
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

Programming Contest P. N. Hilfinger

Fall 2003

2003 Programming Problems, Revised∗

If you are participating in the contest, please send me e-mail as soon as possible from the
account you use to submit solutions. Use

Contest registration

(written just like that) as the subject line. Include in the body of the message one line
that starts with your name. If your usual e-mail address differs from the login you use for
the contest, also include that e-mail address.

To set up your account, execute

source ~ctest/bin/setup

in all shells that you are using. (This is for those of you using csh-like shells. Those using
bash should instead type

. ~ctest/bin/setup.bash

Others will have to examine this file and do the equivalent for their shells.)
This booklet should contain eight problems on 20 pages. You have 5 hours in which

to solve as many of them as possible. Put each complete C solution into a file N.c,
each complete C++ solution into a file N.cc, and each complete Java program into a file
N.java, where N is the number of the problem. Each program must reside entirely in a
single file. In Java, the class containing the main program for problem N must be named
PN (yes, it is OK to have a Java source file whose base name consists of a number, even
though it doesn’t match the name of the class). Each C/C++ file should start with the
line

#include "contest.h"

∗Problem revisions 3 May 2004.

1

2003 Programming Problems, Revised 2

and must contain no other #include directives, except as indicated below. Upon comple-
tion, each program must terminate by calling exit(0) (or System.exit(0) in Java).

Aside from files in the standard system libraries and those we supply, you may not use
any pre-existing computer-readable files to supply source or object code; you must type in
everything yourself. Selected portions of the standard g++ class library are included among
of the standard libraries you may use: specifically, the headers string, vector, iostream,
iomanip, strstream, fstream, and algorithms. Likewise, you can use the standard C I/O
libraries (in either C or C++), and the math library (header math.h). In Java, you may use
the standard packages java.lang, java.io, java.text, and java.util, and the Berkeley
packages that you may have used in CS61B. You may not use utilities such as yacc, bison,
lex, or flex to produce programs. Your programs may not create other processes (as with
the system, popen, fork, or exec series of calls). You may use any inanimate reference
materials you desire, but no people. You can be disqualified for breaking these rules.

When you have a solution to problem number N that you wish to submit, use the
command

submit N

from the directory containing N.c, N.cc, or N.java. Before actually submitting your
program, submit will first compile it and run it on one sample input file. No submission
that is sent after the end of the contest will count. You should be aware that submit takes
some time before it actually sends a program. In an emergency, you can use

submit -f N

which submits problem N without any checks.
You will be penalized for incorrect submissions that get past the simple test adminis-

tered by submit, so be sure to test your programs (if you get a message from submit saying
that it failed, you will not be penalized). All tests will use the compilation command

contest-gcc N

followed by one or more execution tests of the form (Bourne shell):

./N < test-input-file > test-output-file 2> junk-file

which sends normal output to test-output-file and error output to junk-file. The output
from running each input file is then compared with a standard output file, or tested by a
program in cases where the output is not unique. In this comparison, leading and trailing
blanks are ignored and sequences of blanks are compressed to single blanks. Otherwise,
the comparison is literal; be sure to follow the output formats exactly. It will do no good
to argue about how trivially your program’s output differs from what is expected; you’d be
arguing with a program. Make sure that the last line of output ends with a newline. Your
program must not send any output to stderr; that is, the temporary file junk-file must be
empty at the end of execution. Each test is subject to a time limit of about 45 seconds.
You will be advised by mail whether your submissions pass.

2003 Programming Problems, Revised 3

The command contest-gcc N , where N is the number of a problem, is available to
you for developing and testing your solutions. For C and C++ programs, it is roughly
equivalent to

gcc -Wall -o N -O2 -g -Iour-includes N.* -lm

For Java programs, it is equivalent to

javac -g N.java

followed by a command that creates an executable file called N that runs the command

java PN

when executed (so that it makes the execution of Java programs look the same as execution
of C/C++ programs). The our-includes directory contains contest.h for C/C++, which
also supplies the standard header files. The files in ~ctest/submission-tests/N , where
N is a problem number, contain the input files and standard output files that submit uses
for its simple tests.

All input will be placed in stdin. You may assume that the input conforms to any
restrictions in the problem statement; you need not check the input for correctness. Con-
sequently, you are free to use scanf to read in numbers and strings and gets to read in
lines.

Terminology. The term free-form input indicates that input numbers, words, or tokens
are separated from each other by arbitrary whitespace characters. By standard C/UNIX
convention, a whitespace character is a space, tab, return, newline, formfeed, or vertical
tab character. A word or token, accordingly, is a sequence of non-whitespace characters
delimited on each side by either whitespace or the beginning or end of the input file.

Scoring. Scoring will be according to the ACM Contest Rules. You will be ranked by
the number of problems solved. Where two or more contestants complete the same number
of problems, they will be ranked by the total time required for the problems solved. The
total time is defined as the sum of the time consumed for each of the problems solved.
The time consumed on a problem is the time elapsed between the start of the contest and
successful submission, plus 20 minutes for each unsuccessful submission, and minus the
time spent judging your entries. Unsuccessful submissions of problems that are not solved
do not count. As a matter of strategy, you can derive from these rules that it is best to
work on the problems in order of increasing expected completion time.

Protests. Should you disagree with the rejection of one of your problems, first prepare
a file containing the explanation for your protest, and then use the protest command
(without arguments). It will ask you for the problem number, the submission number
(submission 1 is your first submission of a problem, 2 the second, etc.), and the name
of the file containing your explanation. Do not protest without first checking carefully;

2003 Programming Problems, Revised 4

groundless protests will be result in a 5-minute penalty (see Scoring above). The Judge
will not answer technical questions about C, C++, Java, the compilers, the editor, the
debugger, the shell, or the operating system.

Notices. During the contest, the Web page at URL

http://http.cs.berkeley.edu/~hilfingr/programming-contest/announce.html

will contain any urgent announcements, plus a running scoreboard showing who has solved
what problems. Sometimes, it is useful to see what problems others are solving, to give
you a clue as to what is easy.

2003 Programming Problems, Revised 5

2003 Programming Problems, Revised 6

1. [With thanks to an anonymous Microsoft interviewer] Find the largest rectangle (in
area) that will fit within a union of rectangular regions. The sides of all rectangles are
either horizontal or vertical. In the diagram below, for example, the gray rectangular region
(area 40) is the largest that will fit in the area covered by the four outlined rectangles. The
rectangles may overlap

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

The input to your program will consist of one or more sets of rectangles. Each set begins
with an integer, N , giving the number of rectangles in the set, followed by N groups of
four non-negative real numbers in free format. The numbers in each group are x, y, w, h,
where (x, y) are the coordinates of the lower-left corner of a rectangle whose width is w
and whose height is h. The last set of rectangles is followed by a single 0. You may assume
there will be a maximum of 500 rectangles. The data will be chosen so that the sides of
what are supposed to be adjacent rectangles agree exactly in their x (for vertical sides) or
y (horizontal) coordinates—that is, you will not have to worry about round-off error. The
range of the data can be accommodated with double-precision arithmetic.

For each set, the output is the area of a rectangular region of maximum size that lies
within the union of rectangles, rounded down to the next integer. Use the format shown
in the example on the next page.

2003 Programming Problems, Revised 7

Example.
Input Output

4

4 3 3 6 7 4 6 4 6 2 6 3

13 2 6 4

4

4 3 3 6 7 3.15 6 4

6 2 6 3 13 2 6 4

0

Set 1. Maximum region: 40

Set 2. Maximum region: 42

2003 Programming Problems, Revised 8

2. [D. Garcia] Your job is to buy a certain number of widgets, W , for a certain amount
of money, $B. Widgets come in N different varieties, and the cost of one widget of variety
i is Ci, 1 ≤ i ≤ N . For example, if there are N = 4 varieties of widget whose costs are
C1 = 3, C2 = 4, C3 = 7, and C4 = 18, and you have B = 20 dollars with which to buy
exactly W = 5 widgets, then you could buy one $7 widget, one $4 widget, and three $3
widgets.

The input to your program is in free format and consists of one or more sets. Each set
starts with three positive integers that supply values for W , B, and N , respectively. These
are followed by N positive integers C1, . . . , CN . A set that starts with three 0’s ends the
input.

For each set of data in the input, produce either a list of numbers of widgets to buy
in each of the N categories (in order by increasing category number), including only those
types of widgets of which you buy at least one. If no solution is possible, print the word
”Impossible”. Put a blank line between sets of output. Use the format given in the example
below.

Example.

Input Output

5 20 4 3 4 18 7

5 20 4

3 9 6 15

0 0 0

Set 1:

3 of type 1

1 of type 2

1 of type 4

Set 2:

Impossible

2003 Programming Problems, Revised 9

2003 Programming Problems, Revised 10

3. [D. Garcia] Toroidal Lunar Lockout is a game played on a 5× 5 board that consists of
attempting to move a certain piece (marked ‘X’) in the diagram below to a central home
square (shaded in the diagrams). Each move in this game consists of choosing one of the
pieces (either X, or a helper ’bot (robot) labeled with a letter A–J or X) and moving it in
one of four directions—up, down, right, or left—until it runs into another piece. The board
is toroidal, so that pieces that cross over the left edge of the board end up in the rightmost
square of the same row, and likewise for the right, top, and bottom. It is illegal to move
a piece in a direction where it never encounters another piece (and would therefore travel
forever). For example, starting in the configuration on the left below, the three moves
shown solve the puzzle.

A

B

C D

E

X

A

B

C D

E

X

A

B

C D

E

X

A

B

C D

E

X

Given an initial configuration of this game, you are to find a solution of minimum
length. Where more than one solution is possible, find the one in which at each step, the
piece moved is furthest to the left on the lowest row.

The input will consist of one or more sets of numbers in free format. Each set starts
with an integer, 0 < N ≤ 10, giving the number of ’bots. The names of the ’bots are
the first N letters of the alphabet. There is always one X piece. Next come N + 1 pairs
of integers giving first the row number (0–4, numbering from the bottom) and then the
column number (0–4, numbering from the left) of each piece. The ‘X’ piece is the first set
of numbers, then ‘A’, ‘B’, and so forth.

The last set is followed by a 0. Output for each set should consist of the set number
followed either by a list of moves, or the phrase ”No solution”. The list of moves has the
form of a list of groups P–d, where P is the name a piece, and the d indicate the direction
of its moves: U for up, D for down, L for left, R for right (group adjacent moves for a
single piece together). Use the format shown in the example below, separating output sets
with a single blank line.

2003 Programming Problems, Revised 11

Example.

Input Output

5 0 0 2 1 4 1 3 3 3 4 4 4

3 0 0 1 1 2 2 3 3

0

Set 1:

C-L X-U X-L

Set 2:

No solution

2003 Programming Problems, Revised 12

4. The technique of shotgun sequencing is being used these days to determine the DNA
sequence of a growing list of organisms. Here, we’ll consider a vastly simplified procedure;
for many reasons, it could only work only for the DNA of some unspecified extra-terrestrial
organisms (whose DNA looks to us like “junk DNA”), and would require perfect lab tech-
nique.

Abstractly, we can specify a single DNA molecule as a string from an alphabet contain-
ing the four characters A(denine), G(uanine), and T(hymine), and C(ytosine)—the first
letters of the names of four nitrogen bases. The string of bases is actually just one of two
complementary sequences. For this problem, we are going to ignore this complication and
pretend that we can look selectively at just one of the sequences.

We have no way of determining the entire string directly for DNA of any realistic size, so
instead we create many duplicate molecules of the DNA being studied and then break them
up into fragments at random locations, and obtain instead a large number of substrings of
the string. Because of how they are created, many of these substrings will overlap. Assume
there is a fragment that covers every base in either string. The problem is: given this set
of fragments, reconstruct the sequence. There is not generally a unique solution, so we will
find one that yields the shortest possible string (for earthly life, this would not be a good
heuristic).

For example, here are a set of fragments aligned above a strand they might come from:

GTTATTGCCAACAGCA

TACTGTTGCAT AACAGCAGTGGA

GCATGTTG GGGGGTATCGCAGGCCT

ATGTTGGAGTTATT TGGAGGGGGTA AGGCCTGATCGCAC

CATGTTGGAGTT AGCAGTGG

TACTGTTGCATGTTGGAGTTATTGCCAACAGCAGTGGAGGGGGTATCGCAGGCCTGATCGCAC

The input to your program will consist of one or more sets of data in free format.
Each set starts with an integer, N , followed by N fragments. Each fragment is a string of
≤ 200 characters from the (upper-case) AGTC alphabet. A set starting with the integer
0 terminates the input. Use the format shown in the example on the next page for the
output, printing in ten groups of three per line (or possibly fewer at the end of the string),
and leaving a blank line between sets. Assume that there is a unique solution for each
input.

2003 Programming Problems, Revised 13

Example.

Input Output

10

TGGAGGGGGTA

GTTATTGCCAACAGCA

AGCAGTGG

TACTGTTGCAT AGGCCTGATCGCAC

GGGGGTATCGCAGGCCT

GCATGTTG AACAGCAGTGGA

ATGTTGGAGTTATT

CATGTTGGAGTT

0

Set 1:

TAC TGT TGC ATG TTG GAG TTA TTG CCA ACA

GCA GTG GAG GGG GTA TCG CAG GCC TGA TCG

CAC

2003 Programming Problems, Revised 14

5. The Recidivists, one of the two major political parties in the country of LaTexas,
would like to increase still further their control over the government with a little creative
redistricting (what we in this country call “gerrymandering”). Their country is shaped like
a rectangle, which was long ago surveyed and divided into W ×H grid squares—W squares
west-to-east, and H squares north-to-south. There are supposed to be D non-overlapping
districts of roughly equal population, each comprising an integral number of grid squares.
The total population of LaTexas is T , so each district should have about T/D people in
it. There are data from a recent poll and census that give the numbers of Recidivists and
Demagogues (the opposing party) in each grid square. People in LaTexas tend to have
strong opinions; nobody is “undecided” as to party.

The Recidivists want an assignment of grid squares to districts that will maximize
the number of districts in which they have a majority. They must comply with certain
constraints, lest they push the Demagogues too far, and cause them to decamp for Tahiti
in order to deprive the LaTexan legislature of a quorum:

1. Any grid square in a district must be reachable from any other by a path that
lies entirely within that district and proceeds only vertically or horizontally (never
diagonally) from one square to the next.

2. The population of a district D may be lower than T/D if there is a single grid square
adjacent to one of its grid squares (horizontally or vertically) that would bring its
population above T/D if it were added to the district.

3. There may be at most one district whose population is above T/D.

For example, given the data below, and D = 3, we can give the Recidivists a 2/3 majority
of districts by dividing the districts as shown. (The thick lines are district boundaries. The
notation d/r means “100d Demagogues and 100r Recidivists.”

5/1 2/3 4/4 6/7 3/4

6/2 5/1 2/1 6/4 5/6

3/4 2/5 9/3 7/2 5/1

1/6 4/3 4/3 2/2 5/5

The input to your program will consist of one or more sets of data in free format. Each
set begins with three integers: W , H , and D. These are followed by 2WH values indicating
the populations of Demagogues and Recidivists in each district from west to east (left to
right), and north to south. The last set is followed by three 0’s.

The output should be a single line for each set in the format shown in the example. A
single blank line separates sets. You may assume that it is possible to solve each set.

Example.

2003 Programming Problems, Revised 15

Input Output

5 4 3

5 1 2 3 4 4 6 7 3 4

6 2 5 1 2 1 6 4 5 6

3 4 2 5 9 3 7 2 5 1

1 6 4 3 4 3 2 2 5 5

5 4 3

1 5 3 2 4 4 7 6 4 3

6 2 1 5 1 2 4 6 6 5

4 3 5 2 3 9 2 7 1 5

6 1 3 4 3 4 2 2 5 5

0 0 0

Set 1: 2 out of 3 districts can be Recidivist.

Set 2: 3 out of 3 districts can be Recidivist.

2003 Programming Problems, Revised 16

6. A number of systems now allow one to maintain multiple versions of a single file by, in
effect, saving only the changes from one version to the next. Consider a scheme for storing
N versions of a file, numbered from 1 (earliest) to N (latest), in two files: a data file,

containing the actual characters (“the bits”), and an administrative file, which tells how
to reconstruct any desired version of the file’s contents from the data file or from previous
versions.

For example, consider a one-line file that has gone through the following versions (the
two lines at the end show character indices into the files’ contents):

Version 1: the what she did.

Version 2: the who of the what she did.

Version 3: the who of the what of the what she did.

Version 4: The who of the what of the what she did.

+---------+---------+---------+---------+

0 10 20 30 40

This could be represented with the following data file:

the what she did.who ofT

+---------+---------+---------+

0 10 20 30

and the following administrative file:

4

0 0 17 -1

1 0 4 0 17 6 0 20 1 1 0 17 -1

2 0 20 3 8 12 2 20 8 -1

0 23 1 3 1 39 -1

The administrative file starts with an integer, N , giving the number of versions, followed
by a sequence of N version constructors. A version constructor consists a sequence of
substring selectors, terminated by a -1. Each substring selector has the form V K L,
where V is a version number or 0, K is a character index within the version (0-based, as
shown), and L is a length. A substring selector selects the L-character substring of version

V that begins at the Kth character. Version 0 refers to the raw contents of the data file.
The concatenation of the substrings specified by the substring selectors in the order they
appear is the text of a version. As the example shows, a substring selector that is part of
a version constructor for version V1 may specify any V such that 0 ≤ V < V1. It may also
specify V = V1, but only if K and L refer to a portion of the text that has already been
constructed by previous substring selectors for version V1 (for example, see the substring
selector “3 8 12” in the version constructor for version 3, above).

The input to your program will consist of a data file terminated by a line that begins
with the ‘@’ character. All end-of-line characters preceding the ‘@’ are part of the data
file. As per the UNIX convention, ends of lines are marked with single newline characters.

2003 Programming Problems, Revised 17

You may assume that the size of the data file is ≤ 216. Following the form feed is the
administrative file described above in free format.

The output should consist of the reconstructed versions, printed as shown in the exam-
ple below.

Example.

Input Output

the what she did.who ofT

@

4

0 0 17 -1

1 0 4 0 17 6 0 20 1 1 0 17 -1

2 0 20 3 8 12 2 20 8 -1

0 23 1 3 1 39 -1

Version 1:

the what she did.

Version 2:

the who of the what she did.

Version 3:

the who of the what of the what she did.

Version 4:

The who of the what of the what she did.

2003 Programming Problems, Revised 18

7. A lazy surveyor is attempting to determine the dimensions of a set of buildings in a
city. He stands on a straight east-west running path the lies south of the city limits. His
instruments allow him to determine the angle of elevation from the ground and azimuth
(the angle left or right of due north) of any point in the city he can see. Unfortunately,
between the fog and the pollution, he can only see the flashing warning lights that are
mounted at the four top corners of each building, and can’t always see them all. He is
able to move east and west along the path and get new sightings, but not always of the
same flashing lights. Fortunately, the lights all flash in subtly different patterns, so he
knows when he has multiple sightings of the same light. The tops of each building form
a perfectly level rectangle (their corners are all at the same height), with edges aligned
east-west or north-south. No two buildings have the same height.

0

50

100

150
-150 -100 -50 0 50 100 150 N

5

9

8 1

2 3

surveyororigin

Given a set of readings of azimuth and elevation, you are to reconstruct the positions
and dimensions of as many buildings as possible. Report only those buildings for which
you have enough data to give all information.

The input will come in free-format sets. Each set begins with an integer, N > 0, giving
the number of readings that follow. Each reading consists of an integer, K, followed by
three floating-point numbers: p, a, and e. The value K identifies each light; it is arbitrary,
but two readings are for the same light if and only if they have the same K (the small
numbers in the diagram above indicate K values). The value p is the position of the
surveyor on the path at the time of the reading, in feet east of an arbitrary origin on
the path (p < 0 for positions west of the origin). Azimuth a is the angle clockwise from
north (in degrees) of the light (−90 < a < 90). Elevation e is the angle above the horizon
of the light in degrees (0 < e < 90). For simplity, let’s pretend the surveyor takes his
measurements while lying on the ground. The last input set is followed by the integer 0.

Your output should give the position of the southwest corner of each building whose
position and dimensions can be totally reconstructed from the data, followed by the width
east-to-west, the depth north-to- south, and the height. Positions are specified as (x, y),
where x is the position in feet east of the origin on the path, and y is feet north (y > 0).
Use the format shown in the example, separating sets of output with a blank line. Round
all numbers to the nearest foot. List buildings found in order of increasing height.

2003 Programming Problems, Revised 19

Example.

Input Output

12

3 150 -12.8043 35.3438

1 150 -26.5651 55.0553

5 150 -50.1944 50.8693

9 150 -69.444 48.3309

5 25 -11.3099 62.0251

8 25 26.5651 55.0553

9 25 -45 66.1574

2 25 12.8043 35.3438

1 -25 71.5651 26.8378

2 -25 34.2869 31.0013

9 -100 33.6901 69.4149

8 -100 71.5651 26.8378

10

3 150 -12.8043 35.3438

1 150 -26.5651 55.0553

5 150 -50.1944 50.8693

5 25 -11.3099 62.0251

8 25 26.5651 55.0553

9 25 -45 66.1574

1 -25 71.5651 26.8378

2 -25 34.2869 31.0013

9 -100 33.6901 69.4149

8 -100 71.5651 26.8378

0

Set 1:

Building #1 is at (50,50) and has dimensions 75x60x80.

Building #2 is at (-50,75) and has dimensions 50x50x240.

Set 2:

Building #1 is at (-50,75) and has dimensions 50x50x240.

2003 Programming Problems, Revised 20

8. The game of Pherkadean Fizzbin is played by two players with a deck of the cards
peculiar to the planet Pherkad Minor II. These cards have seven suits and eleven ranks.
We humans generally just call the suits A–G and the ranks 1–11, in order to avoid dealing
with the disturbingly bizarre names and images the Pherkadean culture has chosen for the
suits (the name of the highest, for example, translates roughly as “the smell of napalm in
the morning”).

To play one round, the dealer gives both players some number, 1 < N ≤ 38, of cards
(which varies depending on the level of difficulty involved). The dealer then arranges his
cards in a left-to-right row face up in front of him. His opponent must then place one
of his cards next to each of the dealer’s cards, after which the round is scored. Scoring
works by adding individual scores for each of the opponent’s cards, giving the total to the
dealer (the deal alternates between players). The score for any given card is the maximum
absolute value of the difference between that card’s value (see below) and the values of the
three nearest cards in the dealer’s hand (i.e., the dealer card next to the opponent’s card
and the two dealer cards on either side of it, or, when the opponent’s card is on an end,
the three dealer cards at that end). The value of the opponent’s card is its rank (1–11);
that of a dealer card is its rank, plus 10 if its suit matches that of the opponent’s card.
Thus, an opponent’s B9 next to the dealer’s B2, F7, and G11 gives 3 points to the dealer
(the maximum of |9 − (10 + 2)|, |9 − 7|, and |9 − 11|).

You are to write a program that, given the row of cards that the dealer has laid out,
and the opponent’s hand, determines the best way to for the opponent to match up his
cards with the dealer’s (i.e., giving the dealer the lowest possible score). For example, if
N = 5 the dealer lays out

A1 B5 G11 G6 B9

and the opponent has B11, G2, F10, B1, and G3, then a best layout for the opponent best
layouts is

A1 B5 G11 G6 B9

G2 B1 B11 F10 G3

for a score of 60.
The input to your program will consist of an integer, N , giving the number of cards

in each hand, followed by the dealer’s layout in the format shown above, followed by the
opponent’s cards. Input is in free format. The output should consist only of the best
possible score, in the format shown in the example below.

Example.
Input Output

5

A1 B5 G11 G6 B9

B11 G2 F10 B1 G3

Best score is 60.

