
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

Programming Contest P. N. Hilfinger
Fall 2010

2010 Programming Problems (revised 9/27/2010)

Please make sure your electronic registration is up to date, and that it contains the correct
account you are going to be using to submit solutions (we connect names with accounts
using the registration data).

To set up your account, execute

source ~ctest/bin/setup

in all shells that you are using. (This is for those of you using csh-like shells. Those using
bash should instead type

source ~ctest/bin/setup.bash

Others will have to examine this file and do the equivalent for their shells.)
This booklet should contain eight problems on 13 pages. You have 5 hours in which

to solve as many of them as possible. Put each complete C solution into a file N.c,
each complete C++ solution into a file N.cc, and each complete Java program into a file
N.java, where N is the number of the problem. Each program must reside entirely in a
single file. In Java, the class containing the main program for problem N must be named
PN (yes, it is OK to have a Java source file whose base name consists of a number, even
though it doesn’t match the name of the class). Do not make class PN public, or the Java
compiler will complain. Each C/C++ file should start with the line

#include "contest.h"

and must contain no other #include directives, except as indicated below. Upon comple-
tion, each program must terminate by calling exit(0) (or System.exit(0) in Java).

This year, we have supplied some additional functions that you are free to use. The
contest-gcc program, described below, will make implementations of these routines avail-
able to you. Their headers and documentation are in contest.h (for C/C++) and in the
contest package (Java). You’ll probably want to review them before the contest; there
are links on the contest web site.

Aside from files in the standard system libraries and those we supply, you may not use
any pre-existing computer-readable files to supply source or object code; you must type

1

2010 Programming Problems (revised 9/27/2010) 2

in everything yourself. Selected portions of the standard g++ class library are included
among of the standard libraries you may use: specifically, the headers string, vector,
iostream, iomanip, sstream, fstream, map, and algorithms. Likewise, you can use the
standard C I/O libraries (in either C or C++), and the math library (header math.h). In
Java, you may use the standard packages java.lang, java.io, java.text, java.math,
and java.util and their subpackages. You may not use utilities such as yacc, bison, lex,
or flex to produce programs. Your programs may not create other processes (as with the
system, popen, fork, or exec series of calls or their Java-library equivalents). You may
use any inanimate reference materials you desire, but no people. You can be disqualified
for breaking these rules.

There are two ways to submit solutions: by a command-line program, and over the
web. Submit from the command line on the instructional machines. When you have a
solution to problem number N that you wish to submit, use the command

submit N

from the directory containing N.c, N.cc, or N.java. Before actually submitting your
program, submit will first compile it and run it on one sample input file. No submission
that is sent after the end of the contest will count. You should be aware that submit takes
some time before it actually sends a program. In an emergency, you can use

submit -f N

which submits problem N without compiling or running it.
To submit from the web, go to our contest announcement page:

http://inst.cs.berkeley.edu/~ctest/contest/index.html

and click on the “web interface” link. You will go to a page from which you can upload
and submit files from your local computer (at home or in the labs). On this page, you can
also find out your score, and look at error logs from failed submissions.

Regardless of the method you use for submission, your results are also mailed back to
you at the account from which you submitted (in the case of web submission, that is the in-
structional account you used to validate yourself). Use the https://imail.eecs.berkeley.edu
page to retrieve this mail.

You will be penalized for incorrect submissions that get past the simple test admin-
istered by submit, so be sure to test your programs (if you get a message from submit

saying that it failed, you will not be penalized). All tests (for any language) will use the
compilation command

contest-gcc N

followed by one or more execution tests of the form (Bourne shell):

./N < test-input-file > test-output-file 2> junk-file

2010 Programming Problems (revised 9/27/2010) 3

which sends normal output to test-output-file and error output to junk-file. The output
from running each input file is then compared with a standard output file, or tested by a
program in cases where the output is not unique. In this comparison, leading and trailing
blanks are ignored and sequences of blanks are compressed to single blanks. Otherwise,
the comparison is literal; be sure to follow the output formats exactly. It will do no good
to argue about how trivially your program’s output differs from what is expected; you’d be
arguing with a program. Make sure that the last line of output ends with a newline. Your
program must not send any output to stderr; that is, the temporary file junk-file must be
empty at the end of execution. Each test is subject to a time limit of about 10 seconds.
You will be advised by mail whether your submissions pass (use the imail account at

https://imail.eecs.berkeley.edu

and log in with the account you registered to use for the contest.) You can also view this
information using the web interface described above.

In the actual ACM contests, you will not be given nearly as much information about
errors in your submissions as you receive here. Indeed, it may occur to you to simply
take the results you get back from our automated judge and rewrite your program to print
them out verbatim when your program receives the corresponding input. Be warned that
I will feel free to fail any submission in which I find this sort of hanky-panky going on
(retroactively, if need be).

The command contest-gcc N , where N is the number of a problem, is available to
you for developing and testing your solutions. For C and C++ programs, it is roughly
equivalent to

gcc -Wall -o N -O2 -g -Iour-includes N.* our-libraries -lm

For Java programs, it is equivalent to

javac -g -classpath .:our-classes N.java

followed by a command that creates an executable file called N that runs the command

java -cp .:our-classes PN

when executed (so that it makes the execution of Java programs look the same as execution
of C/C++ programs). The our-includes directory (typically ~ctest/include) contains
contest.h for C/C++, which also supplies the standard header files. The our-libraries

and our-packages files and directories provide the additional tools we’ve provided this
year. The files in ~ctest/submission-tests/N , where N is a problem number, contain
the input files and standard output files that submit uses for its simple tests.

All input will be placed in stdin. You may assume that the input conforms to any
restrictions in the problem statement; you need not check the input for correctness. Con-
sequently, you C/C++ programmers are free to use scanf to read in numbers and strings
and gets to read in lines.

2010 Programming Problems (revised 9/27/2010) 4

Terminology. The terms free format and free-format input indicate that input numbers,
words, or tokens are separated from each other by arbitrary whitespace characters. By
standard C/UNIX convention, a whitespace character is a space, tab, return, newline,
formfeed, or vertical tab character. A word or token, accordingly, is a sequence of non-
whitespace characters delimited on each side by either whitespace or the beginning or end
of the input file.

Scoring. Scoring will be according to the ACM Contest Rules. You will be ranked by
the number of problems solved. Where two or more contestants complete the same number
of problems, they will be ranked by the total time required for the problems solved. The
total time is defined as the sum of the time consumed for each of the problems solved.
The time consumed on a problem is the time elapsed between the start of the contest and
successful submission, plus 20 minutes for each unsuccessful submission, and minus the
time spent judging your entries. Unsuccessful submissions of problems that are not solved
do not count. As a matter of strategy, you can derive from these rules that it is best to
work on the problems in order of increasing expected completion time.z

Protests. Should you disagree with the rejection of one of your problems, first prepare
a file containing the explanation for your protest, and then use the protest command
(without arguments). It will ask you for the problem number, the submission number
(submission 1 is your first submission of a problem, 2 the second, etc.), and the name
of the file containing your explanation. Do not protest without first checking carefully;
groundless protests will be result in a 5-minute penalty (see Scoring above). The Judge
will not answer technical questions about C, C++, Java, the compilers, the editor, the
debugger, the shell, or the operating system.

Notices. During the contest, the Web page at URL

http://inst.cs.berkeley.edu/~ctest/contest/announce.html

will contain any urgent announcements, plus a running scoreboard showing who has solved
what problems. Sometimes, it is useful to see what problems others are solving, to give
you a clue as to what is easy.

2010 Programming Problems (revised 9/27/2010) 5

1. UTF-8 is a character encoding that allows the conversion of streams of 8-bit bytes to
and from streams of Unicode code points (the integer representations of characters) in the
range 0–0x10ffff, inclusive. The encoding is defined as follows:

Values up to. . . Encoded as. . . Description
01111111

 aaaaaaa
0aaaaaaaa 7-bit ASCII characters unchanged

00000111

 aaa

11111111

bbcccccc
110aaabb 10cccccc For example, ‘±’ (0xb1) encodes as

0xc2b1.
11111111

aaaabbbb

11111111

ccdddddd
1110aaaa 10bbbbcc

10dddddd

For example, the old symbol for the
French franc (0x20a3) encodes as
0xe282b3.

00010000

 aaabb

11111111

ccccdddd

11111111

eeffffff
11110aaa 10bbcccc

10ddddee 10ffffff

For example, the Babylonic
cuneiform symbol for the digit 3
(0x12417) encodes as 0xf0929097.

Each character must be represented by the smallest encoding that contains it. For example,
the 7-bit ASCII characters must be represented in one byte; a byte sequence such as
0xc1a1—a two-byte representation of 0x61 (‘a’)—is not valid.

Your program is to input a purported UTF-8 sequence of bytes encoded as hexadecimal
digits and output the sequence of Unicode code points they represent, also as a sequence
of hexadecimal numerals, but without leading 0’s, using the format in the example. In this
format, each 1-byte encoding is written as a two hex-digit numeral, each 2-byte encoding
as a 4-digit hex numeral, and each 3-byte encoding as a 6-digit numeral. Separate code
points with single blanks. Assume the input contains only valid bytes (and always has an
even number of hexadecimal digits). If you encounter an invalid code sequence, print a
single question mark (also separated by blanks from surrounding code points), delete the
first byte of the erroneous sequence, and skip the minimum number of additional input
bytes needed to get to another, valid code point.

Example:
Input Output

6120c2b1f0929097c1a1e282b3 61 20 b1 12417 ? 20b3

2010 Programming Problems (revised 9/27/2010) 6

2. [From the UVa online problem set] This problem involves determining the number
of routes available to an emergency vehicle operating in a city of one-way streets. Given
the intersections connected by one-way streets in a city, you are to write a program that
determines the number of different routes between each pair of intersections. A route is a
sequence of one-way streets connecting two intersections.

Intersections are identified by non-negative integers. A one-way street is specified by
a pair of intersections: (j, k) indicates a street going from intersection j to intersection k.
We can model two-way streets by specifying two one-way streets: (j, k) and (k, j) indicate
that there is a two-way street between intersections j and k. We will input such pairs are
integers separated by whitespace, dispensing with the comma and parentheses.

Consider a city of four intersections connected by the four one-way streets (0,1), (0,2),
(1,2), and (2,3). There is one route from intersection 0 to 1, two routes from 0 to 2 (the
routes are 0 ⇒ 1 ⇒ 2 and 0 ⇒ 2), two routes from 0 to 3, one route from 1 to 2, one route
from 1 to 3, one route from 2 to 3, and no other routes.

It is possible for an infinite number of different routes to exist. For example if the
intersections above are augmented by the street (3,2), there is still only one route from 0
to 1, but there are infinitely many different routes from 0 to 2. This is because the street
from 2 to 3 and back to 2 can be repeated yielding a different sequence of streets and
hence a different route. Thus the route 0 ⇒ 2 ⇒ 3 ⇒ 2 ⇒ 3 ⇒ 2 is different from
0 ⇒ 2 ⇒ 3 ⇒ 2.

The input is a sequence of city specifications. Each specification begins with the number
of one-way streets in the city followed by that many one-way streets given as pairs of
intersections. In all cities, intersections are numbered sequentially from 0 to the “largest”
intersection. All integers in the input are separated by whitespace. The input is terminated
by end-of-file. There will never be a one-way street from an intersection to itself. No city
will have more than 30 intersections.

For each city specification, print a square matrix of the number of different routes from
intersection j to intersection k is printed. That is, if we denote the matrix M , then Mjk

(row j, column k) is the number of different routes from intersection j to intersection k.
Print each matrix in the format shown in the examples, preceded by the string “matrix for
city k” (k ≥ 0).

Print −1 to denote an infinite number of different paths between two intersections. The
amount of whitespace used to separate entries in a row is irrelevant; you need not worry
about justifying and aligning the output of the matrices.

2010 Programming Problems (revised 9/27/2010) 7

Example:
Input Output

7 0 1 0 2 0 4 2 4 2 3 3 1 4 3

5

0 2

0 1 1 5 2 5 2 1

9

0 1 0 2 0 3

0 4 1 4 2 1

2 0

3 0

3 1

matrix for city 0

0 4 1 3 2

0 0 0 0 0

0 2 0 2 1

0 1 0 0 0

0 1 0 1 0

matrix for city 1

0 2 1 0 0 3

0 0 0 0 0 1

0 1 0 0 0 2

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

matrix for city 2

-1 -1 -1 -1 -1

0 0 0 0 1

-1 -1 -1 -1 -1

-1 -1 -1 -1 -1

0 0 0 0 0

2010 Programming Problems (revised 9/27/2010) 8

3. In the game Guess, one side (the “Chooser”) chooses a hidden sequence of four digits
between 1–6, and the other side (the “Guesser”) has a limited number of tries in which
to guess the sequence. In each try, the Guesser proposes a sequence of digits, and the
Chooser indicates how many of the proposed digits are correct, and how many others
would be correct if they appeared in a different position. For example, if the Chooser
selects the sequence ‘1443’, and the Guesser proposes ‘2434’, the Chooser would say that 1
position is correct and that 2 others would be correct if in different positions, since the
Guesser has placed ‘4’ in the right place, and has an additional ‘4’ and a ‘3’, but not in
the right places.

You are to write an interactive Guesser program that outputs a sequence of up to eight
guesses, and reads the resulting responses from a Chooser program. Your program succeeds
if it makes a correct guess. It should stop when it guesses correctly.

Each guess consists of a single line (terminated, as usual, by a newline character) con-
taining a sequence of four digits (1–6), written to the standard output. Each response from
our Chooser program will then consist of two integers, c and d, separated by whitespace
and terminated by a newline, where c is the number of correctly placed digits and d is the
number of additional correct digits that incorrectly placed.

Warning: Be careful how you read input and write output. It is important not to
attempt to read more than one line at a time, nor to read a response before outputting the
guess with its newline. In addition, you should flush the output stream after each write,
using the flush method or function appropriate for your chosen programming language.
Violating any of these guidelines may cause the programs to hang.

Example:
Guesser Outputs Chooser Outputs

1111

2221

3313

4143

1443

1 0

0 1

1 1

2 2

4 0

2010 Programming Problems (revised 9/27/2010) 9

4. [From the UVa online problem set] Consider the sequence of all words formed entirely
of lower-case letters and having the following properties:� A word x appears before a word y if x is shorter than y.� Any two words of the same length appear in alphabetical order.� The list contains exactly the words whose letters appear in strictly increasing order

(for example, ‘a’, ‘ab’, ‘abc’, but not ‘ba’ or ‘bb’).

To each word in this sequence, associate a positive integer index, starting with 1:

a → 1

b → 2
...

z → 26

ab → 27

ac → 28
...

az → 51
...

vwxyz → 83681

Your program is to read a series of lower-case words from one to five letters long,
separated by whitespace. For each word read, if the word is invalid print the number 0,
and otherwise print its index in the sequence.

Example:
Input Output

z a

cat

vwxyz

26

1

0

83681

2010 Programming Problems (revised 9/27/2010) 10

5. If you’ve ever taken a chemistry course, you’ve seen this sort of thing denoting a
chemical reaction:

2Na + 2H2O = 2NaOH + H2.

The symbols ‘H’, ‘O’, and ‘Na’ stand for various kinds of atom (hydrogen, oxygen, and
sodium, respectively); each term (separated by ‘+’ and ‘=’) represents a molecule; the
subscripted integer numerals after each atom (defaulting to 1) represent the number of
that atom in the molecule (however, atoms can occur multiple times—as in acetic acid,
‘CH3COOH’—which contains two carbon atoms, two oxygen atoms, and four hydrogen
atoms); and the integer numeric coefficients in front of a molecule (again defaulting to 1)
represent the number of participating molecules of the attached type. You are to write a
program that checks such equations for balance. For example, your program will accept

6H2O + 6CO2 = 6O2 + C6H12O6,

but indicate that
O2 + H2 = H2O

is erroneous.
The input to your program will consist of equations of the form shown above, separated

by whitespace, except that the equations themselves contain no whitespace and subscripted
numerals are not written with subscripts. Each chemical element is denoted either by a
single upper-case letter or by an upper-case letter followed by a lower-case letter.

For each equation, produce a line of output that echoes the equation followed either by
the phrase “balances” or “does not balance” in the format shown in the examples below.

Example:
Input Output

6H2O+6CO2=6O2+C6H12O6

2Na+2H2O=2NaOH+H2 C6H12O6=3C2H2+3O2

6H2O+6CO2=6O2+C6H12O6 balances

2Na+2H2O=2NaOH+H2 balances

C6H12O6=3C2H2+3O2 does not balance

2010 Programming Problems (revised 9/27/2010) 11

6. [Adapted from a 2009 high-school programming olympiad in St. Petersburg as trans-
lated by Misha Dynin] Alice has adopted a cat, which is very fond of sleeping. If he falls
asleep, he sleeps without interruption for at least A hours. Moreover, the cat can’t stay
awake for more than B hours in a row. The cat could stay sleeping forever, but sometimes
something interesting happens that the cat can’t miss, such as Alice coming home from
school, or him being fed.

Your task is to help the cat plan the daily routine so he doesn’t miss interesting events.
Each day the cat wants to live according to the same schedule.

The input to your program will consist of positive integers A ≤ 24 and B ≤ 24 (in
hours) and up to 20 events (which occur daily). If the start of event is earlier than the end,
that means that the event includes midnight. Each event has the form HH:MM-HH:MM,
giving hours and minutes on a 24-hour clock.

If there is no solution, output the single word “No”; and otherwise a sleep schedule in
the form of a sequence of non-overlapping “sleep events” in the same format as the input
that, if repeated each day, conforms to the stated restrictions and has the cat awake during
all the daily events. There is a 5-second time limit on this problem.

Example 1:
Input Output

3 4

07:00-07:15

19:00-19:59

08:00-18:59

20:00-06:59

Example 2:
Input Output

3 4

07:00-08:01

11:00-11:09

19:00-19:59

No

Example 3:
Input Output

12 12

23:00-01:00

01:07-22:13

2010 Programming Problems (revised 9/27/2010) 12

7. Consider a simple resistor grid and a battery, such as in the diagram below:

0.33V

20Ω

10Ω 0.5V

20Ω

10Ω 0.67V

20Ω

0V

10Ω 0.5V 10Ω

1V
A B

Given the values of the resistors, we’d like to determine the voltages at each of the nodes
(the small circles), given that the battery establishes a voltage of 0 at A and 1 at B. The
diagram shows the voltages that obtain for a particular choice of resistances. For those of
you who might have forgotten, the net flow of current into a node must sum to 0 except
at nodes A and B, and the current through a resistor with resistance R is V/R, where V
is the voltage difference between the two terminals of the resistor.

The input to your program is in free format and consists of integers M > 0 and N > 1,
giving the number of rows of nodes and the number of nodes in each row, respectively. Next
will follow 2MN −M −N resistances (positive integers), giving the values of the resistors
from left to right, top to bottom, as they are laid out in the diagram. The output will
be M rows of N voltage values, giving the voltages at the nodes rounded to two decimal
places (you already know the values of the first and last voltages in the last row!).

Example:
Input Output

2 3

10 10

20 20 20

10 10

0.33 0.50 0.67

0.00 0.50 1.00

2010 Programming Problems (revised 9/27/2010) 13

8. [A problem posed by Jon Bentley] The diameter of a set of points on the plane is the
distance between its two most widely separated points. For example, the diameter of the
set

{(1, 1), (0, 0), (2, 3), (3, 4), (1, 0)}

is 5, the distance between the points (0,0) and (3,4). Given a set of points, you are to
compute its diameter to within an accuracy of ±5%. There is a 5-second execution-time
limit on this problem.

The input to your program will consist of up to 100,000 pairs of integers giving x-y
coordinates of points in free format (that is, separated by whitespace only, with no commas
or parentheses). The output should be a single floating-point (or integer) number giving
an approximate diameter.

Example:
Input Output

1 1 0 0 2 3

3 4 1

0

5.0

