
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

Programming Contest P. N. Hilfinger

Fall 1996

1996 Programming Problems

To set up your account, execute

source ~ctest/contest/bin/setup

in all shells that you are using. (This is for those of you using the C-shell. Others will have
to examine this file and do the equivalent for their shells.)

This booklet should contain eight problems on ?? pages. You have 5 hours in which to
solve as many of them as possible. Put each complete C solution into a file N.c file and each
complete C++ solution into a file N.C or N.cc, where N is the number of the problem.
Each program must reside entirely in a single file. Each file should start with the line

#include "contest.h"

and must contain no other #include directives. Upon completion, each program must ter-
minate by calling exit(0).

Aside from files in the standard system libraries and those we supply, you may not use
any pre-existing computer-readable files to supply source or object code; you must type in
everything yourself. Selected portions of the standard g++ class library are included among
of the standard libraries you may use: specifically, the headers string, vector, iostream.h,
iomanip.h, and fstream.h. Likewise, you can use the standard C IO libraries (in either C
or C++), and the math library (header math.h). You may not use utilities such as yacc,
bison, lex, or flex to produce programs. Your programs may not create other processes (as
with the system, popen, fork, or exec series of calls). You may use any inanimate reference
materials you desire, but no people. You can be disqualified for breaking these rules.

When you have a solution to problem number N that you wish to submit, use the command

submit N

from the directory containing N.c, N.C, or N.cc. Before actually submitting your program,
submit will first compile it and run it on one sample input file. No submission that is sent
after the end of the contest will count. You should be aware that submit takes some time
before it actually sends a program. In an emergency, you can use

submit -f N

1



1996 Programming Problems 2

which submits problem N without any checks.
You will be penalized for incorrect submissions that get past the simple test administered

by submit, so be sure to test your programs (if you get a message from submit saying that
it failed, you will not be penalized). All tests will use the compilation command

contest-gcc N

followed by one or more execution tests of the form (Bourne shell):

N < test-input-file 2> junk-file

which sends normal output to test-input-file and error output to junk-file. The output from
running each input file is then compared with a standard output file. In this comparison,
leading and trailing blanks are ignored and sequences of blanks are compressed to single
blanks. Otherwise, the comparison is literal; be sure to follow the output formats exactly.

It will do no good to argue about how trivially your program’s output differs from what is
expected; you’d be arguing with a program. Make sure that the last line of output ends with
a newline. Your program must not send any output to stderr; that is, the temporary file
junk-file must be empty at the end of execution. Each test is subject to a time limit of about
15 seconds. You will be advised by mail whether your submissions pass.

The command contest-gcc [-g] N , where N is the number of a problem, is available
to you for developing and testing your solutions (as usual, the optional -g is for debugging
information). It is equivalent to

gcc -Wall -o N -O [-g] -Iour-includes N.* -lstdc++ -lm

The our-includes directory contains contest.h, which also supplies the standard header files.
The files in ~ctest/submission-tests/N , where N is a problem number, contain the input
files and standard output files that submit uses for its simple tests.

All input will be placed in stdin. You may assume that the input conforms to any restric-
tions in the problem statement; you need not check the input for correctness. Consequently,
you are free to use scanf to read in numbers and strings.

Scoring. Scoring will be according to the ACM Contest Rules. You will be ranked by the
number of problems solved. Where two or more contestants complete the same number of
problems, they will be ranked by the total time required for the problems solved. The total
time is defined as the sum of the time consumed for each of the problems solved. The time
consumed on a problem is the time elapsed between the start of the contest and successful
submission, plus 20 minutes for each unsuccessful submission, and minus the time spent
judging your entries. Unsuccessful submissions of problems that are not solved do not count.
As a matter of strategy, you can derive from these rules that it is best to work on the problems
in order of increasing expected completion time.

Protests. Should you disagree with the rejection of one of your problems, first prepare a
file containing the explanation for your protest, and then use the protest command (without
arguments). It will ask you for the problem number, the submission number (submission 1



1996 Programming Problems 3

is your first submission of a problem, 2 the second, etc.), and the name of the file containing
your explanation. Do not protest without first checking carefully; groundless protests will be
result in a 5-minute penalty (see Scoring above).

Terminology. The term free-form input indicates that input numbers, words, or tokens
are separated from each other by arbitrary whitespace characters. By standard C/UNIX
convention, a whitespace character is a space, tab, return, newline, formfeed, or vertical tab
character.



1996 Programming Problems 4

1. Cribbage is a card game that uses a special board for scoring. Each player has a four-card
hand. The dealer gets an additional four-card crib, and there is one additional (shared) card,
called the starter. The cards rank ace (low), 2–10, jack, queen, king (high). Cards also have
count values: ace counts 1; 2–10 count their face values; and jack, queen, and king each count
10.

Part of each turn consists of showing one’s hand, which combines with the starter card to
score points according to the following rules:

• Score 2 points for each distinct combination of cards whose counts add up to 15.

• Score 2 points for each distinct pair of cards with the same rank (each pair of aces,
twos, jacks, etc.). Thus, three of a kind scores 6, since there are three distinct ways to
pair up three cards, and four of a kind scores 12.

• Score one point for each card in each distinct maximal run of three or more cards in
sequence by rank (suit is irrelevant here). I say “maximal” here to indicate that one
counts a run such as 2-3-4-5 as four points; you don’t get an additional three points for
2-3-4 and for 3-4-5.

• Score 1 point if the hand contains the jack of the same suit as the starter (this jack is
called his nobs or the right jack.)

• (In real cribbage, flushes count also, but we won’t worry about scoring them here.)

The dealer scores his hand and then his crib. Scoring the crib follows the same rules, except
for the last: four-card flushes don’t score.

Write a program that reads in a sequence of data sets—each consisting of an opponent’s
hand, dealer’s hand, crib, and starter card, in that order—and prints out, for each set, the
opponent’s hand’s score, dealer’s hand’s score, and the crib’s score in the format shown in
the example. The hands and the crib each consists of four cards. A card has the form RS

(no intervening space), where R is a rank—one of A, 2, 3, 4, 5, 6, 7, 9, 10, J, Q, or K—and S

is a suit—one of S, H, D, or C. The input is in free format.
Thus, the hand consisting of 4D, 6D, 5S, and 9H, with a starter of 6H scores 16: 4D, 5S,

and 6H add up to 15 (2 points) and also constitute a run of three cards (3 points); 4D, 5S,
and 6D likewise add up to 15 and constitute a run; 6H and 9H add up to 15; 6D and 9H add up
to 15; and the two 6’s make a pair (2 points). To indicate that a hand scores no points, it is
traditional to say that it “scores 19,” since no cribbage hand can score 19 points. Additional
examples follow on the next page.



1996 Programming Problems 5

Example:
Input Output

4D 6D 5S 9H

3S 3H 3C 6S

KD AS 8S 4D

6H

KD 10D JD AS 2S 2H 3H 3S

3D 8D 9D QD AD

AD AS AC 8D 2S 3S 4D 5C 3D 8D

9D QD AH

Hand 0:

Opponent’s hand scores 16

Dealer’s hand scores 18

Crib scores 4

Hand 1:

Opponent’s hand scores 3

Dealer’s hand scores 16

Crib scores 19

Hand 2:

Opponent’s hand scores 12

Dealer’s hand scores 7

Crib scores 19



1996 Programming Problems 6

2. A linker is a program that combines compiled object files of a program into an executable
file, linking unresolved external name references (to subprograms or global variables) in one
object file to their definitions in another. Most linkers have a facility for dealing with li-

braries—collections of object files—selecting a minimal set of object files out of a library so
as to define all the outstanding unresolved names. The individual object files in the library
may themselves reference unresolved names, so when the linker includes one object file from
a library, it may have to include others as well. For this problem, you will write a program
to determine what the minimal set is.

The input to the this program will consist of a set of root names (strings separated by
whitespace) for which definitions are to be found, followed by an isolated semicolon (i.e., a
semicolon that is surrounded by whitespace), followed by a description of the contents of a
library. This description consists of a sequence of object file directories, each having the form

filename type1 name1 type2 name2 · · · ;

The filename and all the names are strings. Each type is either U, indicating that the following
name is used in filename, but not defined, or D, indicating that the following name is defined
in filename. Each object file directory ends with an isolated ‘;’. The input is in free format.
You may assume file names are limited to 256 characters. You may assume that each required
name is defined in exactly one library file.

The output consists of a list of the minimal set, S, of filenames from the library such
that the root names and the type ‘U’ names from the files in S all have definitions (type ‘D’
names) among the files in S. List the result in the format shown in the example on the next
page, in the order in which the file names appear in the description of the library.

Example:

Input Output

print sin cos read ;

files.o D close D open ;

math.o D sin D cos U error ;

diagnose.o D error ;

format.o D printf D scanf ;

input.o D read U close U

error D seek ;

output.o D print U error U close ;

files.o

math.o

diagnose.o

input.o

output.o



1996 Programming Problems 7

3. Wolverine College, in Michigan’s Upper Peninsula, is often covered with snow. Its grounds
crew tends to get somnolent in the winter, however, and tries to do as little work as possible in
clearing the sidewalks. Specifically, once they know what buildings will be used on any given
day (the faculty isn’t so energetic either), they clear off the shortest combination of sidewalks
possible that leave some (possibly long) path connecting all the open buildings. Your task
here is to write a program that determines this set of sidewalks.

For example, given the diagrammatic map below, the solid lines represent a minimum-
length set of clear sidewalks, the dashed lines represent the snow-covered walks, and the
numbers are lengths of the walks.

1879

Dickinson

Chapel 

Brown

Fine

Henry

Alexander

Infirmary

Gauss

7

11

4

8

7

2

7

4

6

2

14

10

9

1

Each set of input to your program will consist of a sequence of sidewalk descriptions, all
in free form, followed by an isolated semicolon (i.e., surrounded by whitespace). A sidewalk
description consists of two building names and a distance (a positive integer). Building
names consist of up to 128 letters, digits, and underscores—no blanks or punctuation. You
may assume that all buildings are connected by some path to all other buildings (so that, in
particular, all building names are included in at least one sidewalk description). You may
make no assumptions about the number of buildings or sidewalks. You may assume that no
walk will be longer than 109 long. You may also assume that there will be a unique solution.

For each set of input, the output is to have the form illustrated in the sample input on
the next page. Output the sidewalks in the same order as their descriptions were input.



1996 Programming Problems 8

Input Output

Brown Henry 11

Henry Alexander 8

Gauss Henry 1

Infirmary Henry 7

Brown Chapel 7

Alexander Brown 4

Infirmary

Chapel

2

Gauss Infirmary 6 Gauss Fine 2

Fine Dickinson 14

1879 Fine 10

Dickinson 1879 9

Chapel Dickinson 7

Chapel Fine 4 ;

Alexander Brown 4

Brown Henry 11

Henry Alexander 8

;

Set 0:

Clear Gauss to Henry

Clear Brown to Chapel

Clear Alexander to Brown

Clear Infirmary to Chapel

Clear Gauss to Fine

Clear Dickinson to 1879

Clear Chapel to Dickinson

Clear Chapel to Fine

Set 1:

Clear Alexander to Brown

Clear Henry to Alexander



1996 Programming Problems 9

4. You’ve probably seen those puzzles in which you are given clues such as “The plumber
lives in the green house” and “Joe is not the archdeacon” and you are supposed to figure out
everyone’s occupation and taste in exterior latex enamel. In this problem, you are to write a
general-purpose solver for this type of problem.

The input consists of sets of specifications, each set terminated by the question “So?”.
At the beginning of each set, there is an integer number, N , giving the number of people,
occupations, and houses. Each of the specifications that follows it has one of the following
forms:

Name name

Occupation occupation

House color

LivesIn name color

NotLivesIn name color

IsA name occupation

IsNotA name occupation

JobOf color occupation

NotJobOf color occupation

The first three simply declare that certain people, occupations, and house colors exist, without
giving any further information (“Occupation plumber” means “There is a plumber.”). The
next two tell about what color house a certain person lives or does not live in (“LivesIn
Paul white” means “Paul lives in the white house.”) The next two tell about a person’s job
(“IsA John biochemist” means “John is the biochemist.”) The last two refer to what job
the person occupying a house of a certain color does or does not have (“JobOf blue actuary”
means “The person in the blue house is the actuary.”) Each name, occupation, and color

consists of up to 128 alphabetic characters. The input is free-form. You may assume that
all N names, colors, and occupations will be mentioned in the input. Each person occupies
exactly one house, distinct from everyone else’s, and has one job, distinct from everyone else’s.

The output consists of a sequence of assignments of names to occupations and houses,
each having the form

The occupation, name, lives in the color house.

(as in “The plumber, John, lives in the yellow house.”) The output is sorted according to the
order in which the names are mentioned in the input. If the sentences are contradictory, the
output consists of the single sentence,

This is impossible.

If the sentences admit of more than one solution, the output consists of the single sentence,

I don’t know.

There are examples on the next page.



1996 Programming Problems 10

Example:

Input Output

1

Name Sue

House brown

Occupation professor

So?

3

IsNotA John carpenter

JobOf blue plumber

House green

LivesIn John yellow

NotLivesIn Mary blue

Name Tom

Occupation architect

So?

2

LivesIn Jack blue

NotLivesIn Mary blue

Occupation mechanic House red

Occupation architect So?

2

LivesIn Jack white

IsA Jack carpenter

IsA Jill clerk

JobOf yellow carpenter

So?

Set 0:

The professor, Sue, lives in the brown house.

Set 1:

The architect, John, lives in the yellow house.

The carpenter, Mary, lives in the green house.

The plumber, Tom, lives in the blue house.

Set 2:

I don’t know.

Set 3:

This is impossible.



1996 Programming Problems 11

5. It’s not necessary to use purely non-negative digits to compose numerals. Indeed, the
denizens of the planet Gorgonea Quarta IV, perhaps due to the rather unusual configuration
of their “hands,” use a number system in which there are three digits (called trits): ‘0’, ‘1’,
and ‘-’, having values 0, 1, and −1, respectively. In this number system, each position has a
value 3 times that of the position to its right. Thus, the numeral ‘10-’ represents the number
8 (since 8 = 1×9+0×3+−1×1) and ‘-1’ represents the number -2 (since −2 = −1×3+1×1).

Write a program that reads in a sequence of integers in the range −231 to 231 − 1, and
prints out their equivalents in Gorgonea Quartan (GQ) notation, using the format shown in
the examples below.

Example:

Input Output

10

2

-17

42

1024

-2147483648

10 = 101 GQ

2 = 1- GQ

-17 = -101 GQ

42 = 1---0 GQ

1024 = 111-0-1 GQ

-2147483648 = -10110100011---1-1--1 GQ



1996 Programming Problems 12

6. Project SCRUB (Simple Cleaning Robots Using Brushes) aims to provide every household
with a collection of simple-minded robots for keeping floors clean and free of litter. Each robot
has detectors that inform it of rubbish or other robots in its vicinity. The robots’ behavior
follows these rules:

• Each robot has a distinct number by which it may be identified.

• Robots move at a constant velocity.

• Once per second, each robot—call it robot R—consults its detectors and changes its
direction, if necessary, as follows:

– If there is another robot within a given avoidance distance of R’s center, then R

changes direction so as to be moving in the direction exactly opposite from the
other robot’s center. When there is more than one robot within the avoidance
distance, R ignores all but the lowest-numbered robot.

– If there are no robots within the avoidance distance and there is still dirt or rubbish,
R turns in the direction of the nearest pile of it.

– Otherwise, R stops moving and turns itself off. Robots never restart once they are
off.

• All robots that haven’t yet turned themselves off are synchronized; they all make their
(instantaneous) changes in direction together each second.

• Once a piece of dirt or rubbish gets within a certain cleaning distance of a robot, it gets
sucked up into the robot’s receptacle, and no longer registers on any robot’s sensors.
This happens at most once a second, before the robots look around for dirt. If more
than one robot is within the cleaning distance, the lower-numbered robot gets the dirt.

To evaluate the effectiveness of this design, you are to provide a simulation program.
The input to the program consists of an integer, N , giving the maximum simulation time in
seconds, followed by a floating-point number V , giving the velocity of each robot (in units
moved per second), followed by a floating-point number A, giving the avoidance distance,
followed by a floating-point number C, giving the cleaning distance, followed finally by any
number of robot and dirt placement descriptions in free form. Each of these, in turn, has the
form

T x y

Here, T is either ‘R’ to indicate a robot or ‘D’ to indicate a pile of dirt. The coordinates x and
y are both real numbers (C/C++ type double). After reading in this input, your program is
to simulate the robots’ movements for N seconds, reporting each time a robot either sweeps
up some dirt, runs into another robot, or stops moving, using the format in the example.
At time 0, the robots sweep up any nearby dirt, decide on a direction and start moving, in
accordance with the rules above.

The robot whose description occurs first in the input is robot number 0, the next is 1, and
so forth. At each time that something happens, report dirt encounters first, then collisions,



1996 Programming Problems 13

then robots that stop. In all cases, list robots in numerical order. Identify piles of dirt by
number (starting with 0) in the order in which their descriptions are read in. Report up to
and including time N . That is, report collisions, dirt encounters, and robots halting that
occur at time N .

Example 1: The last columns in these examples show the position of the robot being
reported on in the middle column. It’s just for your convenience; your program must not

print the information in the last column!

Robot’s

Input Output Position

100 1 2.5 0.5

R 0 0

D 0 1.9

R 0 5

Robot #0 picked up dirt pile #0 at time 2.

Robot #0 turns to avoid robot #1 at time 2.

Robot #1 turns to avoid robot #0 at time 2.

Robot #0 stops at time 3.

Robot #1 stops at time 3.

(0, 2)
(0, 2)
(0, 3)
(0, 1)
(0, 4)

Example 2:

Robot’s

Input Output Position

100 1 1.0 0.5

R 0 0 R 0 5

D 0.2 1.9 D 1 4 D -2

-4

Robot #1 picked up dirt pile #1 at time 1.

Robot #0 picked up dirt pile #0 at time 2.

Robot #0 picked up dirt pile #2 at time 8.

Robot #0 stops at time 8.

Robot #1 stops at time 8.

(0.71, 4.29)
(0.21, 1.99)
(-1.87, -3.64)
(-1.87, -3.64)
(-1.44, -2.36)

Example 3:

Robot’s

Input Output Position

5 1 1.0 0.4

R 0 0

R 0 2.9

D 0 0.5

Robot #0 turns to avoid robot #1 at time 1.

Robot #1 turns to avoid robot #0 at time 1.

Robot #0 turns to avoid robot #1 at time 3.

Robot #1 turns to avoid robot #0 at time 3.

Robot #0 turns to avoid robot #1 at time 5.

Robot #1 turns to avoid robot #0 at time 5.

(0, 1)
(0, 1.9)
(0, 1)
(0, 1.9)
(0, 1)
(0, 1.9)



1996 Programming Problems 14

7. Consider a string of binary digits, such as ‘10110111010’. One way to describe this is to
write it as ‘10(1101)20.’ Here, the notation ‘(s)n’ means “the string s repeated n times.” We
could also write it as ‘(101)211010’ or ‘10110(1)3010’. However, these latter two renderings
require more binary digits than the first did (8 and 9, respectively, versus 7).

Write a program that, given a sequence of non-null binary strings, prints out a represen-
tation for each in the form

α(β)[n]γ

where α, β, and γ stand for strings of binary digits, and n ≥ 1 is an integer. The strings α

and γ may be empty (but β never is). For each one, find a representation that minimizes the
combined length of ‘αβγ’ (i.e., ignoring n). Where more than one such minimal representation
is possible, choose the one that minimizes the length of α. Where there is more than one
minimal representation that minimizes the length of α, choose the one that minimizes the
length of γ. See the examples for the precise format.

The input will consist of binary strings of up to 1024 binary digits in free form.

Example:
Input Output

10110111010

0 111111 101

10101

10110111010 = 10(1101)[2]0

0 = (0)[1]

111111 = (1)[6]

101 = (101)[1]

10101 = (10)[2]1



1996 Programming Problems 15

8. The phrase propositional calculus is just a pretentious term for a logic involving simple
logical formulae containing variables and the logical connectives ‘&’ (and), ‘|’ (or), ‘-’ (not),
and > (implies). For convenient input, we can write a formula such as ‘(x&y) > (-x | y)’
in the One True Syntax like this:

(> (& x y) (| (- x) y))

that is, each (sub)expression is either a simple variable or is a parenthesized expression with
the operator first, followed by one or two operand subexpressions in the same format (recur-
sively). For simplicity, assume that all logical variables are one-character lower-case letters.
The presence or absence of whitespace has no effect on the meaning of the expression.

An axiom schema has the same format, but may also contain upper-case letters, which
we’ll call pattern variables:

(> A (> B A))

An axiom schema matches a formula F if one can substitute for all its pattern variables
so as to get F . Thus, ‘(> A (> B A))’ matches ‘(> x (> x x))’ or ‘(> (& x z) (> y (&

x z)))’, but it does not match ‘(> x (& x x))’ or ‘(> x (> x y))’. A formula (i.e., not
a schema) matches another formula if they are identical. We never match one schema to
another.

A proof with k givens is a sequence of axiom schemata and formulas, X1 · · ·Xn, such that
for all 1 ≤ i ≤ n, either

• i ≤ k (i.e., “Xi is given.”), or

• There is some j < i such that Xj matches Xi (Xi must be a formula, not a schema), or

• For some j < i and k < i, Xj is the formula (> Xk Xi). (This is the inference rule
known as modus ponens: if A is true and A implies B, then infer B is true.)

Write a program that reads in a sequence of formulae and indicates whether it is a proof
according to these rules. The givens are separated from the rest of the proof by empty
parentheses, ‘()’, which will always appear. The output consists of an echo of the proof up to
either its end, if it is valid, or the first erroneous line, if it is not, with a message about whether
it checks. Use the format illustrated in the examples. [Hint: The conventional meanings of
the connectives is irrelevant in this problem.]



1996 Programming Problems 16

Example 1:

Input Output

(> A (> B A))

x

()

(> x

(> y x))

(> y

x)

(> A (> B A))

x

()

(> x (> y x))

(> y x)

*Proof OK*

Example 2:

Input Output

(> A (- A))

x

()

(> x (- y))

(- y)

(> A (- A))

x

()

(> x (- y))

*Error in proof*

Example 3:

Input Output

(> A (> B A))

(> (> A B)

(> (> A (> B C))

(> A C)))

()

(> x (> x x))

(> (> x (> x x))

(> (> x (> (> x x) x))

(> x x)))

(> (> x (> (> x x) x))

(> x x))

(> x (> (> x x) x))

(> x x)

(> A (> B A))

(> (> A B) (> (> A (> B C)) (> A C)))

()

(> x (> x x))

(> (> x (> x x)) (> (> x (> (> x x) x)) (> x x)))

(> (> x (> (> x x) x)) (> x x))

(> x (> (> x x) x))

(> x x)

*Proof OK*


