
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

Hacking Contest P. N. Hilfinger
Fall 1991

Programming Problems

You have 5 hours in which to solve as many of the following problems as possible. Put each
complete solution into a single .c file. To submit a solution, use the command

submit foo.c

where foo.c is the name of your program and is the problem number (1–6). Submit will
first compile your program in a scratch subdirectory using the command

/usr/custom/gcc -O foo.c -lm

then run it on some test data, compare the results against a standard, and actually record your
program only if the results compare equal and the program runs in less than two minutes of
execution time. If your program is rejected for producing incorrect output, submit will display
your output and the desired output. WARNING: The test data for a given problem may vary from
one running of submit to the next. File $MASTER/examples/ .in contains a sample set of test
data for problem , with output in $MASTER/examples/ .out

All input will be placed in stdin, and all output must be produced on stdout. Anything
written to stderr will be ignored. Your program must exit with a status code of 0. Because the
testing of programs is automatic, you must be careful to observe appropriate use of whitespace.
Do not use tabs in place of blanks. Make sure that the last line of output ends with a newline.

Scoring. Scoring will be according to the ACM Contest Rules. You will be ranked by the
number of problems solved. Where two or more contestants complete the same number of
problems, they will be ranked by the total time required for the problems solved. The total time
is defined as the sum of the time consumed for each of the problems solved. The time consumed
on a problem is the time elapsed between the start of the contest and successful submission, plus
20 minutes for each unsuccessful submission. Unsuccessful submissions of problems that are
not solved do not count. As a matter of strategy, you can derive from these rules that it is best to
work on the problems in order of increasing expected completion time.

1

Programming Problems 2

1. Given a non-negative number as input, print the position of , 0, in the
numerically-ordered sequence of all non-negative numbers with the same number of 1-bits as

in binary representation. Inputs will be non-negative decimal numbers less than 216, entered
free-form on the standard input. For each input number, your program must output one line of
the form

is number in the sequence of numbers with 1-bits.

where is replaced by the input number, by the appropriate position number, and by
the number of 1-bits in . The character ‘ ’ marks the left margin. All numbers must be in
decimal notation with no leading 0’s.

For example, if 9, then the output should be

9 is number 3 in the sequence of numbers with 2 1-bits.

This is because the sequence of numbers with exactly two 1-bits is 3 (112), 5 (1012), 6 (1102),
and 9 (10012); counting the first as number 0, 9 is number 3 in this sequence. (marks the left
margin.)

2. Given a sequence of words of input (in free-form, separated from each other by whitespace),
print all words found in the file /usr/dict/words that can be formed using some or all of
the letters in each of the words in turn. That is, each of the output words produced for a given
input word must contain only characters that appear in the input word, and may not contain any
given character more times than it appears in the input word. For each input word, the output has
the following format.

Word:
Forms: 1, 2, ,

where the s and s are the strings (marks the left margin). If no anagrams are found, the
second line should read

Forms: *none*

Assume that case of letters is not significant. Output words should be printed in the order they
appear in /usr/dict/words.

For example, if the input is

tab

the output will be

Word: tab
Forms: a, at, b, bat, t, TA, tab

Programming Problems 3

3. Given a sequence of one or more input lines, each of which contains strings separated by
ampersand (&) characters, output the strings in tabular form, centered in columns. That is, the
input has the form

11& 12& & 1

21& 22& & 2

1& 2& &
where the are strings (possibly empty) containing no ampersands or newlines. There is either
a null line or the end-of-file after the newline character terminating the last input line. Any
whitespace at the beginning or end of an is to be removed. The output is to have the following
form (‘ ’ marks the left margin).

11 12 1

21 22 2

1 2

Each of the columns is to be two characters wider than the widest string in that column of the
input, and each is to appear centered in its column. If perfect centering would require adding
half a space before and after , add a whole space before it instead. It is a consequence of these
rules that the first column of output is blank and that there is at least one blank between each
string and any vertical bar delimiting its column. There should be no trailing blanks. You may
assume that 0 28 and 0 60.

4. Given a positive integer, 250 000, compute the th prime (for 1, this is 2; for
2, it is 3, etc.). The input is a single free-form integer. The output has the format

Prime is .

where is replaced by the input and by the prime. Note: the 250 000th prime is less than
3,500,000.

As usual, your program must complete in less than two minutes of execution time. In addition,
it must use less than 275 Kbytes of data area (i.e., the program must be runnable with

limit datasize 275k

in effect).

Programming Problems 4

5. An instance of the Bounded Post’s Correspondence Problem consists of a positive integer
and two sequences of non-empty strings: 1 2 and 1 2 , with 0. The
problem is to find a sequence of integers in the range 1 to — 1 2 —with 1
(and possibly with repetitions) such that

1 2 1 2

Here, ‘ ’ denotes string concatenation.
For example, if 5, the ’s are , and the ’s are , then a solution

is 1 1, 2 2, and 3 4, because

If 2, with the same and , then there is no solution.
There will be one or more sets of input to your program. Each set will consist of a positive

integer (for) followed by a sequence of strings separated by blanks (and themselves containing
no whitespace), a newline character (which may but need not be preceded by blanks and tabs), and
another sequence of the same number of strings. Within these limitations, input is free-form—
will be separated from the first string by arbitrary whitespace, and the sets of input are separated
from each other by arbitrary whitespace. You may assume that 20 and that no string is more
than 10 characters long.

For the input set (the first is number 1), your output must consist of an echo of the input,
followed by a blank line and then a line containing either the list of , if it exists, separated by
single blanks, and otherwise the message “No solution.” The format should be as follows (italic
quantities to be suitably replaced).

Problem :
K=

1

1

Solution: 1

In the absence of a solution, the last line reads simply

No solution.

In case there are multiple solutions, choose the lexicographically least (i.e., smallest 1, and for
equal 1’s, smallest 2, etc.). Finally, put a blank line before each Problem line.

Programming Problems 5

6. Given a two-dimensional maze, find the length of the shortest path out of it. The maze is
represented as a sequence of lines containing the characters ‘W’ (representing a wall), blank
(representing a traversable square), ‘S’, indicating the starting position, and ‘E’, indicating the
exit square. The exit square will be on the edge of the maze; all other squares on the edge will
be ‘W’. Each line of the maze will be of equal length (the width of the maze). Moves must
be to a blank square or to ‘E’, and must be either one step horizontally or vertically. You may
assume that the maze has a solution, that its width and height are no more than 80 (including the
bounding walls). The last line of the maze is followed by zero or more null lines and the end of
file. The output should have the form

There are steps to the exit.

For example, if the input is

WWWWWWWWWWWW
W W S W E
W W WWW W W
W W W W
W WWWWWWWW W
W W
WWWWWWWWWWWW

your output should be

There are 31 steps to the exit.

