
Flexible Power Scheduling for Sensor Networks
Barbara Hohlt

Computer Science Division
University of California, Berkeley
Berkeley, CA, USA 94720-1776

hohltb@eecs.berkeley.edu

Lance Doherty
Electrical Engineering Division

University of California, Berkeley
Berkeley, CA, USA 94720-1770

ldoherty@eecs.berkeley.edu

Eric Brewer
Computer Science Division

University of California, Berkeley
Berkeley, CA, USA 94720-1776

brewer@cs.berkeley.edu

ABSTRACT
We propose a distributed on-demand power-management protocol
for collecting data in sensor networks. The protocol aims to
reduce power consumption while supporting fluctuating demand
in the network and provide local routing information and
synchronicity without global control. Energy savings are achieved
by powering down nodes during idle times identified through
dynamic scheduling. We present a real implementation on
wireless sensor nodes based on a novel, two-level architecture.
We evaluate our approach through measurements and simulation,
and show how the protocol allows adaptive scheduling and
enables a smooth trade-off between energy savings and latency.
An example current measurement shows an energy savings of
83% on an intermediate node.

Categories and Subject Descriptors
C.2 [Computer Communication Networks]: Network
Architecture and Design, Network Protocols, Network
Operations, Distributed Systems;

C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems;

D.4.4 [Operating Systems]: Communications Management

General Terms
Algorithms, Management, Measurement, Design, Economics,
Experimentation

Keywords
Sensor Networks, Communication Scheduling, Power
Management

1. INTRODUCTION
The combination of technological advances in integrated
circuitry, MEMS, communication and energy storage has driven
the development of low-cost, low-power sensor nodes [14,2].

Networking many nodes through radio communication allows for

data collection via multi-hop routing, but the practical limits on
available power and the lack of global control present challenges.
Constraints imposed by limited energy stores on individual nodes
require careful selection of tasks, and as communication is the
most costly task in terms of energy, it must be used particularly
sparingly. In general, sensor nodes comprising the network have
the ability to sense the environment, control actuators, make
simple computations, and communicate data either to other nodes
or to a centralized observer. We will consider networks consisting
of the Crossbow MICA sensor nodes [6] running the UC Berkeley
TinyOS operating system [13].

Power consumption limits the utility of sensor networks.
Replacing batteries every week in building networks is a
laborious task and replacing them in a less friendly environment
may not be possible. Researchers agree, above all functions, radio
communication dominates the power consumed in wireless sensor
networks [2,8,25,19]. At the communication distances typical in
sensor networks, listening for information on the radio channel is
of a cost similar to transmission of data [21], so unnecessary radio
operation must be pared to increase node lifetimes. In addition,
the energy cost for a node in idle mode is approximately the same
as in receive mode. Therefore, protocols that assume receive and
idle power are of little consequence are not efficient for sensor
networks. Idle listening, the time spent listening while waiting to
receive packets, is a significant cost. Stemm et al. [27] observed
that idle listening dominated the energy costs of network
interfaces in hand-held devices. It became clear that to reduce
power consumption in radios, the radio must be turned off during
idle times. Mangione-Smith and Ghang [18] proposed such a
scheme for an energy-efficient MAC layer for one-hop mobile
devices.

This paper presents Flexible Power Scheduling (FPS), a
distributed power management protocol for sensor networks that
reduces radio power consumption while supporting fluctuating
demand in the network. A novel, two-level architecture combines
coarse grain scheduling at the routing layer to plan radio on/off
times and fine grain medium access control to provide channel
access. The protocol provides local communication schedules for
a multi-hop sensor network and acts only on locally acquired
information. We detail a distributed algorithm that exploits a tree
based topology in combination with an adaptive slotted
communication schedule to route packets, synchronize with
neighbors, and schedule radio on/off times. The assignment and
modification of schedules is based on a supply and demand
algorithm that allows for implicit and explicit deletion of nodes
from the network without global control or re-initialization.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IPSN’04, April 26–27, 2004, Berkeley, California, USA.
Copyright 2004 ACM 1-58113-846-6/04/0004…$5.00.

We use sense-to-gateway data collection as the application driver
for our protocol. Sense-to-gateway applications represent a large
class of wireless sensor network applications and have a natural
tree topology that can be exploited for flexible power scheduling.
These applications collect data from the environment and forward
the data to a base station where it can be stored in a central
database for evaluation. Such applications include equipment
tracking, building-wide energy monitoring, habitat monitoring
[17], conference room reservations [5], art museum monitoring
[24], and automatic lawn sprinklers [7]. The communication is
primarily one way: from the data-collecting node to the base
station. Our protocol may be extended to two-way
communication, but in this paper we will focus primarily on
network to gateway communication. Our protocol does not
support arbitrary many-to-many communication such as would be
required in event tracking applications.

The remainder of the paper is organized as follows: Section 2
describes sensor network issues, Section 3 introduces our flexible
power scheduling protocol, Section 4 makes the algorithm
precise, Section 5 describes an implementation on UC Berkeley
nodes and gives some experimental results (energy, adaptation,
latency), Section 6 discusses related work, and Section 7 provides
concluding remarks.

2. BACKGROUND DISCUSSION
Multi-hop topologies play a significant role in sensor networks. In
terms of wireless communication, it is more energy efficient to
transmit over several short distances than it is to transmit over a
few long distances [19]. Short distances require less energy to
transmit and have better signals resulting in fewer retransmissions
due to packet loss.

Multi-hop networks have problems with congestion at the sink
and unfair end-to-end bandwidth allocation. The farthest nodes do
not have as fair a chance of getting their data to the base station as
the nearest nodes. Due to the lossy nature of wireless links, the
chance of packet loss grows geometrically with each hop. Traffic
in sensor networks tends to be highly correlated as well.
Asynchronous events can trigger sudden bursts of traffic that can
lead to collisions, congestion, and channel capture [28].

In theory, slotted time division schemes can solve these problems.
Slotted time division has a natural structure that leaves traffic
uncorrelated and provides end-to-end fairness. More importantly,
slotted time division schedules are energy efficient because it is
known when the radio will be idle. Global schedules can be
generated in such away that bandwidth is essentially reserved
from source to sink and from the schedule it is clear when to turn
the radio on and off locally.

By and large, slotted time division schemes require centralized
control, have static global schedules, and require fine-grain time
synchronization. The algorithm proposed in this paper exploits a
tree-based topology that enables a distributed algorithm using no
centralized control, has adaptive local schedules, and requires
only coarse-grain time synchronization.

We propose a two level architecture: coarse-grain scheduling at
the routing layer to schedule all communication for the purpose of
powering the radio on-and-off during idle times, and fine-grain
medium access control at the MAC-layer to handle channel
access.

Figure. 1: Coarse-grain scheduling (above) and fine-grain

medium access (below).

Fairness requires a global view of the network. We need some
information about traffic and topology, which requires a higher-
level operation. Slotted systems require network-wide fine-grain
time synchronization for use of discrete time slots. This is easy to
achieve in centralized networks, but much more difficult in multi-
hop networks. If we choose a coarse-grain schedule then time
synchronization becomes easy and will be sufficient for the
algorithm proposed here.

The algorithm is distributed. There is no oracle to generate and
distribute a network-wide global schedule. However, discovery
can be done locally because we are using a constrained tree
topology. Through the exchange of messages a local schedule can
be generated at each node and adapted to the changing needs of
the network. On the TinyOS platform messages are delivered at
the Active Message layer [12] and the routing layer is above. It is
the routing layer that has knowledge of route through traffic as
well as source-generated traffic in a sensor node.

Although the coarse-grain schedule reduces contention, it is not
the case the medium will be absolutely contention free. The
algorithm does not generate the perfect distributed schedule, so
we still need a MAC layer to handle those cases where in
different parts of the network nodes are transmitting at the same
time, but can overhear each other.

The coarse-grain schedule reduces contention because it can
coordinate transmission times and distribute traffic. A MAC layer
is still required, but will have less work to do. The combination of
a coarse-grain schedule and MAC-layer protocol reduces
contention and increases end-to-end fairness. The distributed
schedule has the effect of doing connection-less flow control and
the distributed algorithm provides reserved bandwidth from
source to sink.

3. FPS PROTOCOL
3.1 Goals of the Protocol
The main goal of flexible power scheduling is to reduce power
consumption while supporting fluctuating demand in the network
for data collection. It schedules transmit and receive time slots in
each node’s power schedule and sleeps during idle periods. Local
power schedules dynamically adapt as network demand changes.
The assignment and modification of schedules is distributed
without global control and without a network-wide global
initialization phase. The protocol supports data collection
applications and communication is assumed to be primarily one-
way, toward a base station, and there may be multiple base
stations.

3.2 Definitions
Time is broken up into slots. Each slot s corresponds to a length
of time Ts. Slot numbering is periodic modulo m, i.e. slot s+m is
called slot s. Generally, the same events will occur periodically

and during the same slot in different cycles. A cycle c hence
represents a length of time Tc = mTs.

Each node maintains a local power schedule of what operations it
performs over the course of a cycle. During each slot of the cycle,
the node can have one of six states that, for now, can be
considered as one of three states: (i) Receiving, (ii) Transmitting,
or (iii) Idle. In general, the number of receive slots in the local
schedule of node a plus its own original source demand represents
the demand at node a and the number of transmit slots in the local
schedule at node a represents the supply at node a. Transmit and
receive slots in the local schedule allow the node to know when
its neighbors are ready to transmit to or receive from this node.

Figure. 2: Definition of the terminology used in power
scheduling

Conceptually, we represent the collection of local schedules as an
Nxm matrix Ω where N is the total number of nodes. For example,
Ω(n,s) tells which of the three states node n is in during slot s. In
implementation, a node n would only have access to the nth row
of Ω. The schedule is initialized to all Idle and evolves over the
run of the scheduling algorithm. We assume that the node can
power down during idle slots. Figure 2 depicts k cycles of a power
schedule at node n.

Let the number of slots that a node is not idle during a cycle be
b(n), b(n) <= m. Now the duty cycle of a node will be:

m
nbnDutyCycle)()(= (1)

Equation (1) emphasizes two ways that duty cycle can be reduced
at a node: either reduce the amount of non-idle slots, or lengthen
the cycle. Each node can then adapt its particular power schedule
to minimize its energy consumption independent of activity at
other nodes.

For simulation purposes, a network is defined by two parameters:
a binary connectivity matrix C and an initial demand vector d.
C(a,b) = 1 if node a can receive transmissions from node b and 0
otherwise. In general, this matrix could be a function of time to
represent mobile nodes or changing transmission channels, or
could be a real number between 0 and 1 representing the
probability of packet loss. The demand vector indicates how
many packets node a seeks to forward during each cycle. Initially,
every node has a demand of 1 for itself. In the our current
scenario, d(a) is the integer demand at node a. Integer demand
counts one packet per cycle per unit and d(a) represents the sum
of the demand at node a and the children of node a. Our protocols
can easily be adapted to accommodate finer units of demand. For
example one unit could represent one packet every 32 cycles.
These parameters completely specify the network and the goal

state, namely that each node in the network is scheduled to
forward one packet upstream per unit of demand.

3.3 A Simple Example
As an illustration of the protocol, consider the network depicted in
Figure 3. Nodes 0 through 5 represent the nodes of a network
each having different demand. The squares represent nodes with
an initial demand of 1. The solid circles represent demand that
originates at the node. The lines between squares are the
connectivity graph in terms of communication links.

Figure. 3: Network used in the simple example.

Suppose that node 0 is the base station and that all other nodes
initialize with at least a demand of 1, i.e. they each need at least
one communication slot with their parent. Nodes always begin
with one extra unit of demand. Starting with the leaves of the tree,
nodes 3 and 4 both require transmission slots to communicate to
their parent, node 1. Thus, the effective demand of node 1 is 8 and
node 1 requires 8 communication slots with the base station. On
the other branch of the tree, node 2 requires 5 communication
slots with the base station. From this simple example, it is
apparent that nodes closer to the root will have higher duty cycles
as is the case in general with sinks in sensor networks.

Another observation is that the data from nodes on level l can be
delayed by as many as l cycles upon reception at the root. In the
worst case, data from nodes 1 and 2 in the example are received
after 1 cycle while data from nodes 3-5 are delayed by 2 cycles. If
a particular latency is required, the number of slots m may have
an upper bound that increases the overall duty cycle in the
network. The tradeoff between latency and duty cycle will be
further explored in later sections.

4. ALGORITHM DETAILS

4.1 Node States and Reservations
Each node maintains its own transmit and receive schedule of
time slots known as a power schedule. One power schedule cycle
is equivalent to m time slots in length. A reservation slot refers to
a receive/transmit pair between a parent node and child node.

Each time slot a node can be in one of 6 states:

1. Transmit (T) – Transmit a message to parent node,
remains in schedule until topology or supply/demand
changes

Tc = mTs

1 cycle Ts

k cycles (kTc)
Node2 1

43 5

0

Original source demand

2. Receive (R) - Receive a message from child node,
remains in schedule until topology or supply/demand
changes

3. Advertisement (A) - Broadcast an Advertisement from
parent node for an available reservation slot, remains at
most one cycle

4. Transmit Pending (TP) – Send a reservation request to
parent node, remains at most one cycle

5. Receive Pending (RP) – Receive a reservation request
from child, remains at most two cycles

6. Idle (I) – After all current demand at this node has been
met, the node can power down during idle slots

When a parent node broadcasts an advertisement for a reservation
it marks the reservation slot (not the advertisement slot) in its own
schedule as Receive Pending. If a child node has unmet demand
and it hears an advertisement, it marks the reservation slot in its
own schedule as Transmit Pending and sends a reservation
request when the time slot arrives. An explicit example of the
standard operation for two nodes (node 1 is closer to the base
station than node 2) is shown in Table 1. Here node 1 and node 2
reserve time slot R for communication.

Table 1 shows the interaction between two nodes to set up
communication. The headings C and S denote cycle number and
slot number respectively. Node 1, the parent, begins by selecting
an advertisement slot A and a reservation slot R at random from
its idle slots. The reservation process requires three cycles. The
first is the advertisement from the parent, the second is the
response from the child and immediate confirmation, and the third
is the first actual transmission of data. Thereafter, node 2
transmits during slot R. Advertisement messages carry the node
id, number of hops from the base station, the current slot number,
current demand, and reservation slot number. The return request
messages carry the same information.

Table 1: Reservation between two nodes

C S Node 1 Node2

1 A Advertise slot R Receive advertisement

2 R Send immediate
confirmation Request slot R

3 R Receive from Node 2 Transmit to Node 1

. . … …
N R Receive from Node 2 Transmit to Node 1

4.2 Synchronization
When a child node selects a parent it synchronizes its current time
slot and slot number to that of its parent. Periodically, thereafter,
the child node resynchronizes with its parent. Only coarse-grain
synchronization is required due to the relatively large time slots.
In the example from Table 1, node 2 synchronizes with node 1
during cycle 1 and time slot A. If available, link layer
acknowledgements containing timestamps can be used for
subsequent resynchronization. Otherwise, node 2 can snoop
during a known transmission time of node 1. This requires node 1

to include a list or partial list of its transmission slots in its
advertisement messages. A simple, but not optimal, solution is for
node 2 to listen for node 1’s periodic advertisements. This
requires node 2 to turn on its radio periodically to listen for an
advertisement from node 1.

4.3 Initialization
There is no global initialization. The base station initializes by
picking a reservation slot at random and listens for a return
message during this slot during the following cycle. If a node is
new to the network (i.e. it does not have a schedule), it sets its
schedule to all idle and listens for at least one cycle for
advertisements. Nodes set their demand to 1 + their current
demand. Nodes are fully powered-on in the initialization phase
until they acquire an advertised slot. Nodes will choose a parent
one hop away toward the base station having the least demand
(smallest load). Additional metrics, such as link quality, can be
supported by our protocol as well. Once a node has acquired
enough reservation slots to meet its initial demand it begins to
advertise itself and turn off the radio during idle slots. Note that in
the algorithm below, Receive Pending (RP) and Transmit Pending
(TP) refer to the same time slot in the parent schedule and child
schedule respectively.

4.4 Main Operation
Each node n runs the following procedure after initialization:

For each cycle c,

Pick an advertisement slot A randomly from idle slots

Pick a reservation slot RP randomly from idle slots

If (supply >= demand)

Radio off during Idle slots

Schedule an advertisement during an A slot

Else

Radio on and listen for advertisements

Schedule a reservation request during a TP slot

For each slot s, check power schedule Ω(n,s)

Case (T) – Transmit a message

Case (R) – Receive a message

Case (A) – Broadcast an advertisement for slot RP

Case (RP) – Listen for reservation requests

Case (TP) – Transmit a reservation request

Case (I) – Power down radio or Listen for advertisements if
demand is unmet

End

Clear the current A, the previous TP, and the previous RP from
the schedule.

End

Note that nodes always begin with one extra unit of demand, so
bandwidth is immediately available all the way to the sink once a

reservation is made locally. A slot is officially reserved when a
parent node receives and accepts a request during its current RP
slot. If more than one request is received, the parent accepts the
first request. The parent node sends an immediate confirmation
acknowledgement and increases its demand by one unit and
schedules an R during this slot. The child node increases its
supply by one and schedules a T during this slot. The reservation
does not have to be renegotiated and remains in effect indefinitely
until a child cancels the reservation or the parent times out the
reservation if no transmissions occur after some number of cycles.
A parent node may also receive a request for decreased demand
from a child during a scheduled R slot at which time the parent
node sets the R slot to I and decrements its demand.

Notice here the radio on and off times. A node powers off its
radio during idle slots when its demand is met. In sensor networks
it is the minority of nodes that are varying their demand or
moving about the network. The design of the protocol puts the
onus on the node increasing its demand, the sending node, to
listen for advertisements not the receiving node. Advertising
nodes need only listen during one time slot, the Receive Pending
slot. Similarly, the protocol design is also advantageous for
initialization. The onus is on the joining node to listen until it
attaches to the network. The advertising nodes need only listen
during their Receive Pending slot. The emphasis is on conserving
energy.

This algorithm runs on all nodes following initialization. Once all
demand has been met at a node, it can power down its radio
during idle slots to conserve energy otherwise it listens for
advertisements. If more nodes are added to the network, the
existing nodes will get new reservation requests and will re-enter
the algorithm to maintain a state of extra supply.

4.5 Collisions and Message Loss
The primary function of the local power schedules is to determine
when to turn the radio on and off. The schedules derive solely
from local information and do not give a global view of the
network. Power scheduling relies on the presence of a MAC layer
to handle channel access. A simple CSMA MAC will suffice
because time division scheduling significantly reduces media
contention. The minimum width of a time slot is set to allow
transmission of at least two packets in the same slot, so at a
minimum, two packets may transmit during the same time slot
and the CSMA MAC will handle the channel access.

Collisions can occur in the network due to hidden terminals. This
is because carrier sense can only detect potential collisions at the
sender and not the receiver. In our protocol, collisions can occur
when two children out of radio range from each other respond to
the same reservation advertisement. When a child fails to acquire
a reservation for some number of cycles, it may assume that such
collisions are occurring, in which case, the child will send
subsequent reservation requests with a probability Prequest < 1.
Some collisions may be due to one-off advertisement messages,
the slots for which are randomly selected. In this case, message
loss will not perennially happen during the same slot.

In the case where a node expects a message from a child (i.e. has
R scheduled) and does not receive the message for several cycles,
the topology of the network can be assumed to have changed and
the R slot can be recycled and demand decremented. Through link

layer acknowledgements a parent can implicitly let a child know
when messages have ceased to arrive and the child can recycle the
T slot and decrement its supply.

5. EVALUATION
The sensor nodes in our implementation are the MICA nodes
manufactured by Crossbow running the TinyOS operating system
and nesC [10] language developed at UC Berkeley. The TinyOS
power management feature exports an interface that allows a
program to easily power the radio on and off. MICA has an
ATMEGA 128L processor [3], with 128K bytes of programmable
flash, 4K bytes of SRAM, and 4K bytes of programmable
EEPROM. It uses a TR1000 RF Monolithics [22] radio
transceiver with a carrier frequency of 916.50 MHz and
transmission rate of 40 Kbps.

5.1 A Simple Application
To verify our protocols we implemented a simple inventory
tracking application consisting of 5 stationary nodes, 7 mobile
nodes, base station node, and database with user interface. The
network continuously receives data at a rate of one packet per
minute from mobile nodes used to track various pieces of
equipment and forwards the packets to a base station. The area
covers two rooms and adjoining corridor. The base station can
receive packets wirelessly and send them to a PC through its
serial port. The packets received at the PC are then logged to a
remote database.

Using a similar setup we ran two simple tests to verify our
assumptions about slotted scheduling and end-to-end fairness.
One test uses slotted scheduling (via FPS) and the other test does
not use slotted scheduling (Naïve store-and-forward). Six nodes
send 100 36-byte packets at a rate of one packet per 3.2 seconds.
Packets are sent across a 3-hop network with one exception: Node
3 in the Naïve test sends across 2 hops. The test begins after a
start message is injected into the network.

Table 2: Average number of packets received at the base
station over 10 trials.

Node 1 2 3 4 5 6
FPS 96.00 96.91 96.09 97.45 94.55 97.55
Naïve 28.64 11.55 54.36 18.45 18.18 16.91

Table 2 displays the average number of packets received at the
base station over 10 trials. With slotted scheduling almost all of
the packets are received. Without slotted scheduling most of the
packets are lost due to contention and interference.

This test illustrates that slotted scheduling can provide end-to-end
fairness and significantly reduce contention in multi-hop
networks.

5.2 Experimental Setup

Figure 4: Network used in MICA experiments.

0 66 1 6

Figure 5: Measured current at node 1 with and without power management over 10 seconds.

To obtain the measurements in sections 5.2 and 5.3, we use a
simple 4-node setup where all nodes are in proximity of the base
station in order that their messages may be over-heard and logged
to a file. Figure 4 shows the 3-hop network we used in energy
savings and network adaptation experiments. Node 6 is the
sender, node 1 and node 66 are intermediate nodes, and node 0 is
the base station node connected to a PC.

5.3 Energy Savings
In this experiment we measure the current at an intermediate node
in its steady state while it is forwarding packets. One
measurement is taken with power management enabled and one
measurement is taken with power management disabled. When
power management is enabled we run our protocol and power
down the radio during idle time slots. When power management
is disabled we run our protocol and leave the radio on during idle
time slots. The energy consumption is measured at node 1. Node
6 sends a 36-byte data packet once per cycle, every 2.6 seconds.
There are 40 times slot per cycle and each time slot is 65 ms.

Figure 5 shows the current of node 1 in mA without power
management (top) and with power management (bottom). Ten
seconds of data are captured at a 1 ms sample rate. MICA 128L
nodes have a boost converter; we took our measurements with the
boost converter turned off. We use an instrumentation amplifier
with a gain of 85 and measure voltage across a 1.1 Ohm resistor
with an oscilloscope. Hence the current in mA is:

Current [mA] = (voltage [V] / (85 * 1.1)) * 1000 (2)

With power management disabled the average current measured is
8.144 mA. With power management enabled the average current
is 1.412 mA. A high-performance AA battery has a capacity of
~1800 mA-hours. So, when power management is disabled the

average battery life is 221.02 hours (~9 days) and with power
management enabled the average battery life is 1274.79 hours
(~53 days).

When in a steady state each node can be in 1 of 5 states in each
time slot: Transmit (T), Receive (R), Receive Pending (RP),
Advertisement (A), or Idle (I). In the steady state we will not
observe Transmit Pending states since no advertisements are
being responded to. From analyzing our session log we can
determine the schedules of each node.

Table 3: Calculation of duty cycle from observed schedules

N T R RP A I Duty

66 3 2 2 1 32 20%

1 2 1 2 1 34 15%

6 1 0 0 0 39 2.5%

Now we can determine the expected duty cycle for each node.
Table 3 displays the count of slot states in the schedule of each
node N. The duty cycle is the number of active slots per cycle
divided by the total number of slots in a cycle. For a cycle length
of 40 time slots, the expected duty cycle for Node 1 is 15%
(6/40).

To determine the actual duty cycle measured at node 1 over 10
seconds, we count the number of samples that node 1 registers a
current greater than a 4 mA and divide this by the total number of
samples in the 10 second period:

1455 samples / 10000 samples = 14.55% duty cycle

Network Adaptation

0

1

2

3

4

5

6

0 20 40 60 80 100 120 140 160
Time in seconds

D
em

an
d

Node1
Node 66

Figure 6: Nodes adapting to changing demand in the network.

This empirical calculation closely matches the theoretical 15%.
Since the 10-second window represents about 3.85 cycles and not
an integral number, we expect some small deviation from the
theoretical results. As a comparison to the time-based duty cycle
computation, we can equally calculate the change in energy
expenditure when the power management protocol is enabled.

We divide the average current measured with power management
enabled by the average current measured with power management
disabled.

1.412 mA / 8.144 mA = .1734

If the sleeping current draw of the node were zero, we would
expect this 17% value to match with the duty cycle. However, the
microprocessor still draws current when the radio is powered-
down and hence the ratio is slightly higher. We are not certain
why the peak current draw using the power management protocol
is below that of the disabled case, but were these two values
equal, the 17% calculated would rise another few percentage
points.

5.4 Network Adaptation
In this experiment we test that the network adapts to varying
demand and measure how long it takes the network to react to the
fluctuating demand across two intermediate nodes. Figure 4
shows the network used in this experiment. There are 40 time
slots per cycle and each time slot is 80ms. Because of the
proximity of the request and confirmation messages it was
necessary to slow the experiment down, so that the logger at the
base station could capture all the messages. The time slot was
lengthened and a delay of 5 ms was added between the two
messages. All measurements are taken running our protocol with
power management enabled.

Recall from Section 4 that demand is increased through request
messages. For decreases in demand, we send negative reservation
requests during the next scheduled Transmit slot. (The implicit

decreased demand mechanism would not have messages for
snooping.)

The experiment runs as follows. After each node initializes with a
demand of 1, node 6 repeats the following sequence, {send 2
requests to increase demand, wait, send 2 requests to decrease
demand, wait}. The longer wait period ameliorates visualization

of subsequent messages. We ran the test 10 times collecting ~30
data points per test.

Figure 6 shows the results of one such test. The X-axis is time in
seconds. The Y-axis is the current demand at an intermediate
node at the time it sends a reservation confirmation message. The
two intermediate nodes, node 1 and node 66, are shown. At the
beginning of the experiment node 1 has a demand of 1 and node
66 has a demand of 2. The first data point shows Node 1 sending
a confirmation to node 6 with a demand of 2. The second data
point shows node 66 sending a confirmation to node 1 with a
demand of 3 after 4471 ms. At this point node 6 has joined the
network and will begin sending alternating demand in steps of 2.
There are 2 positive requests followed by 2 negative requests
taking 10792 ms, 3681 ms, 462 ms, and 700 ms respectively to
percolate to node 66. These delays are known as the response
time.

To increase its supply, node 1 first turns on the radio, listens for
the next advertisement, waits for the advertised reservation slot,
and sends the request. Confirmation is received in the same time
slot. Delay is related to the length of the slot cycle; here it is 3.2
seconds. In an ideal situation with no packet loss or collisions we
expect to wait less than 2 cycles to send a request: at most 1 cycle
to hear an advertisement, and at most 1 cycle to meet the
reservation slot. If the radio was not powered down during idle
slots, there is no wait time for the next advertisement. However,
our primary goal is to conserve the battery life, so we use power
management.

The square in Figure 6 shows the last 8 requests from the test
above. Node 66 is shown responding to requests seemingly out of
order. Node 1 sends requests {+2,-2,+2,-2}. Node 66 responds

with {+1,-1,+1,-1,+1,-1,+1,-1}. These anomalies are caused by
the random placement of advertisement and reservation slots,
which may reorder the requests slightly. Positive requests are sent
in the next reservation slot, which has a random position, while
negative requests are sent in the next Transmit slot, which has a
fixed position. However, the supply and demand mechanism
eventually balances out.

The histogram in Figure 7 is collected from 100 data points
collected from 7 of our tests. It shows the time difference between
node 66 sending a reservation confirmation and node 1 sending a
reservation confirmation. It represents the time when node 66
reacts to a request for demand from the sending node 6.

Figure 7: Histogram showing the distribution of response
times in the test network.

The majority falls below the expected worst-case response time of
6.4s. The outliers to the right represent lost advertisement
messages.

The earlier arrivals to the left are the result of the first-come first-
serve nature of packet transmission. There is no notion of
bandwidth ownership. Messages are forwarded in the next
available Transmission slot

5.5 Latency vs. Energy Tradeoff
In this experiment we use simulation to show the tradeoff between
latency and energy. For simplicity, the network used is a 15-node
binary tree with a fixed demand of one unit per node, yielding a
total network demand of 14. The demand at each node therefore is
one unit per child node plus one unit for itself.

Figure 8 is a parametric graph with m as the parameter. The X-
axis represents latency, measured as the number of slots that
occur from the time a message is sent from a leaf node to the time
it is received at the base station, as m increases from 30 to 1000.
In simulation one full cycle passes before forwarding a message
one level. For example if m = 40 then X = 120 because there are 3
hops between leaf and root. The Y-axis represents the overall duty
cycle as m increases from 30 to 1000. For example, in this
experiment when m = 40, we expect to save approximately 90%
of the original power in the network to satisfy a demand of 14.
Lengthening the cycle time and thus increasing the latency can
save more power

6. RELATED WORK
Energy optimizations in wireless sensor networks must be
considered at every stage of the hardware and software
architectures. In hardware there are energy efficient solutions for
the microcontroller, radio, signal processing, sensors, and power
supply. Energy-aware software solutions are being addressed as
well. There is ongoing research in the areas of energy efficient
MAC, routing, topology management protocols, and in-network
processing. Energy issues for sensor networks are explored in
[8,19,21]. These works make clear one of the most significant
sources of power consumption is the radio. Most importantly,
because the energy cost of the radio’s idle mode differs little from
the receive mode the radio must actually be turned off.

0 500 1000 1500 2000 2500 3000
0

2

4

6

8

10

12

14

Latency [number of slot periods]

O
ve

ra
ll

du
ty

 c
yc

le
 o

f n
et

w
or

k
[%

]

Duty cycle and latency in a 15-node test network

* m = 40

* m = 200

Figure. 8. Overall duty cycle versus latency for varying values
of cycle length (m)

This is the motivation for the research into energy-efficient MAC
layers. There are two broad classes of MAC: contention based
[20,30] and TDMA based [26,21]. PAMAS [20] enhances the
MACA protocol with the addition of a signaling channel. It
powers down the radio when it hears transmissions over the data
channel or receptions over the signaling channel. S-MAC [30]
incorporates periodic listen/sleep cycles. In order to communicate,
neighboring nodes periodically exchange their listen schedules. In
the listen phase nodes transmit RTS/CTS packets. They use their
normal sleep phase to send data.

Although ours is not a MAC protocol, we draw our inspiration
from the TDMA-based energy-aware solutions. TDMA based
protocols have natural idle times built into their schedules where
the radio can be powered down. Additionally they do not have to
keep the radio on to detect contention and avoid collisions.
Centralized energy management [1] uses cluster-heads to manage
CPU and radio consumption within a cluster. Centralized
solutions usually do not scale well because inter-cluster
communication and interference is hard to manage. Self
organization [26] is non-hierarchical and avoids clusters
altogether. It has a notion of super frames similar to TDMA
frames for time schedules and requires a radio with multiple
frequencies. It assumes a stationary network and generates static
schedules. This scheme has less than optimal bandwidth

allocation. Slot reservations can only be used by the node that has
the reservation. Other nodes cannot reuse the slot reservation.

Flexible Power Scheduling does not have a strict notion of
bandwidth ownership. It is more a reservation for satisfied
demand. A message is simply forwarded during the next available
Transmit slot and all reserved demand is guaranteed to be met.

Energy-efficient routing in wireless ad-hoc networks has been
explored by many authors, see [23,31,15,11] for examples.
Topology management approaches exploit redundancy to
conserve energy in high-density networks. Redundant nodes from
a routing perspective are detected and deactivated. Examples of
these approaches are GAF [29] and SPAN [8]. Our approach does
not seek to find minimum routes or redundancy. These protocols
are designed for systems that require much more general
communication throughout the network. Since we are dealing
with a more constrained tree topology, we can design a
communications protocol with less generality and hence less
flooding of messages through the network. As energy
considerations are paramount, a specific implementation of a
protocol is better suited for our target applications. We also are
not interested in a system with a dedicated global initialization
phase – demand must be incorporated into the network schedules
as data requirements change and as nodes come and go or fail and
restart.

In addition to energy conservation, time synchronization is an
important consideration for sensor networks. In RBS [9], nodes
send reference beacons to their neighbors using physical-layer
broadcasts. This methodology indicates that wireless nodes can be
synchronized to levels beyond those required by our algorithms.
Since we do not require such fine resolutions or the global clock
federation we can rely instead on a much simpler local
synchronization protocol.

7. CONCLUSIONS AND FUTURE WORK
Flexible Power Scheduling allows us to exploit the natural energy
conservation inherent in slotted time division schemes. In this
paper we presented a dynamic distributed time division
scheduling protocol that facilitates power management by
enabling nodes to turn off their radios during idle slots. The
algorithm supports variation in traffic load through the use of a
supply and demand based protocol. Specifically, the protocol
provides local communication schedules for a multi-hop sensor
network without global control or re-initialization phase and acts
only on locally acquired information.

A novel, two-level architecture combines coarse grain scheduling
at the routing layer to plan radio on/off times and fine grain
medium access control to provide channel access. Bandwidth
allocation is first come first serve. Messages are sent during the
next Transmission time slot. They can be aggregated or sent
serially bounded by the duration of the time slot.

Implementation and simulation have both shown that power
scheduling reduces the energy consumption at all levels of the
network and that the network can adapt schedules locally to
changing demand. By increasing latency in the network, power
requirements can be further reduced. We have shown that we can
significantly reduce non-idle slots by locally managing supply
and demand. In future work we will investigate the energy
savings network-wide or at the macro level.

Also, in future work, we will explore fractional demand. Our
current algorithm supports integer demand. Consider, for
example, an application that sends a message only once per
minute. If a schedule has 40 time slots in one cycle and each slot
is 50ms long, then a packet will be forwarded every 30 cycles.
That leaves 29 cycles where a particular time slot may be used by
up to 29 other nodes. If we allocate demand by fractions then
downstream nodes can share time slots achieving much better
bandwidth utilization.

Flexible Power Scheduling is aimed toward data collection kinds
of applications. Currently, communication is assumed to be
primarily one-way, toward a base station. Many data collection
applications like TinyDB [16] require broadcast or multicast as
well and in future work we will extend our algorithm to support
such communication.

8. ACKNOWLEDGMENTS
We are much indebted to Rob Szewczyk for his continuous help,
support, and advice on the topics of power management and
TinyOS. We also thank Cathy Tao for her work on data
collection. This work was supported in part by DARPA,
grants F33615-01-C-1895 and N6601-99-2-8913, and by
Intel Corporation.

9. REFERENCES
[1] K.A. Arisha, M.A. Youssef, M.F. Younis, “Energy-aware

TDMA based MAC for sensor networks,” IEEE IMPACCT
2002, New York City, NY, USA, May 2002.

[2] G. Asada, M. Dong, T. S. Lin, F. Newberg, G. Pottie, W. J.
Kaiser, H. O. Marcy, "Wireless integrated network sensors:
low power systems on a chip," ESSCIRC '98. Proceedings of
the 24th European Solid-State Circuits Conference, The
Hague, Netherlands, September 1998.

[3] Atmel Corporation: AVR 8-bit RISC processor.
http://www.atmel.com/atmel/products/AVR.

[4] B. Chen, K. Jamieson, H. Balakrishnan, and R. Morris,
“Span: an energy-efficient coordination algorithm for
topology maintenance in ad hoc wireless networks,”
MobiCom 2001, Rome Italy, July 2001.

[5] W.S. Conner, L. Krishnamurthy, and R. Want, “Making
everyday life a little easier using dense sensor networks,”
Proceeding of ACM Ubicomp 2001, Atlanta, GA, Oct. 2001.

[6] Crossbow Technology Inc.:
http://www.xbow.com/Products/Wireless_Sensor_networks.
htm.

[7] Digital Sun, Inc.: http://digitalsun.com
[8] L. Doherty, B.A. Warneke, B.E. Boser, K.S.J. Pister,

"Energy and Performance Considerations for Smart Dust,"
International Journal of Parallel Distributed Systems and
Networks, Volume 4, Number 3, 2001, pp. 121-133.

[9] J. Elson, L. Girod and D. Estrin, “Fine-grained network time
synchronization using reference broadcasts,” OSDI 2002,
Boston, MA, USA, December 2002.

[10] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and
C. Culler, “The nesC Language: A Holistic Approach to
Networked Embedded Systems," Programming Language
Design and Implementation, San Diego, CA, USA, June
2003.

[11] Z. Haas, J. Halpern, and L. Li, “Gossip-based ad-hoc
routing,” IEEE INFOCOM 2002, New York, NY, USA, June
2002.

[12] J. Hill, P. Bounadonna, and D. Culler, “Active Message
Communication for Tiny Network Sensors,”
http://webs.cs.berkeley.edu/tos/media.html.

[13] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K.S.J. Pister, “System architecture directions for networked
sensors,” ASPLOS 2000, Cambridge, MA, USA, November
2000.

[14] J.M. Kahn, R.H. Katz, and K.S.J. Pister, “Next century
challenges: mobile networking for Smart Dust,” MobiCom
1999, Seattle, WA, USA, August 1999.

[15] B. Karp and H.T. Kung, “GPSR: Greedy Perimeter Stateless
Routing for wireless networks,” MobiCom 2000, Boston,
MA, USA, August 2000.

[16] S.R. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong,
“TAG: a tiny aggregation service for ad-hoc sensor
networks,” 5th Symposium on Operating Systems Design and
Implementation, Boston, MA, USA, December 2002.

[17] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, J.
Anderson, “Wireless sensor networks for habitat
monitoring,” WSNA 2002, Atlanta, GA, USA, September
2002.

[18] W. Mangione-Smith and P.S. Ghang, “A low power medium
access control protocol for portable multi-media systems,”
3rd International Workshop on Mobile MultiMedia
Communications, September 25-27, 1996.

[19] G.J. Pottie, W.J. Kaiser, “Wireless Integrated Network
Sensors,” Communications of the ACM, vol. 4, no. 5, May
2000.

[20] C.S. Raghavendra and S. Singh, “PAMAS - Power aware
multi-access protocol with signaling for ad hoc networks,”
ACM Communications Review, vol. 28, no. 33, July 1998.

[21] V. Raghunathan, C. Schurgers, S. Park, and M.B.
Srivastava, “Energy-aware wireless microsensor networks,”
IEEE Signal Processing Magazine, vol. 19, no. 2, March
2002.

[22] RF Monolithics:
http://www.rfm.com/products/data/tr1000.pdf.

[23] E. M. Royer and C-K. Toh. "A review of current routing
protocols for ad-hoc mobile wireless networks,” IEEE
Personal Communications, April 1999.

[24] Sensicast Systems: http://www.sensicast.com.
[25] K. Sohrabi, J. Gao, V. Ailawadhi, and G.J. Pottie, “Protocols

for self-organization of a wireless sensor network,” IEEE
Personal Communications, October 2000.

[26] K. Sohrabi and G.J. Pottie, “Performance of a novel self-
organization for wireless ad-hoc sensor networks,” IEEE
Vehicular Technology Conference, 1999, Houston, TX, May
1999.

[27] M. Stemm and R. Katz, “Measuring and reducing energy
consumption of network interfaces in hand-held devices,”
IEICE Transactions on Communications, vol. E80-B, no. 8,
pp. 1125-1131, August 1997.

[28] A. Woo and D. Culler, “A transmission control scheme for
media access in sensor networks,” in Proceedings of the
ACM/IEEE International Conference on Mobile Computing
and Networking, Rome, Italy, July 2001, ACM.

[29] Y. Xu, J. Heidemann, D. Estrin, “Geography-informed
energy conservation for ad hoc routing,” MobiCom 2001,
Rome, Italy, July 2001.

[30] W. Ye, J. Heidemann, D. Estrin, “An energy-efficient MAC
protocol for wireless sensor networks,” IEEE INFOCOM
2002, New York City, NY, USA, June 2002.

[31] Y. Yu, R. Govindan, and D. Estrin. “Geographical and
Energy Aware Routing: a recursive data dissemination
protocol for wireless sensor networks,” UCLA Computer
Science Department Technical Report UCLA/CSD-TR-01-
0023, May 2001.

