
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

Programming Contest, Sponsored by Google P. N. Hilfinger

Fall 2007

2007 Programming Problems

Please make sure your electronic registration is up to date, and that it contains the correct
account you are going to be using to submit solutions (we connect names with accounts
using the registration data).

To set up your account, execute

source ~ctest/bin/setup

in all shells that you are using. (This is for those of you using csh-like shells. Those using
bash should instead type

source ~ctest/bin/setup.bash

Others will have to examine this file and do the equivalent for their shells.)
This booklet should contain eight problems on 17 pages. You have 5 hours in which

to solve as many of them as possible. Put each complete C solution into a file N.c,
each complete C++ solution into a file N.cc, and each complete Java program into a file
N.java, where N is the number of the problem. Each program must reside entirely in a
single file. In Java, the class containing the main program for problem N must be named
PN (yes, it is OK to have a Java source file whose base name consists of a number, even
though it doesn’t match the name of the class). Do not make class PN public, or the Java
compiler will complain. Each C/C++ file should start with the line

#include "contest.h"

and must contain no other #include directives, except as indicated below. Upon comple-
tion, each program must terminate by calling exit(0) (or System.exit(0) in Java).

Aside from files in the standard system libraries and those we supply, you may not use
any pre-existing computer-readable files to supply source or object code; you must type
in everything yourself. Selected portions of the standard g++ class library are included
among of the standard libraries you may use: specifically, the headers string, vector,
iostream, iomanip, sstream, fstream, map, and algorithms. Likewise, you can use the
standard C I/O libraries (in either C or C++), and the math library (header math.h). In
Java, you may use the standard packages java.lang, java.io, java.text, java.math,

1

2007 Programming Problems 2

and java.util and their subpackages. You may not use utilities such as yacc, bison, lex,
or flex to produce programs. Your programs may not create other processes (as with the
system, popen, fork, or exec series of calls or their Java-library equivalents). You may
use any inanimate reference materials you desire, but no people. You can be disqualified
for breaking these rules.

When you have a solution to problem number N that you wish to submit, use the
command

submit N

from the directory containing N.c, N.cc, or N.java. Before actually submitting your
program, submit will first compile it and run it on one sample input file. No submission
that is sent after the end of the contest will count. You should be aware that submit takes
some time before it actually sends a program. In an emergency, you can use

submit -f N

which submits problem N without compiling or running it.
You will be penalized for incorrect submissions that get past the simple test admin-

istered by submit, so be sure to test your programs (if you get a message from submit

saying that it failed, you will not be penalized). All tests (for any language) will use the
compilation command

contest-gcc N

followed by one or more execution tests of the form (Bourne shell):

./N < test-input-file > test-output-file 2> junk-file

which sends normal output to test-output-file and error output to junk-file. The output
from running each input file is then compared with a standard output file, or tested by a
program in cases where the output is not unique. In this comparison, leading and trailing
blanks are ignored and sequences of blanks are compressed to single blanks. Otherwise,
the comparison is literal; be sure to follow the output formats exactly. It will do no good
to argue about how trivially your program’s output differs from what is expected; you’d be
arguing with a program. Make sure that the last line of output ends with a newline. Your
program must not send any output to stderr; that is, the temporary file junk-file must be
empty at the end of execution. Each test is subject to a time limit of about 45 seconds.
You will be advised by mail whether your submissions pass.

In the actual ACM contests, you will not be given nearly as much information about
errors in your submissions as you receive here. Indeed, it may occur to you to simply
take the results you get back from our automated judge and rewrite your program to print
them out verbatim when your program receives the corresponding input. Be warned that
I will feel free to fail any submission in which I find this sort of hanky-panky going on
(retroactively, if need be).

The command contest-gcc N , where N is the number of a problem, is available to
you for developing and testing your solutions. For C and C++ programs, it is roughly
equivalent to

2007 Programming Problems 3

gcc -Wall -o N -O2 -g -Iour-includes N.* -lm

For Java programs, it is equivalent to

javac -g N.java

followed by a command that creates an executable file called N that runs the command

java PN

when executed (so that it makes the execution of Java programs look the same as ex-
ecution of C/C++ programs). The our-includes directory (typically ~ctest/include)
contains contest.h for C/C++, which also supplies the standard header files. The files
in ~ctest/submission-tests/N , where N is a problem number, contain the input files
and standard output files that submit uses for its simple tests.

All input will be placed in stdin. You may assume that the input conforms to any
restrictions in the problem statement; you need not check the input for correctness. Con-
sequently, you C/C++ programmers are free to use scanf to read in numbers and strings
and gets to read in lines.

Terminology. The terms free format and free-format input indicate that input numbers,
words, or tokens are separated from each other by arbitrary whitespace characters. By
standard C/UNIX convention, a whitespace character is a space, tab, return, newline,
formfeed, or vertical tab character. A word or token, accordingly, is a sequence of non-
whitespace characters delimited on each side by either whitespace or the beginning or end
of the input file.

Scoring. Scoring will be according to the ACM Contest Rules. You will be ranked by
the number of problems solved. Where two or more contestants complete the same number
of problems, they will be ranked by the total time required for the problems solved. The
total time is defined as the sum of the time consumed for each of the problems solved.
The time consumed on a problem is the time elapsed between the start of the contest and
successful submission, plus 20 minutes for each unsuccessful submission, and minus the
time spent judging your entries. Unsuccessful submissions of problems that are not solved
do not count. As a matter of strategy, you can derive from these rules that it is best to
work on the problems in order of increasing expected completion time.

Protests. Should you disagree with the rejection of one of your problems, first prepare
a file containing the explanation for your protest, and then use the protest command
(without arguments). It will ask you for the problem number, the submission number
(submission 1 is your first submission of a problem, 2 the second, etc.), and the name
of the file containing your explanation. Do not protest without first checking carefully;
groundless protests will be result in a 5-minute penalty (see Scoring above). The Judge
will not answer technical questions about C, C++, Java, the compilers, the editor, the
debugger, the shell, or the operating system.

2007 Programming Problems 4

Notices. During the contest, the Web page at URL

http://inst.cs.berkeley.edu/~ctest/contest/announce.html

will contain any urgent announcements, plus a running scoreboard showing who has solved
what problems. Sometimes, it is useful to see what problems others are solving, to give
you a clue as to what is easy.

2007 Programming Problems 5

1. [Miguel Revilla, adapted] The Soundex Index System was developed so that similarly
sounding names or names with similar spelling could be encoded for easy retrieval. It has
been used by the U.S. Bureau of the Census, and some states use it to help encode driver’s
license numbers. Your task is to convert a sequence of names into the corresponding
Soundex codes.

A Soundex code always consists of a letter followed by three digits, such that:

1. The first letter of a name appears (unencoded) as the first character of the Soundex
code, and is capitalized. It is also the only letter.

2. The letters ‘A’, ‘E’, ‘I’, ‘O’, ‘U’, ‘Y’, ‘W’ and ‘H’ are never encoded when they are
not the first character in a word. They do serve, however, to break sequences of
like-coded letters (see next rule).

3. All other letters are encoded according to the following table, except when they
immediately follow a letter (including the first letter) that would be encoded with
the same code digit, according to the table:

Code Key letters

1 B, P, F, V
2 C, S, K, G, J, Q, X, Z
3 D, T
4 L
5 M, N
6 R

4. Codes are truncated after the third digit.

5. Trailing zeros are appended as needed so all names are encoded with a letter followed
by three digits.

The input contains a sequence of words in free format, and ends at end of file. The
output written to the file should consist of a column of names and a column of their
corresponding soundex codes in the format shown in the example below.

Example:
Input Output

LEE

Kuhne EBELL

ebelson

SCHAEFER SCHAAK

LEE => L000

Kuhne => K500

EBELL => E140

ebelson => E142

SCHAEFER => S160

SCHAAK => S200

2007 Programming Problems 6

2. A puzzle I once heard asks for an English word from which one can remove the most
letters, one at a time, such that each resulting word is itself a valid English word. For
example, you can remove seven letters from “starting”:

starting ⇒ stating ⇒ statin ⇒ satin ⇒ sati ⇒ sat ⇒ at ⇒ a

For this problem, we’ll look at the general problem of finding such chains in sets of arbitrary
strings.

The input to your program will consist of a sequence of problems. Each problem will
consist of a set of one or more words in free format. A word will consist of a sequence of one
or more letters, possibly interspersed with hyphens and apostrophes (single quotes). Each
set of words is terminated by a single semicolon (separated from any preceding or following
input by whitespace). The final problem in the input is followed by another semicolon.

The output is to consist of a sequence of lines, one per problem, giving the problem
number, the word from the set that allows the most letters to be removed, and the num-
ber of letters that may be removed, in the format shown in the examples below. When
computing chains of words, ignore capitalization (treat upper-case letters as equivalent to
their lower-case versions) and ignore all non-letters in a word. However, when printing the
maximal word, print its input form, with all capitalization and punctuation marks intact.
Words may be repeated in the input. When more than one word is maximal, choose the
one that occurs first in the input.

Example.

Input Output

tatter satin skating

a I O stating bat cat job can

at sat baffle starting consume

satisfy sati

quote statin prose

zebra

;

tatter satin skating

a I O stating bat cat job can

at sat

baffle starting consume

satisfy

quote statin prose

zebra

;

ant boy a car an

can’t any ;

;

Problem 1: can remove 7 letters from "starting"

Problem 2: can remove 3 letters from "starting"

Problem 3: can remove 3 letters from "can’t"

2007 Programming Problems 7

3. [Miguel Revilla, adapted] During excavations in a far-off wasteland known as the
Soude, archaeologists have discovered badly worn tablets containing mysterious symbols.
After a long investigation, the project scientists have concluded that the symbols might be
parts of equations. If this was true, it would indicate that the ancient residents were more
sophisticated than previously believed.

The problem, however, is that the only symbols found on the sheets are digits and
parantheses. The working hypothesis is that whatever symbols the former inhabitants of
the Soude used for arithmetic symbols and for equality were relatively small, and have all
worn away. The principal investigator is further assuming, on the basis of vague indications
from these and other documents, that they knew only of three arithmetic operations—
addition, subtraction, and multiplication—and that they did not use prioritization rules
for arithmetic operators, but grouped all terms strictly left to right in the absence of
parentheses. For example, for them the term 3 + 3 × 5 would be equal to 30, and not 18.

You are to find out whether the hypothesis is sensible or not by checking to see whether
any possible addition of one ‘=’, and some combination of the symbols ‘+’, ‘-’, and ‘*’ to
the lines on the tablets result in valid equations. For example, on one sheet, the string
“18 7 (5 3) 2” has been discovered. Here, one possible solution is “18=7+(5-3)*2”.
But if there was a line containing “5 3 3”, then this would mean that the people of the
Soude did not mean it to be an equation. As with our equations, equal signs should not
appear within parentheses. Consider binary operators only (so ‘-’ never means unary
negation).

The input to your program will consist of a sequence of putative equations, one per
line. Each line contains up to 12 positive integer numerals whose product will be less than
231. There might be some parentheses, always balanced, around groups of one or more
numerals. There will always be at least two numerals, and there will never be parentheses
around the entire line, so that there will always be a valid place to put an equals sign.
There is no other limit for the number of the parentheses in the equation. There will
always be at least one space between each numeral or parenthesis and the next symbol.
Otherwise the occurrence of white space is unrestricted. A line containing only the numeral
0 terminates the input, and should not be processed.

For each equation, output one line containing a solution to the problem, i.e., the equa-
tion with the missing ‘+’, “-”, “*”, and “=” signs inserted. Do not print any white space in
the equation. If there is no way to insert operators to make a valid equation, then output
the line “Impossible”. If there are multiple solutions, print any one. Use the format
shown in the example below.

Example:
Input Output

18 7 (5 3) 2

3 3 5 30

18 3 3 5

5 3 3

0

Equation #1: 18=7+(5-3)*2

Equation #2: 3+3*5=30

Equation #3: 18-3=3*5

Equation #4: Impossible

2007 Programming Problems 8

4. [Problem inspired from an example in Artificial Intelligence: A Modern Approach by
Russell and Norvig] The AI term planning refers to the selection of a plan—a sequence of
actions—to achieve some goal. In a very simple version, the set of possible actions is finite
and our goal is to achieve a state, which we describe as a set of named conditions from
some finite set of conditions. We characterize each action by listing the effects—conditions
that are achieved or removed by the action—and the preconditions—the conditions that
must be present (or absent) before the action is possible. Your program’s task is determine
an appropriate plan for achieving a given goal.

For example, if our task involves moving two blocks (called ‘A’ and ‘B’), our conditions
might be called A-On-Table (“Block A is resting on the table”), B-On-Table, A-On-B

(“Block A is resting on Block B”), and B-On-A, and our actions might be:

Action Pre-conditions Effects

Move-A-Table A-On-B A-On-Table ∧ ¬A-On-B

Move-B-Table B-On-A B-On-Table ∧ ¬B-On-A

Move-A-B A-On-Table B-On-Table A-On-B ∧ ¬A-On-Table

Move-B-A A-On-Table B-On-Table B-On-A ∧ ¬B-On-Table

The state of the world at any time consists of a set of conditions from the list above. An
action is possible only if the state contains the positive conditions listed in the preconditions
and does not contain the negated conditions (those preceded by ¬). The effect of an action
is to add the positive conditions listed under “Effects” to the state (if they are not present)
and remove the negated conditions (if they are present). We specify a task by giving the
initial state and partially specifying the desired final state. For example, our initial state
might be A-On-B ∧ B-On-Table and our goal state might be B-On-A. In that case, a
legal sequence of actions would be: Move-A-Table, Move-B-A. After Move-A-Table, the
state would be A-On-Table ∧ B-On-Table, and then after Move-B-A, the state would
be A-On-Table ∧ B-On-A. Since this state includes the desired condition B-On-A, the
action sequence accomplishes our goal (the presence of other conditions in the goal doesn’t
matter). In this simple formalism, states and goals only include positive conditions (¬A-
On-B is never part of a state; it is used only in preconditions and effects to indicate required
absence or removal of a condition, respectively).

The input to your program will consist of a series of problems in free format. Each
problem starts with an initial state, consisting of a sequence of zero or more conditions
separated by whitespace and terminated by a “word” consisting of a single semicolon (‘;’).
Conditions are represented by strings of up to 20 non-whitespace characters that do not
include ‘;’ and do not start with ‘-’. Next comes a goal state with one or more conditions
in the same form. This is followed by a non-negative integer numeral, N . Then come one
or more action specifications, each of the form

action-name preconditions effects

where action-name is a word (same format as a condition) and both preconditions and
effects have the same format as a state (sequence of zero or more conditions terminated
by ‘;’), except that any of the conditions may be prefixed by -, indicating negation (¬).

2007 Programming Problems 9

The last action specification is followed by an extra semicolon. End-of-file follows the last
problem of the input.

The output for a problem is a minimal-length sequence of no more than N actions that
achieves the goal (on one line), or the string -Impossible- if no such plan exists. Use the
format shown in the example.

Example.

Input Output

A-On-B B-On-Table ; B-On-A ; 5

Move-A-Table A-On-B ;

A-On-Table -A-On-B ;

Move-B-Table B-On-A ;

B-On-Table -B-On-A ;

Move-A-B A-On-Table B-On-Table ;

A-On-B -A-On-Table ;

Move-B-A A-On-Table B-On-Table ;

B-On-A -B-On-Table ;

;

A-On-B ; B-On-A ; 5

Move-A-Table A-On-B ;

A-On-Table -A-On-B ;

Move-B-Table B-On-A ;

B-On-Table -B-On-A ;

Move-A-B A-On-Table B-On-Table ;

A-On-B -A-On-Table ;

Move-B-A A-On-Table B-On-Table ;

B-On-A -B-On-Table ;

;

A-On-B B-On-Table ; B-On-A ; 1

Move-A-Table A-On-B ;

A-On-Table -A-On-B ;

Move-B-Table B-On-A ;

B-On-Table -B-On-A ;

Move-A-B A-On-Table B-On-Table ;

A-On-B -A-On-Table ;

Move-B-A A-On-Table B-On-Table ;

B-On-A -B-On-Table ;

;

Problem 1: Move-A-Table Move-B-A

Problem 2: -Impossible-

Problem 3: -Impossible-

2007 Programming Problems 10

5. Roads in the great city of Algopolis are laid out on a circular grid of evenly spaced
concentric circle roads and a set of evenly spaced spokes radiating from their common
center. Locations on this grid are identified by a circle number—a nonnegative integer
identifying a circle, with 0 being the center point, 1 the smallest circle, 2 the next smallest,
etc.—and an azimuth—an angle in degrees clockwise from due north indicating a position
on the circle. The spokes are express roads, and we never have destinations or starting
points along them other than at intersections. Here is such a grid with two possible routes
through it.

A car driving on these roads may turn at any intersection onto any of the impinging
roads (so that intersection in the center is pretty hairy, as you might guess). Your job is
to write a program that, given the parameters of the road system and pairs of starting
points and destinations, determines the shortest routes to these destinations. A route here
is described as a list of words from the set cw and ccw (“proceed clockwise (counterclock-
wise) on your current circle road to the next intersection or your destination, whichever
comes first”), and in and out (“proceed in(out)ward on the current spoke to the next
intersection”). At the center, the ccw and in directions are not possible, and cw simply
means to switch to the next spoke clockwise. On reaching the center, the “current spoke”
is the one you came in on. Even if the spoke you use to leave the center is 180◦ from the
spoke on which you entered, you must turn clockwise through all the spoke angles between
your initial spoke and the outgoing spoke to get from one to the other, but these turns
cover no distance. Always make the minimal number of turns at the center (no spinning
around and around, in other words). The length of a route is the total distance along its
line segments (spokes) and arcs (circle roads).

The input to your program will consist of a sequence of scenarios, each of which consists
of five integers in free format: S, c0, c1, α0, α1. S ≥ 1 is the number of evenly spaced
spokes. There is always a spoke at azimuth angle 0 (due north). The rest of the numbers
indicate a starting point and destination: c0 and c1, with c0 ≥ 1 and c1 ≥ 0, are the

2007 Programming Problems 11

numbers of the circles of start and destination; α0 and α1, 0 ≤ αi < 360, are the azimuth
angles (in degrees) clockwise from due north of the start and destination. Circles are evenly
spaced one unit apart. The center is “circle” 0; circle 1 is the first circle from the center;
and so forth. The last scenario is followed by a line of five 0’s.

The output consists of sequence numbers and lists of directions in the format shown in
the example that follows. We will choose input data so as to ensure a unique answer.

Example.

Input Output

9 2 3 19 301

9 2 3 19 179

0 0 0 0 0

Case 1: ccw ccw out ccw

Case 2: ccw in in cw cw cw cw cw out out out cw

2007 Programming Problems 12

6. A unified diff file shows line-by-line differences between two files, which we’ll call
an original file and a modified file. For example, the following table shows two files, f1
(original) and f2 (modified), and a unified diff showing how to create f2 from f1.

f1 f2 diff

The

sanserif

only seems

to be the

simpler

script.

It is a

form that

was

violently

reduced

for little

children.

For adults

it is more

difficult

to read

than

serifed

roman

type,

whose

serifs

were never

meant to

be

ornamental.

The

sanserif

only seems

to be the

simpler

script.

It’s a

form that

was

most

violently

reduced

for little

children.

For adults

it is more

difficult

to read

than

serifed

type,

whose

serifs

were never

meant to

be

ornamental.

--- f1

+++ f2

@@ -4,9 +4,10 @@

to be the

simpler

script.

-It is a

+It’s a

form that

was

+most

violently

reduced

for little

@@ -17,7 +18,6 @@

to read

than

serifed

-roman

type,

whose

serifs

In the diff file, lines that begin with a blank are lines of context that appear in both
files, lines beginning with a ‘-’ appear only in f1, and lines beginning with ‘+’ appear only
in f2. Each group of such lines preceded by ‘@’ is what we’ll call a hunk. The hunks in
a diff file apply to non-overlapping (and possibly widely separated) groups of lines in the
files being compared. In actual diff files, the numbers on the ‘@’ lines are significant, but in
our simplified problem, you are to ignore them. In effect, the diff file is a set of instructions
for converting f1 into f2. It should be clear that from a given hunk, you can reconstruct
the corresponding text in the original and modified files.

You are to write a “patch” program that takes an input file and a diff file and applies

the diff file to the input, performing the same changes on the input file that changed the
original to the modified file. The input file need not be the same as the original. For each
hunk, the utility searches for a section of text in the input that corresponds to the hunk

2007 Programming Problems 13

and then, if that section matches the lines in the original exactly, replaces it with the lines
in the modified file. If a given hunk does not correspond to anything in the input file, it is
silently rejected, and has no effect. Likewise, if the hunk corresponds to something in the
input file, but that section of the input does not exactly match the original, the hunk is
rejected.

More precisely, a section of text in the input file corresponds to a hunk if

• It consists of complete lines from the input (no partial lines).

• It follows all lines that were successfully matched by preceding (non-rejected) hunks.

• It has the same number of lines as the text in the original (reconstructed from the
hunk).

• The lines at the beginning of the hunk that are prefixed with a blank (if any) exactly
match the first lines of the subsequence (i.e., once the blank is stripped off).

• The lines at the end of the hunk that are prefixed with a blank (if any) exactly match
the last lines of the section of text.

When there is more than one section of text in the input that correspond to a hunk
according to this definition, always select the first.

The input to your program consists of a unified diff file as described here. Any text
before the first hunk (the first line starting with ‘@’) are to be ignored. The diff file is
followed by exactly one empty line (having no characters, not even blanks, before the end
of line). That is followed by the file to be modified.

The output is the result of applying the patch to the file according to the rules above.
The example on the next page illustrates the process. In it, the first hunk is rejected and
the second is applied.

2007 Programming Problems 14

Input Output

--- f1

+++ f2

@@ -4,9 +4,10 @@

to be the

simpler

script.

-It is a

+It’s a

form that

was

+most

violently

reduced

for little

@@ -17,7 +18,6 @@

to read

than

serifed

-roman

type,

whose

serifs

The

sanserif

only seems

to be the

simpler

script.

’Tis a

form that

was

violently

reduced

for little

children.

Adults find it more difficult

to read

than

serifed

roman

type,

whose

serifs

were never

meant to be ornamental.

The

sanserif

only seems

to be the

simpler

script.

’Tis a

form that

was

violently

reduced

for little

children.

Adults find it more difficult

to read

than

serifed

type,

whose

serifs

were never

meant to be ornamental.

2007 Programming Problems 15

7. A Mealy machine is a form of finite-state machine that produces output. Such a
machine exists in one of a finite set of states (which we may identify by non-negative
integer numbers), one of which is designated as its initial state (which will always be
state 0 in this problem), in which it begins execution. The machine then proceeds to
process an input consisting of a stream of input symbols from a finite alphabet (in this
problem, the set {0, 1}) according to its transition function, which maps pairs consisting
of current state and current input symbol to pairs consisting of a successor state (possibly
the same) and output symbol (again, for our purposes, from the alphabet {0, 1}). Thus, by
starting in its input state (0) and using the transition function to process each successive
input symbol (i1, . . . , in), the machine produces a string of output symbols (o1, . . . , on).

For example, the machine below, given an n-digit binary numeral entered backwards
(i.e., least-significant bit first), produces the least-significant n bits of the result of multi-
plying that number by 3 (also least-significant bit first):

State Input 0 Input 1

Output Next Output Next

0 0 0 1 1
1 1 0 0 2
2 0 1 1 2

0

1

2

1/1

1/0

0/1

0/0

0/0

1/1

The table on the left shows a 3-state machine. Each row displays a state number, output
bit and next state to go to on an input of ‘0’, and output bit and next state to go to on an
input of ‘1’. The diagram on the right is a standard graphical representation of the same
machine (where the notation ‘0/1’, for example, means “follow this arrow on input of a 0,
outputting a 1.”) Given the input 0110100 (which is 22 in binary when read right-to-left),
this machine produces the output 0100001 (66, when read right-to-left).

Your program is to read a series of integers in the range 0–1024 in free format, termi-
nated by a single integer -1. For each integer, produce a table giving a finite-state machine
for multiplying numbers by the input, in the format shown in the example on the next
page (using the same meanings for the columns as in the table above). Precise spacing is
not critical, but be sure to leave a blank line between sets of output. There are an infinite
number of solutions for any given input, but the necessary number of states to multiply
by k is O(k).

2007 Programming Problems 16

Example.

Input Output

3 1

-1

To multiply by 3:

0 0 0 1 1

1 1 0 0 2

2 0 1 1 2

To multiply by 1:

0 0 0 1 0

2007 Programming Problems 17

8. Whist is a game played by two pairs of partners with the usual deck of 52 playing
cards, with thirteen ranks—(low) 2, 3,. . . , 10, Jack (J), Queen (Q), King (K), and (high)
Ace (A)—and four suits—clubs (C), diamonds (D), hearts (H), and spades (S). The players
sit on four sides of a table with partners opposite each other. We’ll use the usual names
from bridge and call these players South, West, North, and East. Each player gets thirteen
cards, dealt clockwise around the table, with the dealer (South) getting the last card. The
dealer shows this last card, and its suit becomes ‘trump’ for that hand.

The idea is for each partnership to try to win as many four-card tricks as possible. In
each trick, each player, in clockwise order, plays one card from those remaining in his hand.
After the first card of a trick, the remaining players must each play a card of the same suit
as that of the first card, if they have one, and otherwise any card from their hand. The
winner of a trick is the player who plays either the highest trump or the highest card with
the same suit as the first card in the trick. For the first trick, West, on the dealer’s left,
goes first. The player who wins a trick plays the first card of the next. After all the tricks
have been won, the partnership with the most tricks gets one point for every trick it won
in excess of six.

For example, consider the following four hands:

West: 6C 10C AC 5D 9D 10D 3H 7H KH 6S 10S KS AS

North: 4C 5C 7C KC 2D 3D 6D JD 9H 5S 7S JS QS

East: 2C 8C 9C JC 4D AD 2H 4H 5H 6H 8H 2S 8S

South: 3C QC 7D 8D QD KD 10H JH QH AH 3S 4S 9S

and assume that the 3S was dealt last, so that spades are trump. One possible play might
proceed as shown in the table below. The left column shows which player leads on each
trick. The middle shows the four cards played, starting with the lead. The right column
shows who wins the trick. In this case, the East-West partnership wins eight tricks, and
so scores two points. In tricks #9 and #11, a player wins a trick by trumping the lead.

Trick Who leads Cards played Who wins trick

1. West AC 5C JC QC West
2. West 6C 4C 8C 3C East
3. East 4D 7D 10D 2D West
4. West AS JS 8S 9S West
5. West KS QS 2S 3S West
6. West 6S 7S 6H 4S North
7. North 9H 5H AH 7H South
8. South QD 5D 6D AD East
9. East 8H JH 3H 5S North

10. North KC 9C KD 10C North
11. North 7C 2C 8D 10S West
12. West KH 3D 2H 10H West
13. West 9D JD 4H QH North

Had South instead tried to take trick #1 by playing his 4S, it would have been illegal,
since he could have “followed suit” and played a club.

2007 Programming Problems 18

You are to write a program that, given the sequence of cards played in a hand of whist,
determines whether that sequence is valid according to the rules and, if so, who won and
how many points they got.

The input consists of a number of hands—sequences of 53 card tokens in free format.
A card token has the form RS, where R is a rank (2, 3,. . . , 10, J, Q, K, A), and S is a suit
(S, H, D, C). Card tokens are separated by white space and contain no whitespace between
R and S. The end of the file marks the end of the input. In each sequence, the first
card is the one the dealer shows to determine trump (and which therefore the dealer must
eventually play). The second card is then the first card played (by West), and likewise the
subsequent cards are all the cards played, in sequence. After the first trick, your program
must keep track of which player is playing each card, according to the rules.

The output consists of one line per hand, containing the hand number and either the
message “Illegal play,” “North-South win N points,” or East-West win N points.
Print the first message if either the rules are not followed or the sequence of cards is not a
proper deck (contains duplicates) or a player other than the dealer plays the trump card.
Use the format shown in the example below.

Example.
Input Output

3S

AC 5C JC QC 6C 4C 8C 3C

4D 7D 10D 2D AS JS 8S 9S

KS QS 2S 3S 6S 7S 6H 4S

9H 5H AH 7H QD 5D 6D AD

8H JH 3H 5S KC 9C KD 10C

7C 2C 8D 10S KH 3D 2H 10H

9D JD 4H QH

3S

AC 5C JC 4S 6C 4C 8C 3C

4D 7D 10D 2D AS JS 8S 9S

KS QS 2S 3S 6S 7S 6H QC

9H 5H AH 7H QD 5D 6D AD

8H JH 3H 5S KC 9C KD 10C

7C 2C 8D 10S KH 3D 2H 10H

9D JD 4H QH

Hand 1: East-West win 2 points

Hand 2: Illegal play

