
gorithm used for HeadStep here happens to be V isBug21
[4], which uses vision within a limited radius (in our case
equal to the link length) to produce locally-optimal paths.
Note that during the operation the snake does not collect
information about the environment and does not remem-
ber its previous path.
With this choice of a head planning procedure, the

whole algorithm can be thought of as an emulation of the
behavior of a real snake: the sensing at the head is equiv-
alent to vision, allowing the head to foresee obstacles and
locally optimize its motion; the sensing at the rest of the
body emulates tactile sensing, allowing the snake to slide
along obstacles.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Example of the algorithm's performance for a 20-
link manipulator immersed in a complex environment. The
head starts at position S and the user selects T as the target.
Six snapshots of the motion are shown. Also shown are the
trajectories of all the joints between the previous and current
snapshots.
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Fig. 4. (a) A propagation applied to link j3 of a 5-link
manipulator in an obstacle-freeworkspace. The original po-
sition of the manipulator is shown with dashed lines. Links
are traversed starting at j3 both down and up the structure.
(b) The generation of every new con�guration consists of a
head-to-tail propagation. which causes the tail to drift, fol-
lowed by a (c) tail-to-headpropagation, which re-establishes
the original position of the tail but produces a small error
at the head.

Proc.: SoftProp(M; i; P )
Inputs: A cartesian vector M = (j0 � � �jN );

An integer i, 0 � i � N ;
A point P .

Output: A cartesian vector M 0 = (j00 � � � j
0

N ).

Step 1: Set M 0 = Prop(M; i; P ):
Step 2: While an error (a; b;Q) reported, do:

2.1: Set Q0 = NewDir(jajb; Q);
2.2: Set M 0 = Prop(M;a;Q0).

End.

In contrast, the hard propagation HardProp(M; i; P ) is
a procedure that does guarantee ji = P upon completion.
This is achieved by calling SoftProp repeatedly, until the
equality is satis�ed:

Proc.: HardProp(M; i; P )
Inputs: A cartesian vector M = (j0 � � �jN );

An integer i, 0 � i � N ;
A point P .

Output: A cartesian vector M 0 = (j00 � � � j
0

N ).

Step 1: Set M 0 = SoftProp(M; i; P ).
Step 2: While j0i 6= P do:

2.1 Set M 0 = SoftProp(M 0; i; P ).
End.

III. The motion planning algorithm

The �nal motion planning algorithm, Am, is built out of
the procedures developed above. It also makes use of the
operationHeadStep(P ) which computes the next point P 0

of the path for the head (assuming the head is currently at
P ), using some maze-searching algorithm. It is convenient
to present vector M = (j0 � � �jN ) in terms of cartesian co-
ordinates of the arm joints in the workspace. The actual
control of motors at the robot joints may require the corre-
sponding vector of joint angles C = (�0 � � ��N�1). Trans-
lating M into C takes a simple trigonometric operation
which results in a unique solution. We now de�ne Am,
the motion planning algorithm for an N-link manipulator:

Proc.: Am(M;T )
Inputs: The manipulator con�guration M = (j0 � � � jN ) ;

The target point T .
Output: A sequence of collision-free con�gurations

taking the head to T .

Step 1: While jN 6= T do:
1.1: Set H = HeadStep(jN );
1.2: Set M 0 = SoftProp(M;N;H);
1.3: Set M = HardProp(M 0; 0; j0);
1.4: Send M to joint motors;

End.

Am is composed of a single loop which iterates until the
head of the manipulator is placed at point T . At the end
of every iteration, a new collision-free con�guration for
the manipulator is produced and sent to the joint motors.
Each iteration begins with the computation of a next po-
sition H for the head, performed by HeadStep. This is
used to trigger the computation of the next con�guration
starting with a head-to-tail soft propagation. One side-
e�ect of this is a small motion of the tail. To restore the
tail to its original position, a tail-to-head hard propaga-
tion is executed. This causes the �nal position of the head
to deviate fromH by a small amount, which is acceptable
since no physical constraints are imposed at this endpoint.
The intermediate joint positions following a head-to-tail
soft propagation and a tail-to-head hard propagation in
an obstacle-free environment are illustrated in Figure 4
(b) and (c), respectively.

IV. Example

A simulated example of the algorithm's performance is
shown in Figure 5. Here, the manipulator is immersed
in a complicated environment unknown to the robot. Its
task is to move from the position S to the target position
T , Figure 5(a). Snapshots of the manipulator during its
motion are shown in Figures 5(b-f). The head motion al-



O1, as shown in Figure 2(b). This intersection can be
cleared by rotating the link about P 0 until the overlap
withO1 disappears. A unit motion followed by an optional
rotation is combined in a single operation called UnitRot,
de�ned as follows:

UnitRot(PQ;P 0; �) = R such that

jRQ0j = min
X

(jXQ0j : P 0X \Os = � and jXQj � �)

where Q0 = Unit(PQ;P 0)

Here Os represents all obstacles around (i.e., sensed by)
PQ. The parameter � speci�es a maximumvalue for jRQj
and serves two purposes: (1) to prevent the link from
rotating outside the prespeci�ed range of sensing, and (2)
to preserve the motion attenuation property even after the
rotation. If an R within distance � from Q such that the
link at P 0R avoids all intersections cannot be found, then
UnitRot is said to fail. Figure 3 illustrates two situations
where this happens: in (a) the failure is caused by the
presence of two nearby obstacles and in (b) it is caused by
a single obstacle.
If the operator UnitRot fails, an additional operation,

NewDir(PQ;P 0; �), is evoked, which limits the step at Q
by planning a shorter step at P . Namely, it chooses a new
point P 00 closest to P 0 such that UnitRot(PQ;P 00; �) does
not fail, see Figure 3(c). NewDir is de�ned as follows:

NewDir(PQ;P 0; �) = P 00 such that

jP 0P 00j = min
X

(jXP 0j : UnitRot(PQ;X; �)
does not fail.)

B. The propagation procedure

Consider a vector M = (j0 � � � jN ) containing the coordi-
nates of all the joints in the manipulator. The propagation

1

δ
O

P’

(a)

P

δ
Q

Q’

O2

(c)

δ

Q’’

Q’

P’’

P P’
P’

Q’

(b)

P

Q

Q’’

Q’’

Fig. 3. In (a) and (b)UnitRot(PQ;P 0; �) fails to �nd a point
R within distance � from Q which results in a collision-free
position of the link. In (a) obstacleO2 is encounteredduring
a rotation intended to clear O1; in (b) the required rotation
would be excessive (jQ0Q00j > �). In (c) the NewDir oper-
ator �nds a new point P 00 closest to P such that UnitRot
does not fail.

Prop(M; i; P ) computes a new vector M 0 = (j00 � � �j
0

N ) ac-
cording to the following procedure:

Proc.: Prop(M; i; P )
Inputs: A cartesian vector M = (j0 � � � jN );

An integer i, 0 � i � N ;
A point P .

Output: A cartesian vector M 0 = (j00 � � �j
0

N ) or else
an error vector (a; b;Q), where a, b are
integers and Q is a point.

Step 1: Set j0i = P .
Step 2: Set k = i.
Step 3: While k > 0 do:

3.1: Set j0k�1 = UnitRot(jkjk�1; j0k; jjiP j);
3.2: If 3.1 fails, abort with error (k; k � 1; j0k);
3.3: Set k = k � 1.

Step 4: Set k = i.
Step 5: While k < N do:

5.1: Set j0k+1 = UnitRot(jkjk+1; jjiP j);
5.2: If 5.1 fails, abort with error (k; k + 1; j0k);
5.3: Set k = k + 1.

End.

The procedure emulates a \pull" towards P applied
to ji, which is then propagated towards both j0 and jN ,
through iterative applications of UnitRot. Namely, the
procedure involves two iterations on the elements of M :
(1) from ji down to j0 and (2) from ji up to jN . If
UnitRot(jajb; Q; jjiP j) fails at any point, e.g., due to a
cluttered workspace, the procedure stops and reports an
error (a; b;Q). Note that the distance jjiP j is used as the
� parameter in UnitRot to ensure that upon completion
of Prop, jk � jjiP j; 8k. Figure 4(a) illustrates a propa-
gation M 0 = Prop(M; 3; P ) applied to the joint j3 of a
5-link manipulator in an obstacle-free workspace.

We now introduce two procedures, a soft propaga-

tion and a hard propagation. The soft propagation,
SoftProp(M; i; P ), operates on the vector M of the joints
coordinates and is de�ned as follows. First, a normal
propagation, M 0 = Prop(M; i; P ), is attempted. If it is
successful, M 0 is simply returned and the process stops.
Otherwise, if Prop returns an error of the form (a; b;Q),
then a second propagation of Prop(M;a; P 0) is attempted,
where P 0 is computed withNewDir(jajb; Q). The process
continues until Prop returns no errors. We call this a soft

propagation since upon completion it does not guarantee
that ji = P . (Note that ji = P only if the �rst propa-
gation is a success; this condition may be unimportant if
it only de�nes a desired direction of motion and does not
reect any physical constraint).



the zero-motion constraint. Hence, a second, tail-to-head
propagation is initiated, which produces zero motion at
the tail and a small deviation from the contemplated po-
sition for the head; since the latter does not violate any
physical constraints, it can be tolerated. Once the second
propagation is complete, the physical move to the cal-
culated con�guration takes place, and the whole process
repeats.

A conict may arise within a given propagation if a
link's endpoint, e.g., joint ji, cannot be brought to a pre-
scribed position while (1) avoiding possible collisions, and
(2) obeying the constraints that no point of the link body
should move further than the maximum step � allowed. In
such a case, the current propagation is aborted and joint
li in question becomes a temporary \head" within a new
propagation which proceeds from li in both directions, to-
ward the tail and toward the head.

For simplicity, the snake's links are allowed full rotation
about their joints { which can result in self-intersections.
The latter problem, not addressed here, can be handled
in a number of ways, one being that each link treats other
links as obstacles.

Another issue not addressed here for lack of space re-
lates to the links' length and shape. Though our links are
straight line segments of the same length and zero width,
the algorithm allows links to be of di�erent length and of
di�erent shape (see, e.g. [11]).

C. Related work

Between the two possible models of motion planning {
motion planning with complete information and motion

planning with incomplete information { this work belongs
to the latter group. As to the former group, the exist-
ing work has considered both redundant and nonredun-
dant systems. The problem is stated as follows: given
the geometry and positions of the robot and the obstacles
(usually assumed to be analytical, such as polyhedra), the
problem is to �nd a path between the starting and target
positions. Given the complete knowledge, in principle an
optimal path is feasible (for more details and a general for-
mulation, see, for example, [3]). One variation within this
model includes the potential �eld approach which looks
for special desired features of the generated paths [5]. An
intermediate situation, where part of the (complete) in-
formation is being \suppressed" to improve the algorithm
e�ciency is considered in [6]. Obstacle-avoidance tech-
niques for highly redundant snake-like systems with com-
plete information have been considered in [7, 8, 9]. On the
applications side, an interesting snake-link robot manipu-
lator with 18 links, intended for repair work in a nuclear
reactor, has been built in the 1970s by K. Asano in Toshiba
Corp. [10].

Although from the engineering standpoint motion plan-
ning that relies on real-time sensor data is highly desir-
able, such systems have been slow to come, due largely
to the theoretical and algorithmic di�culties. As a re-
sult, the existing work on motion planning with incom-
plete information has almost exclusively concentrated on
\minimal", nonredundant systems. The problem is usu-
ally reduced to moving a point in an appropriately chosen
two-dimensional subspace of the corresponding con�gura-
tion space [11]. Given the inherently local nature of such
algorithms, plan optimality is ruled out; instead, a \rea-
sonable" behavior is sought. To our knowledge, the work
in [1], on a somewhat simpler case of a free-moving snake
robot, is the �rst attempt of this kind for redundant sys-
tems.

II. Components of the Algorithm

A. Step planning for a single link

Consider a single link, denoted PQ, whose endpoints are P
and Q, Figure 2(a). Also, consider a unit motion of link
PQ towards a point P 0, which places the link at a new
position P 0Q0 such that the distance jQQ0j is minimized
over Q0. The optimalQ0 is computed by the Unit operator
de�ned as

Unit(PQ;P 0) = Q0 such that

jQQ0j = min
X

(jQXj : jP 0Xj = jPQj)

When jPP 0j ! 0, the locus of points Q0 coincides with
a curve called the tractrix [12]. One property of the trac-
trix is that jQQ0j � jPP 0j, see Figure 2(a); This is called
the tractrix motion attenuation property and is used ex-
tensively in the algorithm below.
Suppose the link unit motion from PQ to P 0Q0, Q0 =

Unit(PQ;P 0), results in an intersection with an obstacle

(b)

P’P
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R
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P’P
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Q

Fig. 2. (a) A unit motion of a link: given a rectilinearmotion
of an endpoint, the other endpoint moves along the tractrix

curve. (b) If a unit motion causes an interference with a
nearby obstacle, the link is rotated about its tip until the
conict is eliminated.



at a starting position S, and the head's target position T ,
generate continuous motion, collision-free for every point
of the robot body, which takes the head from point S to
point T . The orientation of the manipulator links during
the motion or at T is not important. The motion will
consist of a sequence of steps, which are computed and
executed in real time (say, 50 steps per second) thus re-
sulting in smooth motion. Each step involves in general
all joint motors; to preserve continuity of motion, within
one step no point in the robot's body should move further
than the prescribed maximum, � > 0.

B. Overview of the motion planning strategy

Designing a strategy for sensor-based motion planning for
a highly redundant kinematic structure forces one to ad-
dress these two problems: (1) algorithm convergence and
(2) the choice between the in�nite number of possible link
con�gurations at each motion step. The two issues are in-
terrelated. In turn, the convergence question is two-fold:
�rst, given the uncertainty of unknown arbitrary obstacles
in the environment and the local nature of sensing, is it
possible to design a provably-correct algorithm? Second,
within one step the multiplicity of links makes a closed-
form solution for the robot con�guration unlikely; so, can
one design an acceptable �nite-time iterative procedure?
Since the problem of provably-correct motion planning
for even a point automaton in three-dimensional space is
known to be intractable, the �rst question is not likely to
have a positive answer. Thus, in this paper we consider
a heuristic procedure. The convergence issue is being ad-
dressed partially, by choosing a provably-correct proce-
dure for the arm head. Similarly, the number of iterations
in the calculation of one con�guration is bounded by the
requirement that the iterations should not produce cycles
in the links processed. In practice, the process stops very
quickly.
The main question that we address here is the poten-

tial explosion of the number of kinematic solutions (con-
�gurations) due to redundancy. Rather than to strug-
gle with the immense problem of inverse kinematic trans-
formations with redundancy [2], we attempt to turn the
problem around and to capitalize on the additional free-
dom o�ered by link multiplicity. In doing so, we choose to
compute the next step con�guration using a link-by-link
propagation of \local" computations. Namely, the next
step position of each link is computed based only on the
obstacles around the link and the contemplated position
of the previous link, without any knowledge about the
distant links and/or obstacles. This simpli�es the compu-
tation dramatically and produces a strategy that can be
easily implemented in real time.
The e�ect of distant links is further reduced by the

choice of a unit motion for a single link whereby the pre-

scribed motion at one end of the link produces, except in
degenerate cases, a smaller motion at its other end. Still,
conicts between distant links may occur. As an example,
envision a real snake trying to move its head some place
while a part of its body near its tail is stuck between two
rocks.

Our strategy is based on the algorithm for free-snake
motion planning [1], called here Af (f for \free"). Af

attempts to emulate a passive reaction of the free snake
body to a continuous \pull" at the head (or, in general,
at any joint) and to the surrounding obstacles. To com-
pute head motion, any maze-searching provably-correct
algorithm can be used (see, e.g., [4]). We make use of an
operator HeadStep, based on one such algorithm, which
determines the next desired motion of the head. The out-
put of Af is a real-time step-by-step sequence of collision-
free con�gurations of the free snake that eventually take
it to the target. The input information for computing
each step is the desired step motion at the head (given
by HeadStep) and the sensing data about the surround-
ing environment. The computation involves a propagation
procedure, which amounts to a serial head-to-tail calcula-
tion of each link's unit motion.

The direction of the unit motion vector is based on a
specially-chosen curve called the tractrix [12], which has
some desired locally-optimal properties. In particular, for
a single link, the distance �b along the tractrix traversed
by the base of the link due to a step motion �t at its tip
obeys the relation �b � �t. That is, the tractrix guarantees
a monotonic attenuation of motion. For the multi-link
snake this means that a step motion at the head causes a
much smaller o�set at the tail. In other words, for a given
motion at the head, no point at the robot body generates
a larger motion.

The situation becomes more complex in the presence of
obstacles. To assure collision avoidance, for every link's
unit motion a check is made to determine if the contem-
plated position of the link interferes with any obstacles; if
so, that link is rotated until the conict is resolved. After
the whole propagation calculation is complete, the snake
moves to the new step con�guration, and the process re-
peats.

In spite of the tractrix attenuation property, the Af

algorithm cannot be used directly for the arm manipula-
tor since, in general, any motion of the head causes some
motion at the tail. To account for the constraint of zero
motion at the tail, we propose a new algorithm, Am (m
for \manipulator"), which consists of two basic propaga-
tion processes executed at each step. First, a head-to-tail
propagation procedure similar to Af takes place. It pro-
duces an arm con�guration which places the head at the
position contemplated by HeadStep, but it also results
in a prospect of some motion at the tail, which violates
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Abstract|This is a continuation of our work on

sensor-based motion planning for highly-redundant

kinematic structures. In [1], we considered a planar,

snake-like robot freely moving amidst obstacles of ar-

bitrary shape. Here, we assume that the tail of the

snake is �xed, i.e., the snake is a redundant arm ma-

nipulator. The manipulator is capable of sensing ob-

stacles in the vicinity of any point of its body. The

task is to move the head of the manipulator from a

starting position to a target one while avoiding colli-

sions with obstacles. We present a procedure which

avoids the computational explosion due to link multi-

plicity by emulating a passive reaction of the manip-

ulator's body to a continuous \pull" at the head and

to the surrounding obstacles. This results in a local

link-by-link (instead of a global closed-form) process-

ing, and produces an e�cient real-time algorithm. A

computer simulation showing robust motion planning

in an obstacle-�lled environment is presented.

I. Introduction

A. Overview of the problem

We consider the problem of motion planning with incom-

plete information for a highly redundant kinematic struc-
ture called a snake arm manipulator, shown in Figure 1.
The manipulator is immersed in a planar workspace popu-
lated by unknown stationary obstacles of arbitrary shapes.
The manipulator is composed of a serial chain of links

li; i = 1 : : :N , connected to each other through revolute

joints ji; i = 0 : : :N � 1. Each link is a straight segment
of length L. A link's endpoints are called base and tip;
for link li, these coincide with joints ji�1 and ji respec-
tively. In particular, the tip of link lN is called the head

and the base of link l1 is called the tail, denoted jN and j0,
respectively. The head can carry, for example, a gripper
or a camera. The tail endpoint is �xed in the workspace.
Apart from this constraint at the tail, the arm manipu-
lator is identical to the free snake studied in [1], which
serves as the basis for this work.
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Fig. 1. An N-link snake arm manipulator and its workspace.
A link li is shown with its envelope of sensing (dotted line).

The robot's input information comes from its sensors

which are capable of acquiring accurate information about
obstacles within a �xed radius from every point of the
robot body (this is a good model of, for example, sonar
or infrared sensors). This kind of sensing e�ectively pro-
vides every link with an envelope of sensing within which
the environment is fully known. Apart from sensing, no
information about the workspace is available.

Each joint ji; i = 0 : : :N � 1, is associated with an an-
gle �i measured between links li and li+1. Angle �0 is
de�ned as the angle between link l1 and the horizontal.
The N-tuple C = (�0 � � � �N�1) of joint angles uniquely
de�nes the manipulator con�guration. The latter can also
be uniquely described by a vector of the cartesian coor-
dinates of the joints, M = (j0; :::; jN). Depending on the
implementation, the robot control system can prefer one
or the other representation.

We consider the following motion planning task: given
an initial con�guration of the manipulator, with its head

1


