
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

Programming Contest P. N. Hilfinger

Fall 2002

2002 Programming Problems

If you are participating in the contest, please send me e-mail as soon as possible from the
account you use to submit solutions. Use

Contest registration

(written just like that) as the subject line. Include in the body of the message one line
that starts with your name. If your usual e-mail address differs from the login you use for
the contest, also include that e-mail address.

To set up your account, execute

source ~ctest/bin/setup

in all shells that you are using. (This is for those of you using csh-like shells. Those using
bash should instead type

. ~ctest/bin/setup

Others will have to examine this file and do the equivalent for their shells.)
This booklet should contain eight problems on 20 pages. You have 5 hours in which

to solve as many of them as possible. Put each complete C solution into a file N.c,
each complete C++ solution into a file N.cc, and each complete Java program into a file
N.java, where N is the number of the problem. Each program must reside entirely in a
single file. In Java, the class containing the main program for problem N must be named
PN . Each C/C++ file should start with the line

#include "contest.h"

and must contain no other #include directives, except as indicated below. Upon comple-
tion, each program must terminate by calling exit(0) (or System.exit(0) in Java).

Aside from files in the standard system libraries and those we supply, you may not use
any pre-existing computer-readable files to supply source or object code; you must type in
everything yourself. Selected portions of the standard g++ class library are included among
of the standard libraries you may use: specifically, the headers string, vector, iostream,
iomanip, strstream, fstream, algorithms, hash map, and hash set. Likewise, you can

1

2002 Programming Problems 2

use the standard C I/O libraries (in either C or C++), and the math library (header
math.h). In Java, you may use the standard packages java.lang, java.io, java.text,
and java.util. You may not use utilities such as yacc, bison, lex, or flex to produce
programs. Your programs may not create other processes (as with the system, popen,
fork, or exec series of calls). You may use any inanimate reference materials you desire,
but no people. You can be disqualified for breaking these rules.

When you have a solution to problem number N that you wish to submit, use the
command

submit N

from the directory containing N.c, N.cc, or N.java. Before actually submitting your
program, submit will first compile it and run it on one sample input file. No submission
that is sent after the end of the contest will count. You should be aware that submit takes
some time before it actually sends a program. In an emergency, you can use

submit -f N

which submits problem N without any checks.
You will be penalized for incorrect submissions that get past the simple test adminis-

tered by submit, so be sure to test your programs (if you get a message from submit saying
that it failed, you will not be penalized). All tests will use the compilation command

contest-gcc N

followed by one or more execution tests of the form (Bourne shell):

./N < test-input-file > test-output-file 2> junk-file

which sends normal output to test-output-file and error output to junk-file. The output
from running each input file is then compared with a standard output file, or tested by a
program in cases where the output is not unique. In this comparison, leading and trailing
blanks are ignored and sequences of blanks are compressed to single blanks. Otherwise,
the comparison is literal; be sure to follow the output formats exactly. It will do no good
to argue about how trivially your program’s output differs from what is expected; you’d be
arguing with a program. Make sure that the last line of output ends with a newline. Your
program must not send any output to stderr; that is, the temporary file junk-file must be
empty at the end of execution. Each test is subject to a time limit of about 45 seconds.
You will be advised by mail whether your submissions pass.

The command contest-gcc N , where N is the number of a problem, is available to
you for developing and testing your solutions. For C and C++ programs, it is equivalent
to

gcc -Wall -o N -O -g -Iour-includes N.* -lstdc++ -lm

For Java programs, it is equivalent to

javac -g N.java

2002 Programming Problems 3

followed by a command that creates an executable file called N that runs the command

java PN

when executed (so that it makes the execution of Java programs look the same as execution
of C/C++ programs). The our-includes directory contains contest.h for C/C++, which
also supplies the standard header files. The files in ~ctest/submission-tests/N , where
N is a problem number, contain the input files and standard output files that submit uses
for its simple tests.

All input will be placed in stdin. You may assume that the input conforms to any
restrictions in the problem statement; you need not check the input for correctness. Con-
sequently, you are free to use scanf to read in numbers and strings and gets to read in
lines.

Terminology. The term free-form input indicates that input numbers, words, or tokens
are separated from each other by arbitrary whitespace characters. By standard C/UNIX
convention, a whitespace character is a space, tab, return, newline, formfeed, or vertical
tab character. A word or token, accordingly, is a sequence of non-whitespace characters
delimited on each side by either whitespace or the beginning or end of the input file.

Scoring. Scoring will be according to the ACM Contest Rules. You will be ranked by
the number of problems solved. Where two or more contestants complete the same number
of problems, they will be ranked by the total time required for the problems solved. The
total time is defined as the sum of the time consumed for each of the problems solved.
The time consumed on a problem is the time elapsed between the start of the contest and
successful submission, plus 20 minutes for each unsuccessful submission, and minus the
time spent judging your entries. Unsuccessful submissions of problems that are not solved
do not count. As a matter of strategy, you can derive from these rules that it is best to
work on the problems in order of increasing expected completion time.

Protests. Should you disagree with the rejection of one of your problems, first prepare
a file containing the explanation for your protest, and then use the protest command
(without arguments). It will ask you for the problem number, the submission number
(submission 1 is your first submission of a problem, 2 the second, etc.), and the name
of the file containing your explanation. Do not protest without first checking carefully;
groundless protests will be result in a 5-minute penalty (see Scoring above). The Judge
will not answer technical questions about C, C++, Java, the compilers, the editor, the
debugger, the shell, or the operating system.

Notices. During the contest, the Web page at URL

http://http.cs.berkeley.edu/~hilfingr/programming-contest/announce.html

will contain any urgent announcements, plus a running scoreboard showing who has solved
what problems. Sometimes, it is useful to see what problems others are solving, to give
you a clue as to what is easy.

2002 Programming Problems 4

2002 Programming Problems 5

1. Ataxx is a two-person game played with blue and red pieces on a 7-by-7 board (we,
however, will use white and black). As illustrated below, there are two possible kinds of
move: you can extend from a piece of your own color by laying down a new piece of your
color in an empty square next to that existing piece (horizontally, vertically, or diagonally),
or you can jump: move a piece of your own color to an empty, non-adjacent square that is
no more than two rows and no more than two columns distant. In either case, all opposing
pieces that are next to the previously empty destination square are replaced by pieces of
your color. Here is an example of an initial position (in the middle) and two possible moves
with the same piece. Squares marked × show black’s other possible jumps with that piece:

Initial positionAfter black move to adjacent square

× × × ×

× ×

× ×

× ×

× ×

After black jump

You are asked to implement a simple strategy to choose a best move for black in a given
situation. The problem is to find a black move that results in black having the most pieces
after white’s best next move (that is, after white makes a move resulting in the fewest
black pieces, or after white does nothing if he has no legal move). For example, starting
from the position in the middle, move A is best for black, since after white’s best move
(C), black will have 22 pieces rather than 20:

Initial position

A

C

B

D

2002 Programming Problems 6

The input to your program will consist of a sequence of board positions, each of which
is in the form of seven seven-character strings of w’s (white squares), b’s (black squares),
and hyphens (empty squares) in free form, as illustrated below. You may assume that
black has at least one move in each situation. Resolve ties as follows:

• Prefer to jump or extend from the piece that comes first when scanning the board
left-to-right, top-to-bottom. If two jumps or extensions are possible from a single
piece,

• Prefer to extend or jump to the empty square that comes first when scanning the
board left-to-right, top-to-bottom.

For each input board, print out the board number, the input board, and the board as
it would appear after black’s best move (that is, you do not show the results of white’s
responding moves). Again use the format shown. Put a blank line between input sets.
End of file terminates the input.

Example.

Input Output

bwwwwww ww-wwww wwwwwww wbwwwww

bbwbbbb

wwwbbbb

wwwbbbb

------- ------- ------- ------- -------

w------ wwbb---

Board 1.

bwwwwww -bbbwww

ww-wwww wbbbwww

wwwwwww wbbbwww

wbwwwww wbwwwww

bbwbbbb bbwbbbb

wwwbbbb wwwbbbb

wwwbbbb wwwbbbb

Board 2.

------- -------

------- -------

------- -------

------- -------

------- -------

w------ bb-----

wwbb--- bbbb---

2002 Programming Problems 7

2. A cartographer is trying to find the elevations of points within a rectangular patch of
land. The terrain within this patch is very hilly, but the surrounding land is essentially
flat, and all at the same elevation. Unfortunately, the cartographer’s instruments, while
fast, are a little crude. Basically, he has a simple radar device mounted beneath an airplane
that can fly over the land, look downward at a 300’-square (that’s 300 feet) patch beneath
it, and report the average elevation of the area it is looking at. He wants to divide the
land into 100’-square patches, and to find the average elevation within each patch, given a
large number of average-elevation readings from the plane and the positions at which they
were taken. You are to process these data into the information the cartographer wants. So
for example, if the territory in question is a 200′ × 200′ patch consisting of four 100′ × 100′

squares with the elevations shown below, and the plane measures the 300′ × 300′ dashed
square, it will get an average elevation reading of 411.111’, the average of a 500’-high
square, a 400’-high square, and seven other squares from the plain, all of which are 400’
high.

500’ 20’

400’ 100’

(0,0)

(200,200)

Area to be mapped

Plain, elevation 400’

Measured area,
average elevation 411.111’

(-200,-100)

The input to your program (in free format) consists first of two integers L and B, giving
respectively the east-west and north-south span of the hilly rectangle, in feet. Both will
be evenly divisible by 100. Next, you will get a series of triples representing readings in
the form

X Y E

where (X, Y) are the coordinates in feet of the southeast corner of a 300× 300 square, and
E (a floating-point number) is the average elevation in that square. Here, (0, 0) represents
the southeast corner of the hilly rectangle, with X increasing to the east, and Y to the
north. The pairs (X, Y) will include all those pairs for which X = 100kx and Y = 100ky for
integers kx and ky and −200 ≤ X < L and −200 ≤ Y < B, plus at least one calibration
reading that is entirely within the surrounding plain and does not include any of the
rectangle to be mapped (its coordinates will also be divisible by 100). Input ends at the

2002 Programming Problems 8

end of file.
The output will consist of the average elevations (to the nearest foot) of each 100×100

square in the hilly region (only) in the format shown below.

Example.

Input Output

200 200

-300 -300 400

-200 -100 411.111

-100 -200 366.667

-200 0 411.111

-100 -100 335.556

0 -200 366.667

-200 100 411.111

-100 0 335.556

0 -100 335.556

100 -200 366.667

-100 100 368.889

0 0 335.556

100 -100 324.444

0 100 368.889

100 0 324.444

100 100 357.778

500 20

400 100

2002 Programming Problems 9

3. [D. Garcia] Two players play the following game. They start with a list containing
an even number of integers. Each player in turn removes either the first or last remaining
item in the list until all are removed. Each player attempts to get the largest possible sum
(think of the numbers as representing numbers of gold coins). Your problem is to find a
sequence of moves that would be made if both players played optimally (that is, so as to
get the largest possible sum).

For example, given the sequence
6, 12, 0, 8

the first player’s best move is to remove the 8. Regardless of whether the second player
chooses 6 or 0, the first player will get the 12, so as to give the first player a total of 20
and the second player 6.

The input to your program will consist of a sequence of data sets in free format. Each
set begins with an even integer value 0 ≤ N < 80 giving the size of the list, followed by
the N non-negative integers in the list (free format). A value of N = 0 indicates the end
of the input.

The output is an optimal sequence of moves in the format shown in the example below—
a string of ‘F’s and ‘L’s, where ‘F’ means “choose the first item,” and ‘L’ means “choose
the last item.” Begin each set with a sequence number as shown, and separate sets with
a blank line. When choosing either end leads to an optimal sequence, prefer choosing the
first (therefore, the last choice is always ‘F’).

Example.

Input Output

4 6 12 0 8

6

0 7 2 3 4 5

0

Game 1: LFFF

Game 2: LFFLLF

2002 Programming Problems 10

2002 Programming Problems 11

4. A system of ponds is laid out in a checkerboard pattern. Pipes connect each pond to
its four neighbors (east, west, north, south). Water flows through the pipe between two
ponds at a rate that is proportional to the difference in the heights of the water in those
ponds. The ponds along the outer edge are constantly filled or drained as fast as needed
to keep them at constant, pre-set heights. Your problem is to compute an estimate of the
heights in all the interior ponds—those not on the edge—at equilibrium (that is, when the
total rate at which water flows into each interior pond from its higher neighbors is equal
to the rate flowing out to its lower neighbors, so that the pond’s height remains constant).
(The equilibrium height does not depend on the constant of proportionality that relates
differences in heights to rate of flow.)

300 200 200 300

100 174 167 161 153 50

100 130 133 123 100 50

100 112 114 97 74 50

100 106 112 77 50 50

100 150 50 0

In the diagram above, the interior comprises the ponds inside the square. The numbers
inside the ponds indicate the water’s equilibrium height above ground level to the nearest
centimeter. The dashed lines are pipes. The unconnected pipes leading from the ponds
along the exterior are connected to sources (or sinks) that maintain the external ponds at
the heights shown.

The input to your program (in free format) consists first of two integers, W and H,
giving the number of ponds in the interior in the east-west and north-south directions,
respectively. These are followed by 2(W + H) integers giving the constant exterior ponds’

2002 Programming Problems 12

heights in centimeters in the following order: W integers giving the heights along the
bottom from left to right (west to east), W integers giving the heights along the top from
left to right, H integers giving the heights along the left (west) side from bottom to top
(south to north), and H integers giving the heights along the right side from bottom to
top.

The output should give all the pond heights, including the external ponds, in the format
shown in the example. All numbers are to the nearest integer number of centimeters. You
may assume that the actual heights are at least 0.05 centimeters away from being halfway
between two integers (e.g., we will select the data so that the real height is never something
like 95.46, but might be 95.42). We will not be fussy about spacing.

Example.

Input Output

4 4

100 150 50 0

300 200 200 300

100 100 100 100

50 50 50 50

300 200 200 300

100 174 167 161 153 50

100 130 133 123 100 50

100 112 114 97 74 50

100 106 112 77 50 50

100 150 50 0

2002 Programming Problems 13

5. The city of East Murk is notorious for its haphazardly arranged roads and its com-
plete lack of street signs, a condition that has become a source of perverse pride with its
inhabitants. Visitors are forever getting lost and then calling their hosts with questions
such as “I’m at the corner of a couple of streets, there’s a pastry shop on the street that
goes northeast from here, and I got here by traveling west from another corner, passing
a coffee shop on the way. Where am I?” They don’t necessarily give all the details when
they do this (e.g., they might not mention the other streets leading out of the intersec-
tion or the other shops they saw). Also, they might get confused as to direction, so that
the northeast-running street in the example above might really be running north, and
the westbound street leading to it would, in that case, actually be going southwest. This
confusion, however, is consistent, in the sense that a visitor who mistakes west for north
also mistakes south for west. You have been asked to produce a database system that
can determine the possible locations of hapless visitors from this sort of incomplete and
inaccurate information.

For example, given the road system below (where ‘P’ stands for “pastry shop” and ‘C’
for “coffee shop,” ‘D’ for “car dealership,” and ‘M’ for “movie theater”), the sample query
above might be answered “You could be at intersections #3, #4, or #5.”

2

3

B, C

1

M,P

4
P,D

5

C P

6
C

7

P,M

8
C

The input (in free format) consists first of an integer, N > 1, giving the number of
intersections (intersections are identified by numbers ranging from 1 to N). An “intersec-
tion,” here may be a dead end (if there is only one road coming to it). Next, there follow
descriptions of road segments, zero or more, of the form

N1 N2 D S1 S2 · · ·Sk ;

Here,

• N1 and N2 are intersection numbers, with N1 < N2;

• D is a direction, which can be 0 (for north), 45 (for northeast), 90 (for east), etc., up
to 315 (for northwest);

• The Si identify types of shops (single, upper-case letters), and k ≥ 0.

• All items (including the semicolons) are separated from each other by whitespace.

2002 Programming Problems 14

If there is a road in direction D from N1 to N2, that implies that there is also a road from
N2 to N1 in the opposite direction (D+180 mod 360) with the same shops. Since N1 < N2

in the input, these implied connections are not explicitly listed. The list of connections ends
with N1 = N2 = D = 0 followed by a semicolon, after which come one or more queries. A
query has the same form as the first part of the data—a number of intersections, followed
by descriptions of road segments. The intersection numbers, of course, will generally have
no relationship to the real intersection numbers. The queries are terminated by a single
N value of 0. The roads listed in a query will always connect all the intersections in the
query; that is, using just the listed roads in any given query, you can always get from any
intersection in the query to any other.

Output the possible proper intersection numbers that intersection 1 in the query might
actually be, in ascending order of intersection number, in the format shown for the example.
Separate the output for one query from another with a blank line.

Example.

Input Output

8

2 3 180 B C ; 1 3 135 M P ;

3 4 270 P D ;

3 6 90 C ;

6 7 180 P M ;

4 5 135 C ;

3 5 225 P ;

5 8 90 C ;

0 0 0 ;

3

1 2 90 C ;

1 3 45 P ;

0 0 0 ;

3

1 2 180 P ;

1 3 90 D ;

0 0 0 ;

0

Query 1: 3 4 5

Query 2:

2002 Programming Problems 15

6. The Java language has a definite assignment rule, which guarantees that each local
variable is assigned to before its value is first used. The rule guarantees this by enforcing
a more stringent condition. For example, consider the following block,

x = true ;

if (x) {

y = true ;

}

while (x) {

x = false ;

z = true ;

}

q = z ; // ERROR

if (y) { // ERROR

q = x ;

}

According to the definite assignment rule, the last two assignments are illegal because
neither z nor y has been “definitely assigned” to before their value is used (in an assignment
or test). The rule, in other words, assumes that each if test might go either way, and each
while loop might or might not execute each time around, regardless of what the tests are.
It then checks that regardless of which way the tests go, all variables are assigned to before
being used. (In the assignment x = x&&y, x is used on the right-hand side before it is
assigned to.)

You are to write a program that tests that the definite assignment rule is followed. We
use a vastly simplified Java syntax for input:

• No declarations, all variables are single-letter, lower-case, and boolean and are as-
sumed to be already declared and to start out unassigned.

• No comments.

• All adjacent tokens (variables, punctuation marks, keywords, operators) are sepa-
rated by whitespace.

• All if statements have elses.

• All expressions are either true, false, or a sequence of variables separated by &&

operators (e.g., x&&y&&z).

• The bodies of while statements, and the two branches of each if are blocks (i.e., have
{} around them).

• The only other kinds of statements besides if and while are assignments to a simple
variable.

Your output will be either the single statement “OK” or “Definite assignment error.”

2002 Programming Problems 16

Example 1.

Input Output

z = true ;

if (z) {

x = true ; y = false ; r = true ;

} else {

y = true ;

if (z) { x = false ; } else { }

}

while (y) { q = true ; y = false ; }

if (z) { q = y ; }

else { r = r && y ; q = q && x ; }

Definite assignment error

Example 2.

Input Output

z = true ;

if (z) {

x = true ; y = false ; r = true ;

} else {

y = true ;

if (z) { x = false ; }

else { x = y && z ; }

}

q = true ;

if (z) { q = y ;

} else { r = r && y ; q = q && x ; }

OK

2002 Programming Problems 17

7. The infamous prisons on Haunted Simplex Island are all built out of unscalable walls
in the shape of immensely elaborate simple (non-self-intersecting) polygons of enormous
extent. The outsides of the walls look just like the insides, and the sadistic jailors often
delight in placing the prisoner outside the jail wall (without telling him, of course), next
to an immovable source of water. Not wanting to risk dying of thirst (it is very hot on the
island), prisoners will generally stick close to the water rather than exploring to see what
side of the wall they are on. If a prisoner did know that he was outside, he would probably
risk searching for the exit. For example, prisoner A below is actually free, and B is not.

• A

• B

Given a description of the wall and a prisoner’s position, determine whether the prisoner
is actually free. The input to your program will consist of a pair of integer coordinates
Px and Py, giving the prisoner’s position, an integer, 3 ≤ N < 200, giving the number of
walls, and N sets of coordinates, Xi and Yi, of the corners where adjacent sections of the
wall meet, where each coordinate may range from 0 to 100000. The corners are listed in
clockwise order around the wall from an arbitrary starting point. There is an implicit wall
section between the last corner listed and the first. You may assume the prisoner is not on
the wall, that the wall segments do not intersect except at the corners (and that only two
wall segments join there), and that (although it is really strong) the wall is infinitely thin.

Print out either “The prisoner is free” or “The prisoner is confined”, as shown in the
examples on the next page.

2002 Programming Problems 18

Example 1.

Input Output

175 225

17

100 250 350 300 400 250

300 150 250 50 200 50

100 0 50 150 100 150

150 50 250 150 250 200

350 250 150 250 200 150

150 100 150 200

The prisoner is free

Example 2.

Input Output

225 75

17

100 250 350 300 400 250

300 150 250 50 200 50

100 0 50 150 100 150

150 50

250 150

250 200

350 250 150 250 200 150

150 100 150 200

The prisoner is confined

2002 Programming Problems 19

8. The procmail program is a UNIX tool in the war against spam. Here, we’ll consider a
much-simplified variant. Essentially, it is a filter that distributes incoming e-mail messages
into files (including /dev/null, the UNIX bit bucket, and the only appropriate file for
spam), as determined by a configuration file. For this problem, we use a vastly simplified
version of this configuration file. Here is an example:

:0

*Content-Type:.*html

*Precedence: bulk

/dev/null

:0

*.*PRCS

$HOME/Mail/PRCS

Each group of lines beginning with a line “:0” starts a rule. The one or more lines beginning
with ‘*’ that follow are patterns. If each of them matches some line in the message being
filtered (not necessarily the same line), then the message is directed to the file named
by the line that follows that last pattern of the rule. If more than one rule applies to a
message, the first rule is used. If no rule applies, the message is directed to a special file
called $DEFAULT. Any blank lines among the rules are ignored.

A pattern matches a line if, after stripping off the leading asterisk, the pattern matches
some prefix of the line, given that ‘.’ matches any character, ‘.*’ matches any string of
0 or more characters, and all other characters (including *, if it does not follow a period)
match only themselves. For example, the pattern line

*Content-Type:.*html

will match either of the lines

Content-Type:html, charset=us-ascii

Content-Type: text/html, charset=us-ascii

but not

The Content-Type field contains "html"

since what it does match is not a prefix of the line.
The input to your program will consist of sequence of rules like these, followed by a

line

::

and then by a single message. The output should be the name of the file to which the
message should be directed, as shown in the example on the next page.

2002 Programming Problems 20

Example:

Input Output

:0

*Content-Type:.*html

*Precedence: bulk

/dev/null

:0

*.*PRCS

$HOME/Mail/PRCS

::

Date: Tue, 2 Oct 2001 17:02:03 -0700 (PDT)

From: John Doe <doe2048@hotmail.com>

To: hilfingr@syracuse.mckusick.com

Subject: Source code control?

Content-Type: text

Hello,

I understand you have something to do with

a program for doing source-code control

called PRCS. What can you tell me about

it?

J. Doe

$HOME/Mail/PRCS

