
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

Programming Contest P. N. Hilfinger

Fall 2001

2001 Programming Problems

To set up your account, execute

source ~ctest/bin/setup

in all shells that you are using. (This is for those of you using the C-shell. Others will have
to examine this file and do the equivalent for their shells.)

This booklet should contain eight problems on 17 pages. You have 5 hours in which
to solve as many of them as possible. Put each complete C solution into a file N.c,
each complete C++ solution into a file N.cc, and each complete Java program into a file
N.java, where N is the number of the problem. Each program must reside entirely in a
single file. In Java, the class containing the main program for problem N must be named
PN . Each C/C++ file should start with the line

#include "contest.h"

and must contain no other #include directives, except as indicated below. Upon comple-
tion, each program must terminate by calling exit(0) (or System.exit(0) in Java).

Aside from files in the standard system libraries and those we supply, you may not use
any pre-existing computer-readable files to supply source or object code; you must type in
everything yourself. Selected portions of the standard g++ class library are included among
of the standard libraries you may use: specifically, the headers string, vector, iostream,
iomanip, strstream, fstream, algorithms, hash map, and hash set. Likewise, you can
use the standard C I/O libraries (in either C or C++), and the math library (header
math.h). In Java, you may use the standard packages java.lang, java.io, java.text,
and java.util. You may not use utilities such as yacc, bison, lex, or flex to produce
programs. Your programs may not create other processes (as with the system, popen,
fork, or exec series of calls). You may use any inanimate reference materials you desire,
but no people. You can be disqualified for breaking these rules.

When you have a solution to problem number N that you wish to submit, use the
command

1



2001 Programming Problems 2

submit N

from the directory containing N.c, N.cc, or N.java. Before actually submitting your
program, submit will first compile it and run it on one sample input file. No submission
that is sent after the end of the contest will count. You should be aware that submit takes
some time before it actually sends a program. In an emergency, you can use

submit -f N

which submits problem N without any checks.
You will be penalized for incorrect submissions that get past the simple test adminis-

tered by submit, so be sure to test your programs (if you get a message from submit saying
that it failed, you will not be penalized). All tests will use the compilation command

contest-gcc N

followed by one or more execution tests of the form (Bourne shell):

./N < test-input-file > test-output-file 2> junk-file

which sends normal output to test-output-file and error output to junk-file. The output
from running each input file is then compared with a standard output file, or tested by a
program in cases where the output is not unique. In this comparison, leading and trailing
blanks are ignored and sequences of blanks are compressed to single blanks. Otherwise,
the comparison is literal; be sure to follow the output formats exactly. It will do no good
to argue about how trivially your program’s output differs from what is expected; you’d be
arguing with a program. Make sure that the last line of output ends with a newline. Your
program must not send any output to stderr; that is, the temporary file junk-file must be
empty at the end of execution. Each test is subject to a time limit of about 45 seconds.
You will be advised by mail whether your submissions pass.

The command contest-gcc N , where N is the number of a problem, is available to
you for developing and testing your solutions. For C and C++ programs, it is equivalent
to

gcc -Wall -o N -O -g -Iour-includes N.* -lstdc++ -lm

For Java programs, it is equivalent to

javac -g N N.java

followed by a command that creates an executable file called N that runs the command

java PN



2001 Programming Problems 3

when executed (so that it makes the execution of Java programs look the same as execution
of C/C++ programs). The our-includes directory contains contest.h for C/C++, which
also supplies the standard header files. The files in ~ctest/submission-tests/N , where
N is a problem number, contain the input files and standard output files that submit uses
for its simple tests.

All input will be placed in stdin. You may assume that the input conforms to any
restrictions in the problem statement; you need not check the input for correctness. Con-
sequently, you are free to use scanf to read in numbers and strings and gets to read in
lines.

Terminology. The term free-form input indicates that input numbers, words, or tokens
are separated from each other by arbitrary whitespace characters. By standard C/UNIX
convention, a whitespace character is a space, tab, return, newline, formfeed, or vertical
tab character. A word or token, accordingly, is a sequence of non-whitespace characters
delimited on each side by either whitespace or the beginning or end of the input file.

Scoring. Scoring will be according to the ACM Contest Rules. You will be ranked by
the number of problems solved. Where two or more contestants complete the same number
of problems, they will be ranked by the total time required for the problems solved. The
total time is defined as the sum of the time consumed for each of the problems solved.
The time consumed on a problem is the time elapsed between the start of the contest and
successful submission, plus 20 minutes for each unsuccessful submission, and minus the
time spent judging your entries. Unsuccessful submissions of problems that are not solved
do not count. As a matter of strategy, you can derive from these rules that it is best to
work on the problems in order of increasing expected completion time.

Protests. Should you disagree with the rejection of one of your problems, first prepare
a file containing the explanation for your protest, and then use the protest command
(without arguments). It will ask you for the problem number, the submission number
(submission 1 is your first submission of a problem, 2 the second, etc.), and the name
of the file containing your explanation. Do not protest without first checking carefully;
groundless protests will be result in a 5-minute penalty (see Scoring above). The Judge
will not answer technical questions about C, C++, Java, the compilers, the editor, the
debugger, the shell, or the operating system.

Notices. During the contest, the Web page at URL

http://http.cs.berkeley.edu/~hilfingr/programming-contest/announce.html

will contain any urgent announcements, plus a running scoreboard showing who has solved
what problems. Sometimes, it is useful to see what problems others are solving, to give
you a clue as to what is easy.



2001 Programming Problems 4

1. [M. Dynin, from a contest in St. Petersburg] Given a rectangle of letters (such as

AB

BC

), a starting position within that rectangle (such as the character in the upper-left corner),
and a string (such as "ABBC"), consider the question of finding paths through the letters that
match the given string, begin at the starting position, and at each step move one square
in one of the eight compass directions (north, south, east, west, northeast, northwest,
southeast, southwest). For the given example, there are two such paths. They are (E-SW-E)
and (S-NE-S)—that is, “one step east, one step southwest, one step east” and “one step
south, one step northeast, and one step south.” For the rectangle

CBB

BBA

and the string "BBCBBA", starting at square in the middle of the top row, there are 12 paths.
Paths are allowed to visit the same position twice.

You are to write a program that, given such a rectangle, string, and starting position,
reports the number of distinct paths that match the string, according to the definitions
above. The input will consist of four positive integers (call them M , N , r, and c), a string
(S), and M strings consisting of upper-case letters A-Z, each of which is N characters
long. These inputs are all separated from each other by whitespace. The M strings are
the rows of the rectangle, from top to bottom. The pair (r, c) are the coordinates of the
starting position, with 0 ≤ r < M , 0 ≤ c < N . Row 0 is the top row; column 0 is the left
column. The output will be a line reporting the number of paths in the format shown in
the examples.

You may assume that the number of paths is less than 231, M ≤ 80, N ≤ 80. Never-
theless, be aware that the time limit is less than a minute.

Example 1:
Input Output

2 2 0 0

ABBC AB

BC

There are 2 paths.

Example 2:
Input Output

2 3 0 1 BBCBBA CBB BBA There are 12 paths.



2001 Programming Problems 5

2. [M. Dynin] A simple method of compressing a message is to replace sections of its text
with references back to previous portions. For example, given the input text

how much wood could a woodchuck chuck if a woodchuck could chuck wood

we could encode it as

how much wood could a<12,5>chuck <5,6>if<20,14><38,5><11,6><21,4>

The interpretation of each <p, n> in the output (we will call it a back reference) is that it is
replaced by a copy of n characters of the output, starting p characters to the left of the last
output character. For example, <5,6> is replaced by six characters (“chuck ”), beginning
at preceding character #5 (the preceding ‘ ’ is 0, ‘k’ is 1, ‘c’ is 2, etc.). As printed, the
encoding saves little space, but if we assume that each ‘<·, ·>’ can be stored in the same
space as two characters, then we do save 28 characters.

It is legal for a back reference to indicate a sequence of characters produced by pre-
vious back references, or even the same back reference. For example, ‘ab<1,10>’ encodes
‘abababababab’. The p values always refer to the expanded description. For example,
“abcdef<3,8>x<14,3>” expands to “abcdefcdefcdefxabc.”

Your program is to create a compressed encoding of an input string, in the format
illustrated above. The input will consist of positive integers Mp, Mn, and C in free format
on one line, followed by a single line of text whose length is at most 4096 characters.
You are to create an optimal (minimal-length) encoding of the string, under the following
constraints. In the final encoded string:

1. Every p value must be in the range 0 ≤ p ≤ Mp.

2. Every n value must be in the range C < n ≤ Mn.

3. Given a choice between two different possible encodings of the same string, consider
the first (leftmost) point at which they differ. Prefer the encoding that contains a
back reference at that point. If both have back references there, prefer the one with
the larger n value. If both have the same n value, prefer the one with the smaller p
value.

There are examples of input and output on the next page.



2001 Programming Problems 6

Example 1.

Input:

64 16 2

how much wood could a woodchuck chuck if a woodchuck could chuck wood

Output:

how much wood could a<12,5>chuck <5,6>if<20,14><38,5><11,6><21,4>

Example 2.

Input:

64 64 8

how much wood could a woodchuck chuck if a woodchuck could chuck wood

Output:

how much wood could a woodchuck chuck if<20,14>ould chuck wood

Example 3.

Input:

16 16 2

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

Output:

x<0,16><0,15>



2001 Programming Problems 7

3. In these contests, you’ll often see questions such as “find the shortest path out of
this maze.” Let’s turn this on its head and ask “given a path, find a maze for which
it is the shortest path out.” Our paths will run vertically and horizontally between the
regularly spaced points of a rectangular grid. The problem is compute a set of baffles
(walls) separating grid points that forces the given path to be the unique shortest path
from its starting point to the end point. To make things interesting, furthermore, we will
require that there be no extraneous walls constructed in the sense that it should not be
possible to remove any wall and still have the given path be the unique shortest path.

For example, consider the path through the 8 × 5 grid on the left below. The wall
placements in the two mazes to its right make that path unique. The two lower mazes are
faulty. The path is not unique in the one to the left, and there are redundant walls on the
right.

0

•

•

•

•

•

1

•

•

•

•

•

2

•

•

•

•

•

3

•

•

•

•

•

4

•

•

•

•

•

5

•

•

•

•

•

6

•

•

•

•

•

7

•

•

•

•

•

0

1

2

3

4

0

•

•

•

•

•

1

•

•

•

•

•

2

•

•

•

•

•

3

•

•

•

•

•

4

•

•

•

•

•

5

•

•

•

•

•

6

•

•

•

•

•

7

•

•

•

•

•

0

1

2

3

4

0

•

•

•

•

•

1

•

•

•

•

•

2

•

•

•

•

•

3

•

•

•

•

•

4

•

•

•

•

•

5

•

•

•

•

•

6

•

•

•

•

•

7

•

•

•

•

•

0

1

2

3

4

0

•

•

•

•

•

1

•

•

•

•

•

2

•

•

•

•

•

3

•

•

•

•

•

4

•

•

•

•

•

5

•

•

•

•

•

6

•

•

•

•

•

7

•

•

•

•

•

0

1

2

3

4

WRONG: Not unique

0

•

•

•

•

•

1

•

•

•

•

•

2

•

•

•

•

•

3

•

•

•

•

•

4

•

•

•

•

•

5

•

•

•

•

•

6

•

•

•

•

•

7

•

•

•

•

•

0

1

2

3

4

WRONG: unnecessary walls

The input to your program (in free format) will consist of two positive integers, W ≤ 100
and H ≤ 100, giving the number of grid points horizontally and vertically, respectively,
followed by a path. The path always starts in the lower-left corner, (0,0). It is specified
as a string of U (up), D (down), L (left), and R (right) characters (with no embedded
whitespace). You may assume that the path remains within the bounds of the maze and
does not intersect itself. It may end anywhere in the maze (i.e., not necessarily in a corner
or against a wall).

The output will consist of a sequence of zero or more wall specifications, in the format
shown in the example on the next page. Each wall specification is in the form of two pairs
of (x, y) coordinates specifying adjacent grid points (0 ≤ x < W , 0 ≤ y < H), using
the coordinate system illustrated in the diagrams above. Each such pair specifies that a
segment of wall blocks passage between the given grid points. The possible output is not
unique.



2001 Programming Problems 8

Example: This example shows the maze used in the examples above and the first (mid-
dle) solution shown.

Input Output

8 5

RRRUULLURRRRDDRRUUU

Wall between 0,0 and 0,1

Wall between 1,0 and 1,1

Wall between 2,0 and 2,1

Wall between 2,1 and 3,1

Wall between 3,0 and 4,0

Wall between 3,1 and 4,1

Wall between 3,2 and 4,2

Wall between 3,2 and 3,3

Wall between 2,2 and 2,3

Wall between 4,2 and 4,3

Wall between 0,3 and 0,4

Wall between 1,3 and 1,4

Wall between 2,3 and 2,4

Wall between 3,3 and 3,4

Wall between 4,3 and 4,4

Wall between 5,3 and 5,4

Wall between 5,3 and 6,3

Wall between 5,2 and 6,2

Wall between 6,1 and 6,2



2001 Programming Problems 9

4. [D. Garcia] The game of 2D-Nim is played on a rectangular grid, with pieces on the
grid points. On each move, a player may remove any non-zero number of contiguous pieces
in any row or column. The player who removes the last piece wins. In the left position,
for example:

0

•

•

•

•

•

1

•

•

•

•

•

2

•

•

•

•

•

3

•

•

•

•

•

4

•

•

•

•

•

5

•

•

•

•

•

6

•

•

•

•

•

7

•

•

•

•

•

0

1

2

3

4

A B C

F G

I

H

D

J

K

E

0

•

•

•

•

•

1

•

•

•

•

•

2

•

•

•

•

•

3

•

•

•

•

•

4

•

•

•

•

•

5

•

•

•

•

•

6

•

•

•

•

•

7

•

•

•

•

•

0

1

2

3

4

A

B

C

F

G

I

H

DJK

E

the player on move may remove (A), (B), (C), (A, B), (A, B, C), (B, C), (B,F), etc., but
may not remove (A, C), (D, E), or (H, I).

For purposes of writing 2D-Nim-playing software, a certain programmer wants to be
able to tell whether a certain position has ever been analyzed previously. Because of the
rules of 2D-Nim, it should be clear that the board on the right is essentially equivalent to
that on the right, and might as well be counted as the same position. That is, if there
is a winning strategy for the left board, the same one must apply to the right. The fact
that the contiguous groups of pieces appear in different places and orientations is clearly
irrelevant. All that matters is that the same clusters of pieces (a cluster being a set of
contiguous pieces that can be reached from each other by a sequence of one-square vertical
or horizontal moves) appear in each. For example, the cluster of pieces (A, B, C, F, G)
appears on both boards, but it has been reflected (swapping left and right), rotated, and
moved. Your task is to determine whether two board positions are equivalent in this sense.

Each set of input, in free format, consists of a pair of integers, W and H, giving the
number of grid points horizontally (W ) and vertically (H), followed by a sequence of pairs
of integers xi yi, giving the coordinates of the pieces of the first board, followed by a
pair of −1s, followed by more pairs xi yi of coordinates for pieces on the second board,
again followed by two −1s. Here, 0 ≤ xi < W and 0 ≤ yi < H. You may assume that
0 < W, H ≤ 100. There may be more than one set.

You are to output indications of whether each pair is or is not equivalent, using the
format shown in the example on the next page.



2001 Programming Problems 10

Example: The first set is the example above. In the second, piece K has been moved to
(6,1) from (5,2) in the first board.

Input Output

8 5

0 0 1 0 2 0

5 0 7 0 1 1 2 1

5 1 3 3 5 2

4 4

-1 -1

0 4 0 3 0 2

1 1

1 4 1 3

3 3

5 2 6 2 7 2

7 4

-1 -1

8 5

0 0 1 0 2 0

5 0 7 0 1 1 2 1

5 1 3 3 6 1

4 4

-1 -1

0 4 0 3 0 2

1 1

1 4 1 3

3 3

5 2 6 2 7 2

7 4

-1 -1

Set 1.

Boards are equivalent.

Set 2.

Boards are not equivalent.



2001 Programming Problems 11

5. The Color Lines computer game is played on a 9x9 board, each square of which can
either be empty or can contain a piece having one of seven colors: red, orange, yellow,
green, dark blue, light blue, purple. Each move starts with having the computer place
three pieces with random colors on random empty squares. The human player may then
move any one piece to any empty square that can be reached by moving the piece through
a path of empty squares, each of which is one square up, down, left, or right from the
preceding (no diagonal moves allowed). After each of these moves—the computer’s and
the human’s—any adjacent sequence of at least five pieces with the same color is removed.
The removal of these sequences is simultaneous, so that if one piece is part of two such
sequences, both are removed. The game continues as long as the board is not filled, with
the human accumulating points for the pieces he manages to remove.

This problem is concerned only with the human’s move. Given a position that results
after a computer has made its move and removed any pieces, you are to choose the “best”
next move, defined here näıvely to mean the move that removes the most pieces. When
there are two such moves, prefer moving the pieces nearer the top row, then (if that’s not
sufficient to decide), prefer moving pieces nearer the left column, then prefer moving to
the square nearest the top row, then prefer moving to the square nearest the left column.
As an example, the proper move in the diagram on the left is (8,8) to (7,4) (that is, row 8,
column 8 to row 7, column 4, as shown in the diagrams).

1

1 2 3 4 5 6 7 8 9

2

3

4

5

6

7

8

9

O

O O G G

O P

B O P

B B P

B O R

B B B B G

B G B B

B G Y

1

1 2 3 4 5 6 7 8 9

2

3

4

5

6

7

8

9

O

O O G G

O P

O P

B P

O R

G

G B

B G Y

Input will consist of picture of the board: nine lines of nine characters apiece. Each
character is either ’-’ (blank), or one of the color codes (‘Y’, ‘G’, ‘P’, ‘O’ (capital Oh), ‘R’,
‘B’, and ‘L’ (light blue)). The output will consist of a picture of the resulting board, in
the format shown in the examples. When no move results in removing pieces, however, the
output will instead consist of a single line:

No removals possible.



2001 Programming Problems 12

Example 1: This is the example shown above.
Input Output

----O----

O---O-GG-

----O-P--

B---O-P--

BB----P--

--B-O-R--

BBB-B-G--

----B-GBB

B-----G-Y

----O----

O---O-GG-

----O-P--

----O-P--

B-----P--

----O-R--

------G--

------G-B

B-----G-Y

Example 2:
Input Output

----O----

O---OYGG-

----O-P--

B---O-P--

BB--Y-P--

--B-O-R--

BBBOB-G--

YYYYB-GBB

------G-Y

No removals possible.



2001 Programming Problems 13

6. A room contains a set of thick, rectangular steel plates with round holes of various
diameters drilled through them. A pellet (whose dimensions are so small that we will treat
it as a point) is fired in a straight line. The task is to discover which plate, if any, it collides
with and whether it collides with a face of the plate or with the interior of the plate—that
is, with the wall of one of the holes (we will assume that the path of the pellet, extended to
infinity, never intersects the outer edges of the plate, but only the (curved) inside surface of
a hole or the front or back surface of the plate). For example, in the diagram below, pellet
A collides with the surface of plate #1, B collides with the surface of plate #2, C collides
with the interior surface of the hole in plate #2, and D and E miss the plates entirely.

Q

Q’

R

P

A
B

DC

Plate #1

Plate #2

E
The input data, in free form, consists of an integer, K ≥ 0, followed by K descriptions

of plates, followed by descriptions of zero or more pellets. Each plate’s description starts
with four points, each of which is given as a triple of floating-point numbers (the x, y,
and z coordinates) in free format. The first three points (call them P , Q, and R) are
three corners of one surface of a plate, so that 6 PQR is a right angle, as illustrated in the
diagram above. The fourth point (call it Q′) is the corner of the other surface of closest to
Q (so that QQ′ is perpendicular to the surfaces of the plate and is as long as the plate is
thick). These data entirely determine the opposite surface and the thickness of the plate.
Next follows an integer, N ≥ 0, giving the number of holes in the plate, followed by N sets
of four numbers x, y, z, r giving the center of the hole on the first surface of the plate (the
one containing P , Q, and R) and its radius. The holes go straight through, at right angles
to the surface, do not intersect each other, and do not intersect the edges of their plate.
Plates do not intersect. Next come any number of descriptions of pellets. Each pellet is
fired from the coordinate origin, (0,0,0). The pellets’ directions are given by triples of the
floating-point numbers, which give the x, y, and z coordinates of a direction vector (whose
length is irrelevant). Output is in the form given in the example on the next page.



2001 Programming Problems 14

Example 1: This is roughly example shown above, seen from behind, above, and to the
right of the origin. The positive z direction is into the paper. The plates are both 3 × 3
and 0.25 units thick.

Input Output

2

-2 1.5 3 -2 -1.5 3 1 -1.5 3

-2 -1.5 3.25

1

0 0 3 0.5

-2 1.5 6 -2 -1.5 6 1 -1.5 6

-2 -1.5 6.25

1

0 0 6 0.5

-0.5 0.5 1.5

-0.4 0.1 3.25

-0.25 0 3.0625

0.01666 -0.01666 1

0.333 -0.666 1

Pellet #1 hits surface of plate #1.

Pellet #2 hits surface of plate #2.

Pellet #3 hits interior of plate #2.

Pellet #4 misses all plates.

Pellet #5 misses all plates.



2001 Programming Problems 15

7. [D. Garcia] A Hilbert curve is a recursively defined figure, defined as follows. Each
curve is a continuous path contained within a square bounding box and has two ends at
the lower-left and lower-right corners. The level-1 Hilbert curve is the left figure in the
diagram below. Each of its sides is one unit long. For k > 1, the level-k Hilbert curve
is composed of four level-(k − 1) curves connected by three one-unit segments, laid out
as shown in the other figures in the diagram below (which show the level-2 and level-3
curves). The three thicker line segments in the diagrams show the connecting segments
that join the four instances of lower-order curves.

In a true Hilbert curve, one carries this process out indefinitely, scaling the entire
picture each time to have the same bounds. In the limit, one gets a space-filling curve.
Unfortunately, our programs won’t have enough time to go all the way, so for this problem,
we are only interested in finite levels of the curve.

We can make the curve a little more. . . well. . . curvaceous by replacing all right angles
in the finished curve with quarter arcs (90◦) with radius 1/2 unit, as shown below:

Such a curve can be described as a sequence of commands to draw line segments 1/2
unit long in the up, down, right, or left direction, and to draw quarter arcs in which arc is
initially directed up, down, right or left, and curves around to the left, right, up, or down
direction through 90◦. Your program is to input a single integer, N , indicating the level of
curve desired, and to output a sequence of such commands in the format illustrated in the
examples on the next page (down, left, etc. draw 1/2-unit lines in the indicated directions;
arcupright draws a quarter arc that proceeds upward and then to the right; etc.). The
sequence of commands must draw a path starting in the lower-left corner and proceeding
in a sequence of connected, non-overlapping arcs and line segments. This determines a
unique solution.



2001 Programming Problems 16

Example 1: Level 1 curve
Input Output

1 1 hilbert

up

arcupright

arcrightdown

down

Example 2: Level 2 curve
Input Output

2 2 hilbert

right

arcrightup

arcupleft

arcleftup

up

up

arcupright

arcrightdown

arcdownright

arcrightup

arcupright

arcrightdown

down

down

arcdownleft

arcleftdown

arcdownright

right

Note: The output you are asked to generate for this problem consists of Postscript com-
mands. To help you test your solutions, you can paste these lines into the indicated place
in the file ~ctest/lib/template.pro. The resulting file can be printed on a Postscript
printer or viewed using ghostview, to show the curve you have drawn.



2001 Programming Problems 17

8. As a field engineer of Peculiar Tasks, Inc., you are asked to move a hopping machine
down an elevator. The initial situation is as illustrated below:

Elevator

Hopper

The hopper is capable of hopping left or right, but the distance covered by one hop can
only be set to one of a fixed, finite set of integral values at a time. You are to determine a
sequence of distance settings and numbers of hops (left or right) that will place the machine
on the elevator, given that it starts out one unit of distance to the right of the elevator. The
input will consist of a positive number, N , followed by N possible hop distance settings,
all positive, in strictly increasing order. The output is to have the format shown in the
examples, with the numbers of hops of each hop distance listed in increasing order of hop
distance, listing only distances with non-zero numbers of hops.

You may assume there is at least one solution, that N <= 8, and that the total distance
hopped back and forth will not exceed 231 − 1 units of distance.

Example 1:
Input Output

2 7 11 Hop right 3 times by 7 units.

Hop left 2 times by 11 units.

Example 2:
Input Output

4

6 10 15 30

Hop right 4 times by 6 units.

Hop left 4 times by 10 units.

Hop right 1 times by 15 units.


