
(a)

(b)

(c)

(d)

(e)

(f)

Fig. 4. Example of the algorithm's performance. (a), (b)
Phase 1, hand reorientation; (c) to (f) { hand approach
and grasp execution: (c) a �rst contact with the object is
made, (d),(e) two intermediate positions. The �nal position
is shown in (f) and in Figure 5.

Fig. 5. Two views of the �nal position of the hand and the
object shown in Figure 4(f).

References

[1] C. Laugier, A. Ijel, and J. Troccaz. Combining vision-based infor-
mation and partial geometric models in automated grasping. In
IEEE Int. Conf. Rob. & Autom., Raleigh, NC, March 1987.

[2] Y. Park and G. Starr. Optimal grasping using a multi�ngered robot
hand. In IEEE Int. Conf. Rob. & Autom., Cincinnati, OH, May
1990.

[3] V.-D. Nguyen. Constructing force-closure grasps. Int. Journal of

Robotics Research, 7(3), June 1988.

[4] N. Pollard. The grasping problem: Toward task-level programming
of an articulated hand. Master's thesis, MIT, May 1989.

[5] N. Pollard. Planning grasps for a robot hand in the presence of
obstacles. In IEEE Int. Conf. Rob. & Autom., Atlanta, GA, May
1993.

[6] T. Yoshikawa and K. Nagai. Manipulating and grasping forces in
manipulation by multi�ngered robot hands. In IEEE Int. Conf.

Rob. & Autom., Sacramento, CA, April 1991.

[7] B. Mishra, J. Schwartz, and M. Sharir. On the existence and syn-
thesis of multi�nger positive grips. Technical Report 259, Courant
Institute of Mathematical Sciences, New York, NY, 1986.

[8] D. Reznik and V. Lumelsky. Sensor-based motion planning for
highly redundant kinematic structures: II. The case of a snake arm
manipulator. In IEEE Int. Conf. Rob. & Autom., Atlanta, GA,
May 1993.

[9] J. Napier. The prehensile movements of the hand. Journal of bone
and joint surgery, November 1956.

[10] S. Hirose and Y. Umetani. The development of a soft gripper for the
versatile robot hand. Mechanism and machine theory, 13, 1978.

[11] M. Cutkosky. On grasp choice, grasp models, and the design of
hands for manufacturing tasks. IEEE Trans. on Robotics and Au-

tomation, 5(3), June 1989.

[12] J. Pettinato and H. Stephanou. Manipulability and stability of
a tentacle-based robot manipulator. In IEEE Int. Conf. Rob. &

Autom., Scottsdale, AZ, May 1989.

[13] G. Chirikjian and J. Burdick. Design and experiments with a 30-
DOF robot. In IEEE Int. Conf. Rob. & Autom., Atlanta, GA,
May 1993.

[14] J. Trinkle, J. Abel, and R. Paul. An investigation of frictionless en-
veloping grasping in the plane. Int. Journal of Robotics Research,
7(3), June 1988.

[15] K. Mizra, M. Hanes, and D. Orin. Dynamic simulation of enveloping
power grasps. In IEEE Int. Conf. Rob. & Autom., Atlanta, GA,
May 1993.

[16] J. Craig. Introduction to Robotics, Mechanics and Control.
Addison-Wesley, Reading, MA, 2nd edition, 1989.

[17] M. Kaneko and K. Tanie. Contact point detection for grasping of
an unknown object using self-posture changeability. In IEEE Int.

Conf. Rob. & Autom., Cincinnati, OH, May 1990.

[18] C. Bard, J. Troccaz, and G. Vercelli. Shape analysis and hand
preshaping for grasping. In Int. Workshop On Intelligent Robots

and Systems, Osaka, Japan, November 1991.

[19] R. Fearing. Simpli�ed grasping and manipulation with dextrous
robot hands. Technical Report AI Memo 809, MIT, Cambridge,
MA, November 1984.



as the palm. During the step each �ngertip is expected
to move over a �xed distance s. The corresponding step
of the palm is of variable length, �; � � s (execution of
many such steps in rapid succession results in continuous
motion).

Each iteration consists of four operations (parts) labeled
(a)-(d), which proceed until all elements of TipState are
set to Done { that is, until no �ngertips can move any
longer in the directions chosen. No motion takes place
until the calculations in all four parts are over. Important
remark: the discussion below about motion generated in
each step should be thought of as computational proce-
dures, not actual motions, until the end of the iteration.

Brie
y, part (a) of the iteration in Phase 2 keeps track
of which �ngers are in contact with the object. Parts
(b) and (d) generate motion for the �ngers so as to make
them wrap around the object. These parts make use of
two \canned" procedures, Head2Tail and Tail2Head, for
snake motion planning directly imported from [8]. Part
(c) is responsible for planning a small step forward of the
whole unit, (palm+ Frozen �ngers), toward point T along
the line PoT . Finally, part (d) takes care of some gaps
between the �nger tails and their roots that appear in the
previous computational operations. The output from each
iteration is a set of step values for all joints of all �ngers
and for the palm; at this point, the actual step motion
takes place, simultaneously in all DOF involved; and then
the process repeats.

More speci�cally, in part (a) of one iteration of Phase 2,
the elements of TipState currently set to Frozen are re-
set to Contact if the corresponding �ngertips sense the
surface of O. This latter information is obtained from
FT ipSensor(m), which returns ON if the �ngertip of �n-
ger Fm senses the surface of O, returning OFF otherwise.

Part (b) starts out by planning a step motion for the
�ngertips. This is done by issuing a call to the routine
FollowBoundary(m), whose task is to �nd a point, H,
at distance s from the tip of Fm and lying on the surface
of O and in the workspace of Fm. This is a well-de�ned
operation since the �nger workspace is planar and so only
two local directions { left or right { are possible; out of the
two, only one, left, achieves the motion desired for �nger
hugging.

Point H is then passed to Head2Tail, which in turn
executes a �ngertip-to-tail propagation [8] for �nger Fm.
This computational procedure sequentially calculates the
positions of all links of the �nger so as to avoid collisions
with the object while, on the other hand, it make the
links \cling" to it. One side e�ect of this computation
is the creation of a small gap between the tail of �nger
Fm and the corresponding root on the palm. These gaps
are then processed in part (c), resulting in a step motion
calculation for the palm.

In part (c), the step motion of the palm toward T is
computed by averaging the gaps created in part (b). The
averaging is done along the axis PoT ; the resulting palm
step, �, is of variable length and is never longer than s; � �
s, due to Head2Tail's property that the tail drift is never
larger than the head step [8]. As soon as the �rst contact
between the palm and the object is made { in which case
the PalmSensor() routine returns ON { part (c) is turned
o� (i.e., the hand's forward motion stops).
The situation prior to part (d) is as follows { the �ngers

whose �ngertips are currently in contact with the object's
surface have been displaced by the step motion as com-
puted in the �ngertip-to-tail propagation. Gaps, if any,
separate the �nger tails from the palm. Both the palm
and all �ngers which are still Frozen have moved along
p̂ by �. As a result of this motion, the gaps between �n-
ger tails and roots change somewhat, though they are not
closed.
Closing these gaps is the function of part (d) which

initiates a tail-to-�ngertip propagation for each non-frozen
�nger. This brings the separated tail of each �nger back
to its root on the palm. This is accomplished by calls
to Tail2Head for every �nger that is in contact with the
object (see [8] for details). Also in part (d) a test for �nger
overextension is carried out: a �nger is considered to be
overextended if the magnitude of the step planned for its
tip after both the Head2Tail and Tail2Head calls is less
than some threshold ". If that is so, the corresponding
element of TipState is set to Done. Finally, the results of
the iteration are output for the physical execution of the
step motion.

IV. Example

This example illustrates the performance of the grasp
planning algorithm Hugger, see Figures 4 and 5. The
hand has �ve �ngers, each with �ve links and �ve revolute
joints. All �nger links are of equal length. The object to
be grasped is a complex curvilinear body, as shown. Fig-
ure 4a shows the initial position; Figure 4b, the position
after Phase 1. At this point the hand is ready for Phase 2
in which the approach to the object and the grasping take
place. At the moment shown in Figure 4c, the �rst con-
tact with the object (perhaps by one of the �ngers) takes
place. Figures 4d,e,f show some intermediate positions of
the hand; the �nal position is shown in Figure 5. Observe
how di�erent and \optimal" the positions of the �ngers
are and how �rm the resulting grasp looks. All the calcu-
lations for sensor-based motion planning, complete with
animated graphics motion on the screen of a workstation,
was done in real time.



�ngers to \face" T ; this is done by simply making the axis
p̂ pass through point T .

Phase 2 { Palm approach and object hugging:

The hand moves along the p̂ axis toward T , while keep-
ing each �nger \frozen", until the �rst contact with the
object is made. Thereafter, as long as a �nger is in con-
tact with the object, its �ngertip behaves like the head
of a snake, following the object surface and \pulling" the
rest of the �nger with it. As other �ngers get involved into
this process, a 3D \smothering" e�ect takes place whereby
the object is \hugged" by the �ngers from di�erent direc-
tions. Meanwhile, to help form a better grasp, the palm
continues moving forward, so as to accommodate the �n-
gers' motion, until it comes in contact with the object, at
which time it stops. The �ngertips continue their motion
along the object's surface until they cannot extend any
further.

We are now ready to formulate the algorithm more pre-
cisely.

III. The Hugger Algorithm

The grasp planning algorithm, calledHugger, is presented
in Figure 3 below; it is written in pseudo-code. As before,
M is the number of �ngers, and N , the number of links.

The inputs to Hugger are (i) an initial hand con�gura-
tion Cinit of the whole-sensitive hand, and (ii) coordinates
of some point T in the interior of the stationary object O.
The shape and orientation of the object are not known.
A succession of hand con�gurations produced by Hugger

and executed in real time { say, at a rate of 20 to 50
con�gurations per second { culminates in a �nal con�gu-
ration Cfinal in which the palm is brought in contact with
the object and the �ngers \hug" the surface of O in an
enveloping fashion.

For simplicity, assume that in the initial con�guration
Cinit, all of the hand's �ngers are extended, i.e., �mn =
0; 8m;n. Assume also that initially the hand is far enough
from the object O, so that it can rotate about its origin Po
with its �ngers completely extended, without the danger
of colliding with O.

A key data structure used in Hugger is an M -element
array called TipState, whose elements store the current
state of a particular �nger. Each element of TipState
takes one of three values: (i) Frozen, (ii) Contact, or (iii)
Done, meaning that the corresponding �nger is (i) frozen
in its extended position, i.e., with all its joint angles set to
zero, (ii) currently sensing the object's surface at its �n-
gertip, (iii) completely stretched over the object's surface.
Initially, all elements of TipState are set to Frozen.

The algorithm is broken down into two processing
phases: (1) hand reorientation and (2) palm approach
with object hugging. For hand reorientation, the angle

Algm: Hugger(Cinit ; T )
Inputs: Con�guration vector Cinit of the hand;

3D coordinates of point T
(T lies inside object O).

Output:A sequence of collision-free con�gurations,
each representing allM � N links of all
�ngers plus the palm.

Phase 1: Hand reorientation:
Set ~t = (T � Po);
Set � = angle between vectors p̂ and ~t;
Set �step = small fraction of �;
Set ~r = p̂ � ~t;
While � > 0 do:

With Po �xed, rotate hand by angle �step about ~r;
Set � = �� �step;
Output current hand con�guration;

EndWhile.

Phase 2: Palm approach with object hugging:
While 9m st TipState[m] 6= Done do:
a. For each m st TipState[m] = Frozen do:

If FTipSensor(m) = ON then:
Set TipState[m] = Contact;

EndIf.
EndFor.

b. For each m st TipState[m] = Contact do:
Set H = FollowBoundary(m);
Call Head2Tail(m; H);

EndFor.
c. If PalmSensor() = OFF then:

Set � = 1

M

P
m
[(jm0 � Rm) � p̂];

Translate palm by distance � along ~t;
For each m st TipState[m] = Frozen do:

Translate Fm by distance � along ~t;
EndFor.

EndIf.
d. For each m st TipState[m] = Contact do:

Call Tail2Head(m; Rm);
If FTipStep(m) < " then:

Set TipState[m] = Done;
EndIf.

EndFor.

Output current hand con�guration.
EndWhile.

End Hugger.

Fig. 3. Pseudo-code forHugger, a grasp-planningalgorithm
for a whole-sensitive, multi-�ngered hand.

� between the palm's normal vector p̂ and the line pass-
ing through the palm's origin Po and point T , is calculated
�rst. With point Po �xed, the hand is then rotated over
the angle � such that the palm's normal is aligned with
line PoT .

The purpose of Phase 2 of Hugger is to realize the rest
of the operation; in it, the hand approaches the object un-
til the �rst contact is made; then the �ngers slide along the
object, with the links clinging to it; meanwhile, the palm
moves slowly toward the object so as to accommodate the
�ngers' motion, until it contacts the object; all this contin-
ues until the grasp closes and the �ngertips cannot move
any further. One iteration of Phase 2 corresponds to one
small step which involves all joints of all �ngers as well



hand consisting of two rotating jaws and a palm. Their
strategy takes into account the object's physical proper-
ties such as its weight, and consists of (i) partly lifting the
object on its side, (ii) placing one of the jaws under the
lifted side, and (iii) picking up the object completely by
closing the jaws and bringing it in contact with the palm,
thus creating a \smothering" e�ect. A testbed has been
developed by Mizra et al. [15] for simulating physical phe-
nomena speci�c to power grasps (e.g., �nger slipping, ob-
ject rolling, etc.). To our knowledge, the only algorithmic
work addressing hug-style grasps in 3D is that by Pollard
[4] where a multi-�nger hand grasps polyhedral objects in
a cylindrical, wrap-like fashion.
The remainder of this paper is organized as follows. In

Section II the hand's kinematics and sensing model are
described, along with an overview of our approach. The
motion-planning algorithm for the problem at hand is for-
mulated in Section III, followed by a computer simulation
example, Section IV, which demonstrates the algorithm's
performance.

II. The Model; Overview of the Approach

Hand Kinematics. The hand consists of the palm and a
set of M �ngers attached to it and labeled counterclock-
wise as Fm;m = 1; :::;M . The palm can be any rigid
body; for the sake of simplicity and without loss of gener-
ality, assume that the palm is a round platform, as shown
in Figure 2. The palm's front side (plane), the origin Po,
and the unit vector p̂ normal to the palm are de�ned as
shown in the �gure and fully describe the palm's position.

Fig. 2. The model of the hand. The hand has M �ngers,
each with N links; here M = 4;N = 4. Each �nger op-
erates in a plane that passes through the vector p̂ normal
to the palm's plane. Each link lmn can rotate about the
corresponding joint jmn; the associated joint angle is �mn.

The �ngers are attached to the palm at their root points
Rm;m = 1; :::;M . Each �nger Fm is made up of a chain of
N links lmn; n = 0:::N�1, serially connected to each other

via revolute joints jmn. Joint jm;0 coincides with the root
Rm. For procedural purposes to become clear later, it is
convenient to think of the root as being attached to the
palm, and the coinciding end of the �nger, called its tail,
attached to the �nger. The endpoint jm;N of Fm is called
the �ngertip. All joint axes in a �nger are parallel to each
other and to the palm's front plane. For every joint jmn,
its associated joint angle �mn is measured about the cor-
responding axis of rotation. The workspace of �nger Fm is
therefore con�ned to the plane perpendicular to the joint
axes and passing through vector p̂. This planar structure
makes a �nger identical to an N -link snake considered in
[8].
In practice the hand would be attached to (the end-

point of) an arm manipulator which would precon�gure

{ that is, bring it into the vicinity of the object to be
grasped and orient it (say its vector p̂) as necessary. In
this work, the hand precon�guration operation is assumed
to be done { we focus on the grasp planning proper. A
con�guration C of the hand is de�ned by a (6 +M � N )-
dimensional vector made up of (i) 6 rigid-body variables
specifying the position and orientation of the palm relative
to a �xed reference frame, and (ii) M sets of N numbers,
each set describing positions of the N joint angles of �n-
ger Fm. The (more redundant) representation accepted in
this work makes use of homogeneous matrices [16]: a con-
�guration C includes the position/orientation of the palm
represented by a 4x4 homogeneous matrix, and the posi-
tions of M �ngers, each represented by the 3D cartesian
coordinates of each of its (N + 1) joints (including the
�ngertip).

Sensing. The hand is whole-sensitive: it possesses tac-
tile sensing, such that any point in its body can detect,
on contact, the presence of nearby objects. At all times
the hand is aware of its current con�guration C and of the
position of point T (see \Object" below).
Object. The object to be grasped, O, is a stationary

rigid body. Its shape, dimensions, and orientation in space
are unknown. What is known { for example, from the
hand precon�guration stage [18] { is some point T inside
the object. The reasoning behind choosing T is to have
the object more or less centered relative to the hand; T
can be, for example, the object's center of gravity or the
center of its projection as viewed from the origin Po. In
general, the algorithm is not sensitive to the choice of T .
Overview of the approach. In the spirit of Fearing

[19], who breaks down the grasping operation into four
phases (approach, initial touch, initial grab, and stabi-
lization), our motion planning strategy is structured as
follows:
Phase 1 { Palm reorientation: Since the relative

orientation of the hand relative to the object is initially
arbitrary, the hand is rotated so as to cause its palm and



tive to the particular arrangement of those few contacts
produced. For example, the notion of force closure [3, 6],
associated to a grasp whose contact points completely re-
strict the physical displacement of an object, may not be
possible for certain objects if there aren't enough contacts
available [7]. Additionally, force closure is highly depen-
dent on the particular arrangement of contacts over the
surface of the object.1 The search for techniques robust
enough for the �ngertip grasp problem, as well as to the
model inaccuracies, leads to the idea of ranges (rather than
points) of acceptable �ngertip contact on the boundary of
the (polygonal) object [3].
This work attempts to develop a strategy that addresses

some of the limitations above. Namely, we ask the follow-
ing questions:

� Can a strategy be developed so as to \unlock" the
hidden power of the hand's many DOF for the pur-
pose of robust grasping? In particular, how can one
make use of the other surfaces of the hand and �n-
gers, besides the �ngertips, to contribute to the grasp
and to reduce its sensitivity to the arrangement of
hand/object contacts?

� As in an octopus, an increased number of DOF should
result in more 
exible and robust collision avoidance
and grasping, while the added redundancy should
produce more contacts. How can one use this re-
dundancy without jeopardizing (real-time) computa-
tional feasibility?

� By bringing in on-line sensory feedback and thus in
principle being able to handle unknown or moving ob-
jects, can a strategy be developed capable of handling
a large number of grasping situations?

The main contribution of this paper is a novel, powerful
strategy for grasp planning that addresses the above ques-
tions. The approach suggested makes use of the recent
work on motion planning for highly redundant kinematic
structures. The algorithm Am, introduced in [8], allows a
redundant whole-sensitive arm manipulator (a snake) to
e�ciently operate in a complex planar environment with
unknown, arbitrarily shaped obstacles. Am also possesses
an interesting property that is of special interest in the
task at hand (pun intended!), see Figure 1: as the head of
the snake follows an obstacle boundary, the snake's body
is naturally brought to a tight �t over that boundary.
Note that structurally a single �nger can be thought

of as a small snake with, say, 3 or 4 (in general N ) links
and revolute joints, attached to the hand and operating

1It becomes less so as more and more contacts are applied. An-
other measure is to consider \soft" (friction) contacts although this
complicates the analysis.

in a single plane.2 By arranging the planes of the �ngers
in an appropriate 3D pattern and by making use of Am's
components, a 
exible grasping strategy is produced. The
side-e�ect of collision avoidance and obstacle boundary
following becomes \hugging"; the ability to tightly �t over
the object's surface helps the �ngers distribute their e�ort
for �rm grasping.

Fig. 1. Shown are 3 superimposed snapshots of snake ma-
nipulator motion under the Am algorithm [8]. As the
head of the snake advances along the obstacle boundary
(H1; H2; H3), its links are brought closer and closer to that
boundary. At some point the snake becomes completely ex-
tended and contacts the obstacle in multiple points.

The idea of enveloping grasps as a means to achieve ro-
bustness has been suggested before. The notion of a power

grasp in which �ngers are placed cylindrically around the
object as opposed to a precision grasp in which the �nger-
tips are made to \pinch" the object goes back to the med-
ical/taxonomic works of Napier [9]. Hirose and Umetani
[10] have exploited this idea by designing a hand with
two tentacles which are made to \unroll" around a 2D
object of interest. This line of work has been recently
brought back into the research community's attention in
the light of grasp modeling and classi�cation [11]. In a
work centered mostly around control techniques rather
than on motion-planning, Pettinato and Stephanou [12]
consider a multiple DOF snake manipulator whose links
are made to wrap in tentacle-like fashion around an ob-
ject of interest. The idea of wrap grasps has been also
pursued by Kaneko and Tanie [17], in the context of con-
tact point detection, and by Chirikjian and Burdick [13]
in their experiments with a 30-DOF planar snake: a disk-
shaped object is made to rotate by (i) wrapping the snake
around the object, and (ii) propagating multiple \peri-
staltic" waves through the snake's body. Trinkle et al [14]
have studied enveloping grasps with a rather simpli�ed

2A human �nger presents three links moving in one plane, plus a
joint at the root of the �nger which allows for some limited adjust-
ment of that plane.



Multi-Finger \Hugging":

A Robust Approach to Sensor-Based Grasp Planning�

Dan Reznik and Vladimir Lumelsky

University of Wisconsin-Madison, Madison, WI 53706, USA

Abstract|We consider the problem of planning the

grasp operation for a multi-�nger hand. The hand is

expected to be able to handle three-dimensional ob-

jects of arbitrary unknown shapes as long as they are

of \reasonable" size so as to make the grasping oper-

ation meaningful. The object geometry is not known

beforehand. To provide input information for the in-

teraction necessary, a whole-sensitive hand is assumed

{ every point of its surfaces possesses tactile sensing.

The important property of the problem formulation

is that in the grasp produced the hand and the �n-

gers are expected to \hug" the object in a manner a

human hand holds an apple { with the maximum con-

tact with its surface for a �rm, comfortable grasp. A

novel, powerful strategy for real-time grasping is sug-

gested which makes use of recent techniques for highly

redundant sensor-based planar motion planning. An

example is given that illustrates the performance of

the approach.

I. Introduction

In this paper, we consider the problem of grasp planning.
A hand (perhaps attached to an arm manipulator) with
multiple �ngers is requested to pick up a three-dimensional
(3D) object. The object can be of arbitrary shape and in
an arbitrary position. Its dimensions are expected to be
\reasonable", that is, large or small enough to make the
grasping operation meaningful. Its geometry is not known
beforehand. To provide input information necessary for
interacting with the object, a whole-sensitive hand is as-
sumed { every point of its surfaces possesses tactile sensing
which provides for the detection of surrounding objects on
contact. The objective is to provide a �rm, reliable grasp;
all computations involved should be feasible in real time.
The important property of our problem formulation is

that in the grasp being sought the �ngers are expected to
\hug" the object in a manner a human hand holds an ap-
ple { with the whole palm and with the maximumcontact
between the surfaces of the object and the �ngers, thus

�Supported in part by the NSF Grant IRI-9220782 and DOE
(Sandia Laboratories) Grant 18-4369C.

producing a �rm and comfortable grasp (alternatively, en-
vision an octopus capturing its prey).

Most of the literature on robot grasping concentrates on
issues such as hand/object orientation in pick-and-place
operations, and dexterity in �ne manipulation. These is-
sues usually entail limiting the contact to the tips of �n-
gers only, which typically requires a rather unique posi-
tioning of every link of every �nger. The price for this
precision is computational di�culties, making it hard for
one to take full advantage of the redundancy inherent in
multi-�ngered hands. In other words, a \delicate" grasp
technique is likely to lack in (i) the ability to fully exploit
complex hand structures, and (ii) the robustness and 
ex-
ibility needed to handle a large number of cases. In par-
ticular, the following are properties found in the existing
approaches:

- Low complexity of the hand: To keep the problem
computationally tractable, hands with few degrees of free-
dom (DOF) are considered, with an extreme case being
the popular parallel-jaw mechanism [1]. While its geomet-
ric simplicity is appealing from an algorithmic and hard-
ware design viewpoint, its suitability for general-purpose
applications is unlikely. More complex hands usually come
with only few �ngers (3-5) and few link-per-�nger (2-3)
topologies. Higher levels of redundancy would only sky-
rocket computational costs.

- Complete object models, o�-line processing:

Most approaches assume that the object to be grasped is
a well-known, algebraic entity, e.g., a polygon/polyhedron
or some other set of analytic surfaces. The grasp plan-
ning then becomes an o�-line computational procedure in
which the goal is to optimize some grasping-quality cri-
terion [2, 3, 4, 5]. This framework precludes an on-line
feedback, such as from sensing, and an adaptability to
previously unknown or changing circumstances.

- Fingertip grasps: In planning grasps for multi-�nger
hands, a typical assumption is that only the tip of each
�nger may contact the object to be grasped. This leaves
unexploited other parts of the hand that could potentially
provide additional support and grasp �rmness. Combined
with only few �ngers available (see above), the resulting
grasp is not likely to be robust as it will be highly sensi-

1


