac, Michael Monagan,
Steven Omohundro, Malcolm Slaney, Neil Soi�er, Ilan Vardi, William N. Venables and
Stephen Wolfram. Also thanks to the four anonymous referees and the editors of JSC
for extremely helpful comments, as well as patience through a number of intermediate
revisions of sections.

A preliminary copy of this paper was provided to Wolfram Research Incorporated
(WRI), and the resulting comments were used in re�ning this version. The author would
also like to thank WRI for providing access to beta-test versions of Mathematica 1.2 and
2.0.

19 References

Arnon, D., Beach, R., McIsaac, K. and Waldspurger, C. (1988) CaminoReal: An interactive mathe-
matical notebook, in Document Manipulation and Typography: Proc. Intl. Conf. on Electronic
Publishing, Document Manipulation, and Typography (J.C. van Vliet, ed.), Nice, France, April
20{22, 1988, Cambridge University Press. 1{18.

33



Avitzur, R. (1988). Milo (a Macintosh computer program) Paracomp Inc. San Francisco, CA. Milo
has been incorporated in FrameMaker, Frame Technology Corp. San Jose CA. 1990.

Bailey, D. H. (1991). MPFUN: A portable high performance multiprecision package. NAS Applied
Research O�ce, NASA Ames Research Ctr. Mo�et Field, CA.

Barton, D. and Fitch, J. P. (1972). A review of algebraic manipulation programs and their application.
Comput. J. 15, 362{381. This is an extended abstract of: Applications of Algebraic Manipulative
Programs in Physics, in Rep. on Prog. in Phys.35, no. 3 235{314.

Bonadio, A. (1990). Allan Bonadio, Theorist (a Macintosh computer program), Prescience Corp. 939
Howard St. San Francisco CA. 94103. (1990, 1991).

Buchberger, B., Collins, G. E., Loos, R. (eds). (1983). Computer Algebra: Symbolic and Algebraic
Computation, Springer-Verlag.

Buchberger, B. (1991). Gr�obner bases in Mathematica: Enthusiasm and Frustration. RISC-LINZ
Report 3-3, J. Kepler Univ., A-4040 Linz, Austria.

Brent, R. P. (1978). A Fortran multiple-precision arithmetic package, ACM Trans. on Math. Softw.
4 no. 1, 57{70.

Computer Algebra Group. (1988). The Scratchpad II computer algebra system interactive environ-
ment users guide, (Draft 1.1 July 19, 1988) Mathematical Sciences Dep't, IBM Research Division,
T. J. Watson Res. Ctr. Yorktown Hts, NY. (382 pages) see also Jenks, R. D., Trager, B. M. (1984).
A primer: 11 keys to new Scratchpad. Proc. Eurosam 84, Lecture Notes in Computer Science
174, Springer-Verlag. Cooperman, G. (1986). Semantic matcher for Macsyma. Proc. 1986 ACM
Symp. on Symbolic and Algeb. Comp., 132{134.

Fateman, R. J. (1976). The MACSYMA Big-Floating-Point arithmetic system. Proc. of the 1976
ACM Symp. on Symbolic and Algebraic Computation, 209{213.

Fateman, R. J. (1989). A review of Macsyma. IEEE Trans. on Knowledge and Data Eng. 1, no. 1.
133{145.

Fateman,R. J. (1991). FRPOLY: A benchmark revisited. Lisp and Symbolic Programming, 4 153{162.
Fenichel, R. (1966). An on-line system for algebraic manipulation. Ph.D. dissertation, Harvard Univ.,

also Report MAC-TR-35, Project MAC, M.I.T., available from the Clearinghouse, document AD-
657-282.

Foderaro, J. K. (1983). The design of a language for algebraic computation systems. Ph.D. disserta-
tion, EECS Dep't., Univ. Calif., Berkeley.

Foster, G. DREAMS: Display REpresentation for Algebraic Manipulation Systems. Rpt. UCB/CSD
84/193, Computer Science Div. Univ. of Calif, Berkeley.

Foster, K. R., Bau, H. H. (1989). Symbolic Manipulation Programs for the Personal Computer.
(Software review) Science 243, 679{684.

Golden, J. P. (1977). The evaluation of atomic variables in Macsyma. Proc. 1977 Macsyma Users'
Conf. Univ. of Calif, Berkeley. 109{122.

Graham, R. L., Knuth, D. E., Patashnik, O. (1989). Concrete Mathematics, Addison-Wesley Publ.
Co.

Greif, J. M. (1985). The SMP pattern matcher. Proc. Eurocal '85, vol. 2, Lecture Notes in Computer
Science 204, Springer-Verlag. 303{314.

Hearn, A. C. (1984). Reduce 3 User's Manual, The RAND Corp. P.O. Box 2138, Santa Monica CA
90406.

Hearn, A. C. (1976). A new REDUCE model for algebraic simpli�cation. Proc. 1976 ACM Symp. on
Symbolic and Algebraic Computation, 46{50.

Herman, E. A. (1988). Review of Mathematica. (also, discussion by Barwise, J., Uhl, J. Jr., Zorn, P.
Notices of the AMS 35, no. 9, 1334{1349.)

Hoenig, A. (1990). Mathematica, a program for various work stations and personal computers. (Re-
view) Math. Intell. 12, no. 2, 69{74.

Itturiaga, R. (1967). Contributions to mechanical mathematics. Ph.D. dissertation, Comptr. Sci.
Dep't., Carnegie-Mellon Univ., Pittsburgh, Pa.

Jenks, R. D. (1976). A pattern compiler. Proc. 1976 ACM Symp. on Symbolic and Algebraic
Computation, 60{65.

Keiper, J. (1990). Numerical Computation. Tutorial Notes. Mathematica User Conference, Redwood
City, CA.

Knuth, D. E. (1969). The Art of Computer Programming, vol 1. Fundamental Algorithms, Addison-
Wesley Publ. Co.

Korsvold, K. (1965). On-Line algebraic simplify program. Stanford A.I. Project Memo 37.
Kudera, J. R. (1988). Physics made easy. letter to the editor, Fortune May 25, 1988.

34



Maeder, R. (1988), (1991) Programming in Mathematica. 1st, 2nd edition. (Corresponding to Math-
ematica versions 1.2 and 2.0 resp.) Addison Wesley.

Mathlab Group. (1983). Macsyma Reference Manual, Lab. for Comp. Sci, MIT, Jan, 1983 (2
volumes: version 10), available also from the National Energy Software Center (NESC), Argonne,
IL. Similar manuals are available from Symbolics, Inc., for example, version 11 (Symbolics, Inc.)
Oct. 1985.

McCurley, K. S. (1988). Book review (Wolfram, Stephen (1988) Mathematica: A System for Doing
Mathematics by Computer.) ORSA J. on Computing 2, no. 4. 366{368.

McIsaac, K. (1985). Pattern matching algebraic identities. SIGSAM Bull. 19, no. 2. 4{13.
Mathworks Inc. (1988). Matlab (a computer program). S. Natick, MA.
Moore, R. E. (1979). Methods and Applications of Interval Analysis. SIAM, Philadephia, PA.
Moses, J. (1971). Algebraic simpli�cation, a guide for the perplexed. Comm. ACM. 14, no. 8.

527{538.
Moses, J. (1974) Macsyma: the �fth year. Proc. Eurosam 74, Stockholm, Sweden, ACM SIGSAM

Bull. 8, no. 3. 105{110.
Moses, J. (1977). The variety of variables in mathematical expressions. Proc. 1977 Macsyma Users'

Conf. Univ. of Calif, Berkeley.
Pavelle, R., Wang. P. S. (1985). Macsyma from F to G. J. Symbolic. Comp. 1, no. 1, 69{100.
Pratt, V. R. (1973). Top down operator precedence. 1973 ACM Symposium on Principles of Prog.

Lang., Boston, MA. See also, a detailed memo (1977) CGOL|An algebraic notation for MACLISP
users, distributed with the CGOL source code.

Simon, B. (1990). Four computer mathematical environments. Notices AMS 37, no. 7. 861{868.
The Soft Warehouse (1991). Derive, (a computer program). version 2.03 The Soft Warehouse, 3615

Harding Av., Honolul HI 96816.
Soi�er, N., Smith, C. J. (1986). MathScribe: A user interface for computer algebra systems. Proc.

1986 ACM Symp. on Symbolic and Algeb. Comp., 16{23.
Steele, G. L. Jr. (1984, 1990). Common LISP the Language, Digital Press. 1st ed., 2nd ed.
Symbolic Computation Group. (1990). Maple (a computer program) version V. Computer Science

Dep't., Univ. of Waterloo, Waterloo, Ontario, Canada. (This program is sold by Waterloo Maple
Software for most computers except for the Apple Macintosh. The distributor for Macintosh is
Brooks/Cole Publishing Co., Paci�c Grove, CA 93950)

Taubes, G. A. (1988). Physics whiz goes into biz. Fortune, April 11, 1988. 90{93.
Tobey, R. G., Bobrow, R. J., Zilles, S. N. (1965). R. G. Tobey, R. J. Bobrow, and S. N. Zilles.

Automatic simpli�cation in Formac. Proc. AFIPS 1965 Fall Joint Comput. Conf., 37{52.
van Hulzen, J. A., Calmet, J. (1983). Computer algebra systems. in: Buchberger et al., (1983)

221{224.
Vogel, W. K. (1989). Mathematica 1.1. Biotechnology Software. (Mary Ann Liebert Inc. Publ. NY)

July{August. 2{7.
Wolfram, Stephen. (1988, 1991). Mathematica|A system for doing mathematics by computer,

Addison-Wesley, 1st ed., 2nd ed.
Wyatt, W. T. Jr., Lozier, D. W., and Orser, D. (1976). A portable extended precision arithmetic

package. ACM Trans. on Math. Softw. 2, no. 3. 209{229.

35


