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Abstract

Part feeders, which singulate and orient parts prior to pack-
ing and insertion, are critical components of an assembly
line. Existing feeders utilize o�-plane vibrations of a rigid
structure to convey parts along a track. Repeated part hop-
ping/landing phases are concerns if parts are delicate and/or
high positioning accuracy is required. Here we consider a
simpler feeder design in which parts are in permanent con-
tact with a horizontally-vibrating 
at plate. Each vibration
is a \pump-like" motion along a single degree of freedom:
the plate spends more time moving forward than backward.
Parts are propelled forward since dynamic friction is �xed
and independent of the relative velocity at the interface. In
designing plate vibration pro�les we consider issues of wave-
form simplicity, bandwidth, and feed rate performance. Both
bang-bang and sinusoidal control waveforms are analyzed.
Expressions are derived for equilibrium feed rates for both
waveforms; dynamic simulation is used to verify the analy-
sis. A prototype of the proposed feeder has been implemented
with cheap mechanical parts. A simple experiment with the
device is presented.

1 Introduction

Part feeders, which singulate and orient parts prior to pack-
ing and insertion, are critical components of an assembly
line and one of the biggest obstacles to 
exible assembly.
Vibratory bowl feeders use 3d vibrations of a rigid bowl to
feed industrial parts along a helical track [1]. In each vibra-
tion cycle, a part undergoes sticking, hopping, landing, and
sliding motion modes. In such applications one is not con-
cerned with part positioning accuracy nor with premature
part wear due to repeated collisions with the feeder.

In the spirit of minimalism [2], we consider a simpler
vibrations-based parts feeder design based on a horizontally
vibrating 
at plate, as shown in Figure 1. A linear motor
(e.g., a voice coil) accelerates the plate along a single degree
of freedom. Parts lay 
ush with the plate; force is trans-
ferred to the part via dynamic friction (assuming the plate
vibrates fast enough). This reduces part wear (assuming
sliding friction is better than rigid collisions), and improves
part motion controllability.

Each plate vibration is an asymmetric, pump-like closed
motion along a single degree of freedom: the plate spends
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Figure 1: Our proposed feeder design: a 
at plate, actuated
by a linear motor, vibrates along a single degree of freedom.
Parts lay 
ush with the plate. The plate's pump-like motion
results in positive net dynamic frictional force applied to the
part per cycle, causing the part to feed forward.

more time moving forward than backward. Since dynamic
frictional forces are independent of the relative velocity at
the part-plate interface, this type of motion results in pos-
itive net force applied to the part per cycle, resulting in
forward feeding.

In designing plate vibration pro�les, i.e., the waveform
input to the motor, we consider issues of wave simplic-
ity (ease of synthesis) and low bandwidth (anti-resonance).
Two \canonical" waveforms types are analyzed: bang-bang
and sinusoidal. In the former, the motor is driven at either
full or zero throttle; in the latter, input to the motor consists
a low frequency sine plus its �rst harmonic. Analytic expres-
sions for both feeding forces and feed rates are derived. A
feed rate performance measure is de�ned which allows for
some quantitative comparison of the two methods. Results
for the sinusoidal method are informally veri�ed with dy-
namic simulation.

A prototype of the feeder has been built with inexpensive
parts. A simple part feeding experiment is presented.

1.1 Related Work

Zesch et al. have developed a micro-positioning device which
steps over a stationary 
at plate by contracting/extending
its body [3]. Similar to inch-worm motion, this device ex-
ploits both stiction and sliding frictional modes. In a re-
cent work [4], we show that asymmetry in the compression-
decompression phases of part-actuator impact is the primary
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cause for forward part feeding for a type of MEMs motion
array [5]. Other examples of array-based feeders which ex-
ploit asymmetry include [6, 7]. Hayward [8] has investi-
gated the interaction of simple rigid parts placed on a hor-
izontally/vertically vibrating plate: by modulating the mo-
tion control waveforms, parts automatically orient/position
themselves at energy minima. B�ohringer et al. [9] have pro-
posed to use the vibration nodes to automatically gather
particles at speci�c locations.

The ideas presented here relate to our ongoing work on
2d part manipulation with a horizontally-vibrating surface,
described in the companion paper [10]. In that work, we
show that a closed motion of the plate (involving its 3 de-
grees of planar freedom) can be computed which generates
arbitrary forces (averaged over one oscillation cycle) at a �-
nite number of points, allowing for the parallel motion con-
trol of one or more parts.

The remainder of this paper is organized as follows: In
Section 2 we present the part feeder's mechanical model and
the principle of pump-like motion, or \time-asymmetry". In
Section 3, we consider motion waveform design and com-
pare two possible controls: bang-bang and sinusoidal. In
Section 4 we present a simple experiment performed with a
prototype of the feeder. Conclusions follow in Section 5.

2 Part Feeding Principles

2.1 Feeder model

The parts feeder we consider is illustrated in Figure 2. A
waveform generator W produces a periodic signal which is
power-ampli�ed (A) and fed to a linear motorM . The motor
converts input energy into output force fext, applied along
x to a 
at plate S. The plate is constrained to move along
a single horizontal dimension (e.g., x), with gravity acting
perpendicularly (along �z). The plate's x compliance (sus-
pension mechanism) is modeled as a damped-spring (k; b).
One or more parts P are placed over the plate's surface.
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Figure 2: Parts feeder model: a 
at plate S is actuated along
x by a linear motor M ; the plate's compliance/suspension is
modeled as a damped spring (k; b). M converts the ampli�ed
signal generated by W into output force fext applied to S
along x.

Let as(t) = fext=ms denote the plate's instantaneous ac-
celeration, where ms is the plate's mass (parts' masses are
negligible). In what follows we will ignore ampli�cation and
motor transfer function issues and assume as(t) can be spec-
i�ed directly. Let as(t) be a periodic function with period
T . The feeder is a mass-spring system with resonance w0

occurring at [11]:

w0 =

r
k

ms

�
�

b

4kms

�2
(1)

Imposing T�2�=w0, i.e., as(t) well above resonance, a�ords
us the following nice properties:

� Plate oscillations are bounded.

� The plate's velocity pro�le �s(t) is the perfect time-
integral of as(t) and has zero steady-state DC level [11].

� Surface-part relative accelerations are above the thresh-
old of sticking1 [12], i.e., P is always sliding on S.

The plate's surface is assumed smooth and with uniform
coe�cient of dynamic friction �. Let �s(t), �p(t) denote
the plate's and part's instantaneous velocities, respectively.
The Coulomb model for dynamic friction [12] states that the
instantaneous frictional force acting on P will be of �xed
magnitude �mg and act opposite to the relative velocity,
i.e.:

ffric(t) = �mg sgn[�s(t)� �p(t)] (2)

2.2 Time Asymmetry

In order for a part to feed forward, it must perceive a positive
net frictional force as interacts with the plate over one oscil-
lation cycle. The non-linear dependency of frictional force
on relative velocity (in fact, the former's independence on
the latter) suggests a simple approach to achieve part feed-
ing: choose as(t) such that �s(t) is positive for a longer time
than it is negative. We term such a �s(t) time-asymmetric.
For simplicity's sake, we make the following quasi-static as-
sumption: the maximum change in part's speed in one cy-
cle �gT is negligible compared to the plate's peak velocity,
�s;max. Since the latter is bounded by amaxT , where amax

is the peak acceleration in one cycle, this requirement corre-
sponds loosely to imposing �g=amax�1, which is facilitated
by either one of: a slippery surface, a lightweight plate,
and/or a powerful motor.

Let �p denote the part's \constant" velocity in one cycle.
From Equation 2, we obtain an expression for the average
force f1d applied to the part over one cycle:

�f1d =
�mg

T

Z T

0

sgn[�s(t)� �p] dt (3)

The e�ect of the sgn function above is to \saturate"
�s(t)� �p, i.e., transform it into a square wave. De�ne
t+ as the duration of the positive portion of �s(t)� �p.
The average force will be linked to the asymmetry in the
sgn[�s(t)��p] square wave, i.e., to t

+'s deviation from T=2.
It can be shown that:

�f1d = �mg(
2t+

T
� 1) (4)

If looked at the scale of several cycles, the part's velocity
will increase if the force applied to it per cycle is non-zero,
i.e., t+ > T=2. This process will converge when the part
reaches an equilibrium speed �eq, called the feed rate, such
that �f1d = 0. The concepts in this Section are illustrated in
Figure 3.

1Actually, short periods of sticking, ignored here, will occur near
the zero-crossings of relative acceleration
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Figure 3: (a) A time-asymmetric velocity pro�le �s(t): the
length of its positive semi-cycle is greater than T=2; �s(t)'s
peak value is �max. If the part's velocity is zero, t+ > T=2.
(b) Instantaneous frictional forces for a null part velocity:
�s(t)��p is \saturated" into an asymmetric square wave. (c)
The frictional force at equilibrium is a square wave with 50%
duty cycle. The corresponding part velocity �eq is shown in
(a) as the horizontal line which divides �s(t) into positive
and negative semi-cycles of equal length T=2.

3 Designing the Control Waveform

In designing an as(t) which achieves a time-asymmetric �s(t)
we look for the following properties:

� Simplicity: a functionally simple as(t) is easy to syn-
thesize and parameterize.

� Bandwidth: low harmonic content reduces the chance
of feeder resonance. Also, the motor will greatly atten-
uate as(t)'s high frequency components.

� Performance: one measure of performance is the ratio
of the feed rate �eq by �s(t)'s peak value. Since this
is bounded by amaxT , and will typically correspond to
�s(t)'s negative extremum j�minj, we de�ne the follow-
ing two performance measures:

�1 = �eq=(amaxT )

�2 = �eq=j�minj (5)

In what follows we present two as(t) waveforms. The �rst
focuses on waveform simplicity, while the second attempts
to minimize spectral content. We then compare their �1;2
performances.

3.1 Bang-bang acceleration

A simplifying assumption is to expect that the motor can
only deliver three types of forces: full throttle forward, zero
force, and full throttle backward. As it turns out, if these
three force application modes are repeated in sequence, the
plate will move in a time-asymmetric manner. The corre-
sponding as(t) is the \bang-bang" waveform shown in Fig-
ure 4(a), and de�ned below:

as(t) =

(
amax 0�t < t1
0 t1�t < t2
�amax t2�t < T

(6)

t1 = (1� z)T=2

t2 = (1 + z)T=2

Where z 2 [0; 1) is a parameter governing the zero-force
phase duration. Namely, as(t) 3 phases are: (i) positive
constant acceleration, (ii) zero-acceleration, and (iii) neg-
ative constant acceleration. For simplicity's sake, we let
phases (i) and (iii) be of equal duration; phase (ii)'s length
is zT . amax is the (bounded) acceleration desired in phases
(i) and (iii). Integration (and removal of the DC term) yields
a piecewise linear expression for the velocity pro�le:

�s(t) =

(
amax[T4 (z

2 � 1) + t] 0�t < t1
amax

T
4
(z � 1)2 t1�t < t2

amax[T4 (z
2 + 3)� t] t2�t < T

(7)

t1; t2 = as in above.

The above function is illustrated in Figure 4.
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Figure 4: (a) A \bang-bang" acceleration pro�le with z =
1=3. (b) The corresponding velocity pro�le �s(t) shown with
zero steady state DC value (due to springiness in the sus-
pension). Shown also is the t+, the length its positive semi-
cycle.

The following expressions yield �s(t)'s maximum and mini-
mum values:

�min = amaxT
(z2 � 1)

4
< 0

�max = amaxT
(z� 1)2

4
> 0 (8)

For a �xed part velocity �p, we derive an expression for t+

in �s(t)� �p:

t+ =
T

2
(z2 + 1)� 2�p

amax

(9)

From Equation 4 obtain the average force applied to the
part per cycle:
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�f1d = �mg
�
z2 � �p

amaxT

�
(10)

The equilibrium velocity �eq is obtained by solving �f1d = 0,
above, for �p:

�eq = amaxT
z2

4
(11)

The above equation is only valid for z < 1=2. Beyond 1=2,
�eq is \clamped" by �max (see [13] for details), and decreases
to zero as z approaches 1, as shown in Figure 5.
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Figure 5: The feed rate �eq plotted against the z parameter,
for amax = 16, and and T = 1. Shown also the graphs of
�max and the ratio r = �eq=�max. Notice that if z > 1=2,
�eq tracks �max.

A maximum feed rate of amaxT=16 is achieved at z = 1=2
so �1 = :0625. Plugging z = 1=2 into Equation 8, obtain
�2 = 1=3 for this type of control waveform.

3.1.1 Viscous force model

Taking the derivative of �f1d in Equation 10 with respect to
�p and substituting in the value of �eq from Equation 11,
yields an interesting expression for the average frictional
force as a function of part speed:

�f1d = K(�eq � �p) (12)

with K =
4�mg

amaxT

So in the average sense, the part perceives the plate (un-
der bang-bang control) as a viscous 
uid 
owing forward at
the feed rate, i.e., given enough time, the part's speed will
approach that of the 
uid.

3.2 Sinusoidal acceleration

Trivially, a cosine-like as(t) integrates to a symmetric ve-
locity pro�le. The lowest bandwidth as(t) which integrates
to a time-asymmetric waveform is a cosine plus a scaled,
phase-shifted, double-frequency cosine:

as(t) = cos(t) + 2b cos(2t + �) (13)

�s(t) = sin(t) + b sin(2t+ �) (14)

where b and � are arbitrary2 . Equation 4 links �f1d to the
roots of �s(t) � �p. It can be shown that Equation 14

2Interestingly, as(t) = cos(t) + b cos(3t� �) integrates to a veloc-
ity pro�le with a symmetry of the type �s(t) = ��s(�� + t), yielding
zero feeding force for any b, �.

will have either 2 or 4 real roots. Let us label these in
ascending order in the [��; �) interval as ri, i = 1: : :4.
Without loss of generality, assume that as(r1) is positive.
So the length of �s(t)'s positive portion will be simply
the sum of the distances between consecutive root pairs,
i.e., t+ = (r2 � r1) + (r4 � r3). By expressing each root
as a function of b and � we can derive an expression for
�f1d using Equation 4. In particular, with � = �=2, i.e.,
�s(t) = sin(t) + b cos(2t) we derive:

�f1d = ��mg
2

�
c1 +

( �1 + 2

�
c2 b > 1

0 jbj < 1
+1� 2

�
c2 b < 1

(15)

c1 = sin�1
�
1�p1 + 8b2

4b

�

c2 = sin�1
�
1 +

p
1 + 8b2

4b

�

A good approximation for the jbj < 1 range is f1d�=b=3. To
derive an expression for �eq, we need to consider the roots of
�s(t)��eq, in particular we want t+ = T=2. Careful analysis
yields a surprisingly simple result:

�eq = b sin � ; jbj < 1=2 (16)

At jbj > 1=2, the number of roots of �s(t)��eq jumps from 2
to 4 causing �eq to decay, similar to saturation at z > 1=2 in
the bang-bang case. In particular, for � = �=2, we obtain:

�eq =

�
b jbj < 1=2
1

4b
jbj�1=2 (17)

At b = 1=2 and � = �=2, i.e., �s(t) = sin(t) + cos(2t)=2, the
feed rate is maximal3 . �f1d and �eq versus b, with � = �=2,
is plotted in Figure 6.
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Figure 6: �f1d and �eq plotted against parameter b, for
�s(t) = sin(t) + b cos(2t). Notice that these quantities are
maximal at b = 1, and b = 1=2, respectively.

Consider the more general expressions for the �eq-optimal
acceleration and velocity pro�les:

as;opt(t) =
amax



[cos(!t)� 2b sin(2!t)] (18)

�s(t) =
amax



[sin!t+ b cos(2!t)] (19)

3Equation 17 curiously implies that the \cousin" function cos(t)+
b sin(2t) (� = ��) yields zero feed rate, for any choice of b.
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With ! = 2�=T . The constant 
 is the maximum absolute
value of cos(t) + 2b sin(2t). It normalizes as;opt(t) so amax

becomes the actual maximum acceleration. Its value is given
by:


 =
(3 + c1)

p
c1 + 64b2 � 1

32
p
2

c1 =
p
1 + 128b2

At b = 1=2, 
�=1:76. The derived maximum, minimum,
and equilibrium levels for this function are as follows:

�min = �amaxT
3

4�


�max = amaxT
3

8�


�eq = amaxT
1

4�

(20)

Yielding �1 = :0452 and �2 = 1=3. Interestingly, the
contraction in harmonic content a�orded by the sinusoidal
drive results in no penalty for �2 and a small reduction in
�1, relative to the bang-bang method.

3.2.1 Dynamic simulation

Dynamic simulation was used to visualize part motion un-
der sinusoidal acceleration (similar results for the bang-bang
case can be found in [13]). Part motion is obtained through
numerical integration of the instantaneous frictional forces
corresponding to a �s(t) = sin(t) + b sin(2t + �) velocity
pro�le. In Figure 7, the part speed vs. time is shown for
various combinations of b and �. The thickness of each curve
is related to the variability in part speed during each cycle.
As apparent, part speed approaches �eq as time advances.
Figures 8(a,b) illustrate this phenomenon at a much smaller
(per-cycle) scale. Namely, part speed becomes, at equilib-
rium, a triangular waveform of positive (resp. negative)
derivative when �p < �s(t) (resp. �p < �s(t)).
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Figure 7: Dynamic simulation of part motion: under �s(t) =
sin(t) + b sin(2t + �), the part's velocity is plotted against
time for (b; �) = f( 1

2
; �
2
); (1; �

2
); ( 1

2
; �
4
)g, corresponding to

the top, middle, and lower curves. Each curve shows the
part accelerating from zero velocity to the predicted feed
rates ( 1

2
; 1
3
; 1
4
). The curves' \thickness" reveal the change in

part speed per cycle.
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Figure 8: The part's speed (solid line) shown superimposed
on the velocity pro�le (dashed line), for (b; �) = ( 1

2
; �
2
), at

the equilibrium level �eq = 1

2
. Top: part speed variability

is small compared to �max. Bottom: part acceleration/de-
acceleration visible at a smaller scale.

4 Hardware Experiments

A prototype of the parts feeder built out of inexpensive parts
is shown in Figure 9. A thin slab of lightweight, smooth,
kitchen-top material is used as the plate. Four motors are
attached to the plate (one per side) by springy brass shafts,
forming a combined suspension/actuation mechanism. Each
motor is a voice coil removed from old hard disks. The
motors can command horizontal plate vibrations along its
3 dof's { this feature is used in our work on parallel part
manipulation [10]. To achieve 1d vibrations, two opposing
motors are turned o�, while the other two opposing ones are
operated in tandem, at 180 degrees phase shift. Figure 10
shows snapshots of a part feeding experiment { the bang-
bang acceleration pro�le is used with z = 1=3 and 1=T =
30 Hz. Parts propel forward at about 1 cm/s.

5 Conclusion

With respect to existing hop-based vibratory feeders, our
design is mechanically simpler, reduces part wear caused by
repeated collisions, and increases part motion controllabil-
ity. Guidelines based on simplicity, bandwidth, and feed rate
performance have been de�ned in designing a \good" con-
trol waveform. The sinusoidal method, despite its minimal
bandwidth, results in a small performance loss with respect
to the bang-bang control method. A sinusoidal waveform
is more likely to be used in practice since it allows us to
pre-compensate for both the ampli�er's and the motor's fre-
quency response. Quantitative experiments with the feeder's
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Figure 9: Our feeder's prototype: the plate is a thin square
slab of kitchen-top material. Four disk drive motors are
attached to the plate through thin brass shafts. Two coins
are shown on the plate.

prototype are the next step on this work. In particular, feed
rates have to be measured and matched with the analytical
results as waveform parameters (e.g., phase and amplitude
relationship in sinusoidal case) are varied.
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