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ABSTRACT 
We propose a distributed on-demand power-management protocol 
for collecting data in sensor networks. The protocol aims to 
reduce power consumption while supporting fluctuating demand 
in the network and provide local routing information and 
synchronicity without global control. Energy savings are achieved 
by powering down nodes during idle times identified through 
dynamic scheduling. We present a real implementation on 
wireless sensor nodes based on a novel, two-level architecture. 
We evaluate our approach through measurements and simulation, 
and show how the protocol allows adaptive scheduling and 
enables a smooth trade-off between energy savings and latency. 
An example current measurement shows an energy savings of 
83% on an intermediate node. 

Categories and Subject Descriptors 
C.2 [Computer Communication Networks]: Network 
Architecture and Design, Network Protocols, Network 
Operations, Distributed Systems; 

C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; 

D.4.4 [Operating Systems]: Communications Management 

General Terms 
Algorithms, Management, Measurement, Design, Economics, 
Experimentation 

Keywords 
Sensor Networks, Communication Scheduling, Power 
Management 

1. INTRODUCTION 
The combination of technological advances in integrated 
circuitry, MEMS, communication and energy storage has driven 
the development of low-cost, low-power sensor nodes [14,2]. 

Networking many nodes through radio communication allows for 

data collection via multi-hop routing, but the practical limits on 
available power and the lack of global control present challenges. 
Constraints imposed by limited energy stores on individual nodes 
require careful selection of tasks, and as communication is the 
most costly task in terms of energy, it must be used particularly 
sparingly. In general, sensor nodes comprising the network have 
the ability to sense the environment, control actuators, make 
simple computations, and communicate data either to other nodes 
or to a centralized observer. We will consider networks consisting 
of the Crossbow MICA sensor nodes [6] running the UC Berkeley 
TinyOS operating system [13]. 

Power consumption limits the utility of sensor networks. 
Replacing batteries every week in building networks is a 
laborious task and replacing them in a less friendly environment 
may not be possible. Researchers agree, above all functions, radio 
communication dominates the power consumed in wireless sensor 
networks [2,8,25,19]. At the communication distances typical in 
sensor networks, listening for information on the radio channel is 
of a cost similar to transmission of data [21], so unnecessary radio 
operation must be pared to increase node lifetimes. In addition, 
the energy cost for a node in idle mode is approximately the same 
as in receive mode. Therefore, protocols that assume receive and 
idle power are of little consequence are not efficient for sensor 
networks. Idle listening, the time spent listening while waiting to 
receive packets, is a significant cost. Stemm et al. [27] observed 
that idle listening dominated the energy costs of network 
interfaces in hand-held devices. It became clear that to reduce 
power consumption in radios, the radio must be turned off during 
idle times. Mangione-Smith and Ghang [18] proposed such a 
scheme for an energy-efficient MAC layer for one-hop mobile 
devices. 

This paper presents Flexible Power Scheduling (FPS), a 
distributed power management protocol for sensor networks that 
reduces radio power consumption while supporting fluctuating 
demand in the network. A novel, two-level architecture combines 
coarse grain scheduling at the routing layer to plan radio on/off 
times and fine grain medium access control to provide channel 
access. The protocol provides local communication schedules for 
a multi-hop sensor network and acts only on locally acquired 
information. We detail a distributed algorithm that exploits a tree 
based topology in combination with an adaptive slotted 
communication schedule to route packets, synchronize with 
neighbors, and schedule radio on/off times. The assignment and 
modification of schedules is based on a supply and demand 
algorithm that allows for implicit and explicit deletion of nodes 
from the network without global control or re-initialization. 
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We use sense-to-gateway data collection as the application driver 
for our protocol. Sense-to-gateway applications represent a large 
class of wireless sensor network applications and have a natural 
tree topology that can be exploited for flexible power scheduling. 
These applications collect data from the environment and forward 
the data to a base station where it can be stored in a central 
database for evaluation. Such applications include equipment 
tracking, building-wide energy monitoring, habitat monitoring 
[17], conference room reservations [5], art museum monitoring 
[24], and automatic lawn sprinklers [7]. The communication is 
primarily one way: from the data-collecting node to the base 
station. Our protocol may be extended to two-way 
communication, but in this paper we will focus primarily on 
network to gateway communication. Our protocol does not 
support arbitrary many-to-many communication such as would be 
required in event tracking applications.  

The remainder of the paper is organized as follows: Section 2 
describes sensor network issues, Section 3 introduces our flexible 
power scheduling protocol, Section 4 makes the algorithm 
precise, Section 5 describes an implementation on UC Berkeley 
nodes and gives some experimental results (energy, adaptation, 
latency), Section 6 discusses related work, and Section 7 provides 
concluding remarks. 

2. BACKGROUND DISCUSSION  
Multi-hop topologies play a significant role in sensor networks. In 
terms of wireless communication, it is more energy efficient to 
transmit over several short distances than it is to transmit over a 
few long distances [19]. Short distances require less energy to 
transmit and have better signals resulting in fewer retransmissions 
due to packet loss.  

Multi-hop networks have problems with congestion at the sink 
and unfair end-to-end bandwidth allocation. The farthest nodes do 
not have as fair a chance of getting their data to the base station as 
the nearest nodes. Due to the lossy nature of wireless links, the 
chance of packet loss grows geometrically with each hop. Traffic 
in sensor networks tends to be highly correlated as well. 
Asynchronous events can trigger sudden bursts of traffic that can 
lead to collisions, congestion, and channel capture [28].  

In theory, slotted time division schemes can solve these problems. 
Slotted time division has a natural structure that leaves traffic 
uncorrelated and provides end-to-end fairness. More importantly, 
slotted time division schedules are energy efficient because it is 
known when the radio will be idle. Global schedules can be 
generated in such away that bandwidth is essentially reserved 
from source to sink and from the schedule it is clear when to turn 
the radio on and off locally. 

By and large, slotted time division schemes require centralized 
control, have static global schedules, and require fine-grain time 
synchronization. The algorithm proposed in this paper exploits a 
tree-based topology that enables a distributed algorithm using no 
centralized control, has adaptive local schedules, and requires 
only coarse-grain time synchronization. 

We propose a two level architecture: coarse-grain scheduling at 
the routing layer to schedule all communication for the purpose of 
powering the radio on-and-off during idle times, and fine-grain 
medium access control at the MAC-layer to handle channel 
access.  

 
Figure. 1: Coarse-grain scheduling (above) and fine-grain 

medium access (below). 

Fairness requires a global view of the network. We need some 
information about traffic and topology, which requires a higher-
level operation. Slotted systems require network-wide fine-grain 
time synchronization for use of discrete time slots. This is easy to 
achieve in centralized networks, but much more difficult in multi-
hop networks. If we choose a coarse-grain schedule then time 
synchronization becomes easy and will be sufficient for the 
algorithm proposed here. 

The algorithm is distributed. There is no oracle to generate and 
distribute a network-wide global schedule. However, discovery 
can be done locally because we are using a constrained tree 
topology. Through the exchange of messages a local schedule can 
be generated at each node and adapted to the changing needs of 
the network. On the TinyOS platform messages are delivered at 
the Active Message layer [12] and the routing layer is above. It is 
the routing layer that has knowledge of route through traffic as 
well as source-generated traffic in a sensor node. 

Although the coarse-grain schedule reduces contention, it is not 
the case the medium will be absolutely contention free. The 
algorithm does not generate the perfect distributed schedule, so 
we still need a MAC layer to handle those cases where in 
different parts of the network nodes are transmitting at the same 
time, but can overhear each other. 

The coarse-grain schedule reduces contention because it can 
coordinate transmission times and distribute traffic. A MAC layer 
is still required, but will have less work to do. The combination of 
a coarse-grain schedule and MAC-layer protocol reduces 
contention and increases end-to-end fairness. The distributed 
schedule has the effect of doing connection-less flow control and 
the distributed algorithm provides reserved bandwidth from 
source to sink. 

3. FPS PROTOCOL  
3.1 Goals of the Protocol 
The main goal of flexible power scheduling is to reduce power 
consumption while supporting fluctuating demand in the network 
for data collection. It schedules transmit and receive time slots in 
each node’s power schedule and sleeps during idle periods. Local 
power schedules dynamically adapt as network demand changes. 
The assignment and modification of schedules is distributed 
without global control and without a network-wide global 
initialization phase. The protocol supports data collection 
applications and communication is assumed to be primarily one-
way, toward a base station, and there may be multiple base 
stations. 

3.2 Definitions 
Time is broken up into slots. Each slot s corresponds to a length 
of time Ts. Slot numbering is periodic modulo m, i.e. slot s+m is 
called slot s. Generally, the same events will occur periodically 



and during the same slot in different cycles. A cycle c hence 
represents a length of time Tc = mTs. 

Each node maintains a local power schedule of what operations it 
performs over the course of a cycle. During each slot of the cycle, 
the node can have one of six states that, for now, can be 
considered as one of three states: (i) Receiving, (ii) Transmitting, 
or (iii) Idle. In general, the number of receive slots in the local 
schedule of node a plus its own original source demand represents 
the demand at node a and the number of transmit slots in the local 
schedule at node a represents the supply at node a. Transmit and 
receive slots in the local schedule allow the node to know when 
its neighbors are ready to transmit to or receive from this node. 

 

Figure. 2: Definition of the terminology used in power 
scheduling 

Conceptually, we represent the collection of local schedules as an 
Nxm matrix Ω where N is the total number of nodes. For example, 
Ω(n,s) tells which of the three states node n is in during slot s. In 
implementation, a node n would only have access to the nth row 
of Ω. The schedule is initialized to all Idle and evolves over the 
run of the scheduling algorithm. We assume that the node can 
power down during idle slots. Figure 2 depicts k cycles of a power 
schedule at node n. 

Let the number of slots that a node is not idle during a cycle be 
b(n), b(n) <= m. Now the duty cycle of a node will be:  

 
m
nbnDutyCycle )()( =   (1) 

Equation (1) emphasizes two ways that duty cycle can be reduced 
at a node: either reduce the amount of non-idle slots, or lengthen 
the cycle. Each node can then adapt its particular power schedule 
to minimize its energy consumption independent of activity at 
other nodes. 

For simulation purposes, a network is defined by two parameters: 
a binary connectivity matrix C and an initial demand vector d. 
C(a,b) = 1 if node a can receive transmissions from node b and 0 
otherwise. In general, this matrix could be a function of time to 
represent mobile nodes or changing transmission channels, or 
could be a real number between 0 and 1 representing the 
probability of packet loss. The demand vector indicates how 
many packets node a seeks to forward during each cycle. Initially, 
every node has a demand of 1 for itself. In the our current 
scenario, d(a) is the integer demand at node a. Integer demand 
counts one packet per cycle per unit and d(a) represents the sum 
of the demand at node a and the children of node a. Our protocols 
can easily be adapted to accommodate finer units of demand. For 
example one unit could represent one packet every 32 cycles. 
These parameters completely specify the network and the goal 

state, namely that each node in the network is scheduled to 
forward one packet upstream per unit of demand. 

3.3 A Simple Example 
As an illustration of the protocol, consider the network depicted in 
Figure 3. Nodes 0 through 5 represent the nodes of a network 
each having different demand. The squares represent nodes with 
an initial demand of 1. The solid circles represent demand that 
originates at the node. The lines between squares are the 
connectivity graph in terms of communication links. 

 

 

Figure. 3: Network used in the simple example. 

Suppose that node 0 is the base station and that all other nodes 
initialize with at least a demand of 1, i.e. they each need at least 
one communication slot with their parent. Nodes always begin 
with one extra unit of demand. Starting with the leaves of the tree, 
nodes 3 and 4 both require transmission slots to communicate to 
their parent, node 1. Thus, the effective demand of node 1 is 8 and 
node 1 requires 8 communication slots with the base station. On 
the other branch of the tree, node 2 requires 5 communication 
slots with the base station. From this simple example, it is 
apparent that nodes closer to the root will have higher duty cycles 
as is the case in general with sinks in sensor networks. 

Another observation is that the data from nodes on level l can be 
delayed by as many as l cycles upon reception at the root. In the 
worst case, data from nodes 1 and 2 in the example are received 
after 1 cycle while data from nodes 3-5 are delayed by 2 cycles. If 
a particular latency is required, the number of slots m may have 
an upper bound that increases the overall duty cycle in the 
network. The tradeoff between latency and duty cycle will be 
further explored in later sections. 

4. ALGORITHM DETAILS 

4.1 Node States and Reservations 
Each node maintains its own transmit and receive schedule of 
time slots known as a power schedule. One power schedule cycle 
is equivalent to m time slots in length. A reservation slot refers to 
a receive/transmit pair between a parent node and child node.  

Each time slot a node can be in one of 6 states: 

1. Transmit (T) – Transmit a message to parent node, 
remains in schedule until topology or supply/demand 
changes 

Tc = mTs 

1 cycle Ts 

k cycles  (kTc) 
Node2 1

43 5 

0

Original source demand



2. Receive (R) - Receive a message from child node, 
remains in schedule until topology or supply/demand 
changes 

3. Advertisement (A) - Broadcast an Advertisement from 
parent node for an available reservation slot, remains at 
most one cycle 

4. Transmit Pending (TP) – Send a reservation request to 
parent node, remains at most one cycle 

5. Receive Pending (RP) – Receive a reservation request 
from child, remains at most two cycles 

6. Idle (I) – After all current demand at this node has been 
met, the node can power down during idle slots 

When a parent node broadcasts an advertisement for a reservation 
it marks the reservation slot (not the advertisement slot) in its own 
schedule as Receive Pending. If a child node has unmet demand 
and it hears an advertisement, it marks the reservation slot in its 
own schedule as Transmit Pending and sends a reservation 
request when the time slot arrives. An explicit example of the 
standard operation for two nodes (node 1 is closer to the base 
station than node 2) is shown in Table 1. Here node 1 and node 2 
reserve time slot R for communication. 

Table 1 shows the interaction between two nodes to set up 
communication. The headings C and S denote cycle number and 
slot number respectively. Node 1, the parent, begins by selecting 
an advertisement slot A and a reservation slot R at random from 
its idle slots. The reservation process requires three cycles. The 
first is the advertisement from the parent, the second is the 
response from the child and immediate confirmation, and the third 
is the first actual transmission of data. Thereafter, node 2 
transmits during slot R. Advertisement messages carry the node 
id, number of hops from the base station, the current slot number, 
current demand, and reservation slot number. The return request 
messages carry the same information.  

 
Table 1: Reservation between two nodes 

C S Node 1 Node2 

1 A Advertise slot R  Receive advertisement 

2 R Send immediate 
confirmation  Request slot R 

3 R Receive from Node 2  Transmit to Node 1 

. . … … 
N R Receive from Node 2  Transmit to Node 1 

 

4.2 Synchronization 
When a child node selects a parent it synchronizes its current time 
slot and slot number to that of its parent. Periodically, thereafter, 
the child node resynchronizes with its parent. Only coarse-grain 
synchronization is required due to the relatively large time slots. 
In the example from Table 1, node 2 synchronizes with node 1 
during cycle 1 and time slot A. If available, link layer 
acknowledgements containing timestamps can be used for 
subsequent resynchronization. Otherwise, node 2 can snoop 
during a known transmission time of node 1. This requires node 1 

to include a list or partial list of its transmission slots in its 
advertisement messages. A simple, but not optimal, solution is for 
node 2 to listen for node 1’s periodic advertisements. This 
requires node 2 to turn on its radio periodically to listen for an 
advertisement from node 1. 

4.3 Initialization 
There is no global initialization. The base station initializes by 
picking a reservation slot at random and listens for a return 
message during this slot during the following cycle. If a node is 
new to the network (i.e. it does not have a schedule), it sets its 
schedule to all idle and listens for at least one cycle for 
advertisements. Nodes set their demand to 1 + their current 
demand. Nodes are fully powered-on in the initialization phase 
until they acquire an advertised slot. Nodes will choose a parent 
one hop away toward the base station having the least demand 
(smallest load). Additional metrics, such as link quality, can be 
supported by our protocol as well. Once a node has acquired 
enough reservation slots to meet its initial demand it begins to 
advertise itself and turn off the radio during idle slots. Note that in 
the algorithm below, Receive Pending (RP) and Transmit Pending 
(TP) refer to the same time slot in the parent schedule and child 
schedule respectively. 

4.4 Main Operation 
Each node n runs the following procedure after initialization: 

For each cycle c,  

Pick an advertisement slot A randomly from idle slots 

Pick a reservation slot RP randomly from idle slots  

If (supply >= demand)  

Radio off during Idle slots 

Schedule an advertisement during an A slot 

Else 

Radio on and listen for advertisements 

Schedule a reservation request during a TP slot 

For each slot s, check power schedule Ω(n,s) 

Case (T) – Transmit a message 

Case (R) – Receive a message 

Case (A) – Broadcast an advertisement for slot RP 

Case (RP) – Listen for reservation requests 

Case (TP) – Transmit a reservation request 

Case (I) – Power down radio or Listen for advertisements if 
demand is unmet 

End 

Clear the current A, the previous TP, and the previous RP from 
the schedule. 

End 

Note that nodes always begin with one extra unit of demand, so 
bandwidth is immediately available all the way to the sink once a 



reservation is made locally. A slot is officially reserved when a 
parent node receives and accepts a request during its current RP 
slot. If more than one request is received, the parent accepts the 
first request. The parent node sends an immediate confirmation 
acknowledgement and increases its demand by one unit and 
schedules an R during this slot. The child node increases its 
supply by one and schedules a T during this slot. The reservation 
does not have to be renegotiated and remains in effect indefinitely 
until a child cancels the reservation or the parent times out the 
reservation if no transmissions occur after some number of cycles. 
A parent node may also receive a request for decreased demand 
from a child during a scheduled R slot at which time the parent 
node sets the R slot to I and decrements its demand. 

Notice here the radio on and off times. A node powers off its 
radio during idle slots when its demand is met. In sensor networks 
it is the minority of nodes that are varying their demand or 
moving about the network. The design of the protocol puts the 
onus on the node increasing its demand, the sending node, to 
listen for advertisements not the receiving node. Advertising 
nodes need only listen during one time slot, the Receive Pending 
slot. Similarly, the protocol design is also advantageous for 
initialization. The onus is on the joining node to listen until it 
attaches to the network. The advertising nodes need only listen 
during their Receive Pending slot. The emphasis is on conserving 
energy.  

This algorithm runs on all nodes following initialization. Once all 
demand has been met at a node, it can power down its radio 
during idle slots to conserve energy otherwise it listens for 
advertisements. If more nodes are added to the network, the 
existing nodes will get new reservation requests and will re-enter 
the algorithm to maintain a state of extra supply. 

4.5 Collisions and Message Loss 
The primary function of the local power schedules is to determine 
when to turn the radio on and off. The schedules derive solely 
from local information and do not give a global view of the 
network. Power scheduling relies on the presence of a MAC layer 
to handle channel access. A simple CSMA MAC will suffice 
because time division scheduling significantly reduces media 
contention. The minimum width of a time slot is set to allow 
transmission of at least two packets in the same slot, so at a 
minimum, two packets may transmit during the same time slot 
and the CSMA MAC will handle the channel access. 

Collisions can occur in the network due to hidden terminals. This 
is because carrier sense can only detect potential collisions at the 
sender and not the receiver. In our protocol, collisions can occur 
when two children out of radio range from each other respond to 
the same reservation advertisement. When a child fails to acquire 
a reservation for some number of cycles, it may assume that such 
collisions are occurring, in which case, the child will send 
subsequent reservation requests with a probability Prequest < 1. 
Some collisions may be due to one-off advertisement messages, 
the slots for which are randomly selected. In this case, message 
loss will not perennially happen during the same slot.  

In the case where a node expects a message from a child (i.e. has 
R scheduled) and does not receive the message for several cycles, 
the topology of the network can be assumed to have changed and 
the R slot can be recycled and demand decremented. Through link 

layer acknowledgements a parent can implicitly let a child know 
when messages have ceased to arrive and the child can recycle the 
T slot and decrement its supply.  

5. EVALUATION 
The sensor nodes in our implementation are the MICA nodes 
manufactured by Crossbow running the TinyOS operating system 
and nesC [10] language developed at UC Berkeley. The TinyOS 
power management feature exports an interface that allows a 
program to easily power the radio on and off. MICA has an 
ATMEGA 128L processor [3], with 128K bytes of programmable 
flash, 4K bytes of SRAM, and 4K bytes of programmable 
EEPROM. It uses a TR1000 RF Monolithics [22] radio 
transceiver with a carrier frequency of 916.50 MHz and 
transmission rate of 40 Kbps. 

5.1 A Simple Application 
To verify our protocols we implemented a simple inventory 
tracking application consisting of 5 stationary nodes, 7 mobile 
nodes, base station node, and database with user interface. The 
network continuously receives data at a rate of one packet per 
minute from mobile nodes used to track various pieces of 
equipment and forwards the packets to a base station. The area 
covers two rooms and adjoining corridor. The base station can 
receive packets wirelessly and send them to a PC through its 
serial port. The packets received at the PC are then logged to a 
remote database. 

Using a similar setup we ran two simple tests to verify our 
assumptions about slotted scheduling and end-to-end fairness. 
One test uses slotted scheduling (via FPS) and the other test does 
not use slotted scheduling (Naïve store-and-forward). Six nodes 
send 100 36-byte packets at a rate of one packet per 3.2 seconds. 
Packets are sent across a 3-hop network with one exception: Node 
3 in the Naïve test sends across 2 hops. The test begins after a 
start message is injected into the network. 

Table 2: Average number of packets received at the base 
station over 10 trials. 

Node 1 2 3 4 5 6 
FPS 96.00 96.91 96.09 97.45 94.55 97.55 
Naïve 28.64 11.55 54.36 18.45 18.18 16.91 

 

Table 2 displays the average number of packets received at the 
base station over 10 trials. With slotted scheduling almost all of 
the packets are received. Without slotted scheduling most of the 
packets are lost due to contention and interference. 

This test illustrates that slotted scheduling can provide end-to-end 
fairness and significantly reduce contention in multi-hop 
networks. 

5.2 Experimental Setup 

 
Figure 4: Network used in MICA experiments. 
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Figure 5: Measured current at node 1 with and without power management over 10 seconds. 

To obtain the measurements in sections 5.2 and 5.3, we use a 
simple 4-node setup where all nodes are in proximity of the base 
station in order that their messages may be over-heard and logged 
to a file. Figure 4 shows the 3-hop network we used in energy 
savings and network adaptation experiments. Node 6 is the 
sender, node 1 and node 66 are intermediate nodes, and node 0 is 
the base station node connected to a PC. 

5.3 Energy Savings 
In this experiment we measure the current at an intermediate node 
in its steady state while it is forwarding packets. One 
measurement is taken with power management enabled and one 
measurement is taken with power management disabled. When 
power management is enabled we run our protocol and power 
down the radio during idle time slots. When power management 
is disabled we run our protocol and leave the radio on during idle 
time slots. The energy consumption is measured at node 1. Node 
6 sends a 36-byte data packet once per cycle, every 2.6 seconds. 
There are 40 times slot per cycle and each time slot is 65 ms.  

Figure 5 shows the current of node 1 in mA without power 
management (top) and with power management (bottom). Ten 
seconds of data are captured at a 1 ms sample rate. MICA 128L 
nodes have a boost converter; we took our measurements with the 
boost converter turned off. We use an instrumentation amplifier 
with a gain of 85 and measure voltage across a 1.1 Ohm resistor 
with an oscilloscope. Hence the current in mA is: 

Current [mA] = (voltage [V] / (85 * 1.1) ) * 1000 (2) 

With power management disabled the average current measured is 
8.144 mA. With power management enabled the average current 
is 1.412 mA. A high-performance AA battery has a capacity of 
~1800 mA-hours. So, when power management is disabled the 

average battery life is 221.02 hours (~9 days) and with power 
management enabled the average battery life is 1274.79 hours 
(~53 days). 

When in a steady state each node can be in 1 of 5 states in each 
time slot: Transmit (T), Receive (R), Receive Pending (RP), 
Advertisement (A), or Idle (I). In the steady state we will not 
observe Transmit Pending states since no advertisements are 
being responded to. From analyzing our session log we can 
determine the schedules of each node. 

Table 3: Calculation of duty cycle from observed schedules 

N T R RP A I Duty 

66 3 2 2 1 32 20% 

1 2 1 2 1 34 15% 

6 1 0 0 0 39 2.5% 

 

Now we can determine the expected duty cycle for each node. 
Table 3 displays the count of slot states in the schedule of each 
node N. The duty cycle is the number of active slots per cycle 
divided by the total number of slots in a cycle. For a cycle length 
of 40 time slots, the expected duty cycle for Node 1 is 15% 
(6/40). 

To determine the actual duty cycle measured at node 1 over 10 
seconds, we count the number of samples that node 1 registers a 
current greater than a 4 mA and divide this by the total number of 
samples in the 10 second period: 

1455 samples / 10000 samples = 14.55% duty cycle 
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Figure 6: Nodes adapting to changing demand in the network. 

This empirical calculation closely matches the theoretical 15%. 
Since the 10-second window represents about 3.85 cycles and not 
an integral number, we expect some small deviation from the 
theoretical results. As a comparison to the time-based duty cycle 
computation, we can equally calculate the change in energy 
expenditure when the power management protocol is enabled.  

We divide the average current measured with power management 
enabled by the average current measured with power management 
disabled. 

1.412 mA  / 8.144 mA = .1734 

If the sleeping current draw of the node were zero, we would 
expect this 17% value to match with the duty cycle. However, the 
microprocessor still draws current when the radio is powered-
down and hence the ratio is slightly higher. We are not certain 
why the peak current draw using the power management protocol 
is below that of the disabled case, but were these two values 
equal, the 17% calculated would rise another few percentage 
points. 

5.4 Network Adaptation 
In this experiment we test that the network adapts to varying 
demand and measure how long it takes the network to react to the 
fluctuating demand across two intermediate nodes. Figure 4 
shows the network used in this experiment. There are 40 time 
slots per cycle and each time slot is 80ms. Because of the 
proximity of the request and confirmation messages it was 
necessary to slow the experiment down, so that the logger at the 
base station could capture all the messages.  The time slot was 
lengthened and a delay of 5 ms was added between the two 
messages. All measurements are taken running our protocol with 
power management enabled. 

Recall from Section 4 that demand is increased through request 
messages. For decreases in demand, we send negative reservation 
requests during the next scheduled Transmit slot. (The implicit 

decreased demand mechanism would not have messages for 
snooping.)  

The experiment runs as follows. After each node initializes with a 
demand of 1, node 6 repeats the following sequence, {send 2 
requests to increase demand, wait, send 2 requests to decrease 
demand, wait}. The longer wait period ameliorates visualization 

of subsequent messages. We ran the test 10 times collecting ~30 
data points per test. 

Figure 6 shows the results of one such test. The X-axis is time in 
seconds. The Y-axis is the current demand at an intermediate 
node at the time it sends a reservation confirmation message. The 
two intermediate nodes, node 1 and node 66, are shown. At the 
beginning of the experiment node 1 has a demand of 1 and node 
66 has a demand of 2. The first data point shows Node 1 sending 
a confirmation to node 6 with a demand of 2. The second data 
point shows node 66 sending a confirmation to node 1 with a 
demand of 3 after 4471 ms. At this point node 6 has joined the 
network and will begin sending alternating demand in steps of 2. 
There are 2 positive requests followed by 2 negative requests 
taking 10792 ms, 3681 ms, 462 ms, and 700 ms respectively to 
percolate to node 66. These delays are known as the response 
time. 

To increase its supply, node 1 first turns on the radio, listens for 
the next advertisement, waits for the advertised reservation slot, 
and sends the request. Confirmation is received in the same time 
slot. Delay is related to the length of the slot cycle; here it is 3.2 
seconds. In an ideal situation with no packet loss or collisions we 
expect to wait less than 2 cycles to send a request: at most 1 cycle 
to hear an advertisement, and at most 1 cycle to meet the 
reservation slot. If the radio was not powered down during idle 
slots, there is no wait time for the next advertisement. However, 
our primary goal is to conserve the battery life, so we use power 
management. 

The square in Figure 6 shows the last 8 requests from the test 
above. Node 66 is shown responding to requests seemingly out of 
order. Node 1 sends requests {+2,-2,+2,-2}. Node 66 responds 



with {+1,-1,+1,-1,+1,-1,+1,-1}. These anomalies are caused by 
the random placement of advertisement and reservation slots, 
which may reorder the requests slightly. Positive requests are sent 
in the next reservation slot, which has a random position, while 
negative requests are sent in the next Transmit slot, which has a 
fixed position. However, the supply and demand mechanism 
eventually balances out.  

The histogram in Figure 7 is collected from 100 data points 
collected from 7 of our tests. It shows the time difference between 
node 66 sending a reservation confirmation and node 1 sending a 
reservation confirmation. It represents the time when node 66 
reacts to a request for demand from the sending node 6.  

 

Figure 7: Histogram showing the distribution of response 
times in the test network. 

The majority falls below the expected worst-case response time of 
6.4s. The outliers to the right represent lost advertisement 
messages.  

The earlier arrivals to the left are the result of the first-come first-
serve nature of packet transmission. There is no notion of 
bandwidth ownership. Messages are forwarded in the next 
available Transmission slot 

5.5 Latency vs. Energy Tradeoff 
In this experiment we use simulation to show the tradeoff between 
latency and energy. For simplicity, the network used is a 15-node 
binary tree with a fixed demand of one unit per node, yielding a 
total network demand of 14. The demand at each node therefore is 
one unit per child node plus one unit for itself. 

Figure 8 is a parametric graph with m as the parameter. The X-
axis represents latency, measured as the number of slots that 
occur from the time a message is sent from a leaf node to the time 
it is received at the base station, as m increases from 30 to 1000. 
In simulation one full cycle passes before forwarding a message 
one level. For example if m = 40 then X = 120 because there are 3 
hops between leaf and root. The Y-axis represents the overall duty 
cycle as m increases from 30 to 1000. For example, in this 
experiment when m = 40, we expect to save approximately 90% 
of the original power in the network to satisfy a demand of 14. 
Lengthening the cycle time and thus increasing the latency can 
save more power 

6. RELATED WORK 
Energy optimizations in wireless sensor networks must be 
considered at every stage of the hardware and software 
architectures. In hardware there are energy efficient solutions for 
the microcontroller, radio, signal processing, sensors, and power 
supply. Energy-aware software solutions are being addressed as 
well. There is ongoing research in the areas of energy efficient 
MAC, routing, topology management protocols, and in-network 
processing. Energy issues for sensor networks are explored in 
[8,19,21]. These works make clear one of the most significant 
sources of power consumption is the radio. Most importantly, 
because the energy cost of the radio’s idle mode differs little from 
the receive mode the radio must actually be turned off.  
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Figure. 8. Overall duty cycle versus latency for varying values 
of cycle length (m) 

This is the motivation for the research into energy-efficient MAC 
layers. There are two broad classes of MAC: contention based 
[20,30] and TDMA based [26,21]. PAMAS [20] enhances the 
MACA protocol with the addition of a signaling channel. It 
powers down the radio when it hears transmissions over the data 
channel or receptions over the signaling channel. S-MAC [30] 
incorporates periodic listen/sleep cycles. In order to communicate, 
neighboring nodes periodically exchange their listen schedules. In 
the listen phase nodes transmit RTS/CTS packets. They use their 
normal sleep phase to send data.  

Although ours is not a MAC protocol, we draw our inspiration 
from the TDMA-based energy-aware solutions. TDMA based 
protocols have natural idle times built into their schedules where 
the radio can be powered down. Additionally they do not have to 
keep the radio on to detect contention and avoid collisions. 
Centralized energy management [1] uses cluster-heads to manage 
CPU and radio consumption within a cluster. Centralized 
solutions usually do not scale well because inter-cluster 
communication and interference is hard to manage. Self 
organization [26] is non-hierarchical and avoids clusters 
altogether. It has a notion of super frames similar to TDMA 
frames for time schedules and requires a radio with multiple 
frequencies. It assumes a stationary network and generates static 
schedules. This scheme has less than optimal bandwidth 



allocation. Slot reservations can only be used by the node that has 
the reservation. Other nodes cannot reuse the slot reservation.  

Flexible Power Scheduling does not have a strict notion of 
bandwidth ownership. It is more a reservation for satisfied 
demand. A message is simply forwarded during the next available 
Transmit slot and all reserved demand is guaranteed to be met. 

Energy-efficient routing in wireless ad-hoc networks has been 
explored by many authors, see [23,31,15,11] for examples. 
Topology management approaches exploit redundancy to 
conserve energy in high-density networks. Redundant nodes from 
a routing perspective are detected and deactivated. Examples of 
these approaches are GAF [29] and SPAN [8]. Our approach does 
not seek to find minimum routes or redundancy. These protocols 
are designed for systems that require much more general 
communication throughout the network. Since we are dealing 
with a more constrained tree topology, we can design a 
communications protocol with less generality and hence less 
flooding of messages through the network. As energy 
considerations are paramount, a specific implementation of a 
protocol is better suited for our target applications. We also are 
not interested in a system with a dedicated global initialization 
phase – demand must be incorporated into the network schedules 
as data requirements change and as nodes come and go or fail and 
restart. 

In addition to energy conservation, time synchronization is an 
important consideration for sensor networks. In RBS [9], nodes 
send reference beacons to their neighbors using physical-layer 
broadcasts. This methodology indicates that wireless nodes can be 
synchronized to levels beyond those required by our algorithms. 
Since we do not require such fine resolutions or the global clock 
federation we can rely instead on a much simpler local 
synchronization protocol.  

7. CONCLUSIONS AND FUTURE WORK 
Flexible Power Scheduling allows us to exploit the natural energy 
conservation inherent in slotted time division schemes. In this 
paper we presented a dynamic distributed time division 
scheduling protocol that facilitates power management by 
enabling nodes to turn off their radios during idle slots. The 
algorithm supports variation in traffic load through the use of a 
supply and demand based protocol. Specifically, the protocol 
provides local communication schedules for a multi-hop sensor 
network without global control or re-initialization phase and acts 
only on locally acquired information.  

A novel, two-level architecture combines coarse grain scheduling 
at the routing layer to plan radio on/off times and fine grain 
medium access control to provide channel access. Bandwidth 
allocation is first come first serve. Messages are sent during the 
next Transmission time slot. They can be aggregated or sent 
serially bounded by the duration of the time slot.  

Implementation and simulation have both shown that power 
scheduling reduces the energy consumption at all levels of the 
network and that the network can adapt schedules locally to 
changing demand. By increasing latency in the network, power 
requirements can be further reduced.  We have shown that we can 
significantly reduce non-idle slots by locally managing supply 
and demand. In future work we will investigate the energy 
savings network-wide or at the macro level. 

Also, in future work, we will explore fractional demand. Our 
current algorithm supports integer demand. Consider, for 
example, an application that sends a message only once per 
minute.  If a schedule has 40 time slots in one cycle and each slot 
is 50ms long, then a packet will be forwarded every 30 cycles. 
That leaves 29 cycles where a particular time slot may be used by 
up to 29 other nodes. If we allocate demand by fractions then 
downstream nodes can share time slots achieving much better 
bandwidth utilization. 

Flexible Power Scheduling is aimed toward data collection kinds 
of applications. Currently, communication is assumed to be 
primarily one-way, toward a base station. Many data collection 
applications like TinyDB [16] require broadcast or multicast as 
well and in future work we will extend our algorithm to support 
such communication. 
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