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Abstract|

The Impulse dynamic simulator is used to generate a wide

range of synthetic measurements for both a MEMs- and a

longitudinally-vibrating parts feeders. Impulse allows the de-

vices' mechanics to be modeled in detail and for results to be

generated both accurately and e�ciently. Obtaining such re-

sults experimentally is impractical given the number of moving

parts, small dimensions, and/or complexity of part feeder in-

teractions. Output simulation data are used to (i) debug exist-

ing problems; (ii) measure feeding performance and compare it

with analytical/experimental results; (iii) optimize the design

for higher feed rates; and (iv) generate simple dynamic models

of their behavior.

I. Introduction

The Impulse dynamic simulator [1] is used to generate a
wide range of synthetic measurements for two novel parts
feeder designs. The �rst design is a MEMs-based actuator
array called the M-Chip [2] with a surface area of a few
square-cm; the second design is based on the vibratory
feeder recently proposed in [3], intended for feeding at the
\macroscopic" scale. Both devices are designed to convey
a part resting on their surface along a straight line, and
with a constant velocity called the feed rate. For the M-
Chip, the part's forward motion is caused by horizontally-
biased impacts against hundreds of oscillating microactu-
ators. In the vibrations-based feeder, forward conveying
is the result of frictional interactions between the part and
a supporting longitudinally-vibrating plate.
The design of part feeders has remained a \black art"

due to di�culties in the analysis and measurement of part-
feeder interactions [7]. Experimental measurements of the
device's \dynamical state" during a typical feeding run,
e.g., part position/velocity, the location/magnitude of col-
lisions, frictional forces, etc., though key in the optimiza-
tion of a given design can be very di�cult to obtain. This
is particularly true for a device such as the M-Chip with
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its reduced dimensions and large number of moving parts.
The goal of this work is to use dynamic simulation to
generate dynamic measurements during a \virtual run"
of either feeder, leading to insights on the quality and/or
e�ciency of their design. In particular, such simulation
output could help with the following:

1. Design Veri�cation: does the device perform as ex-
pected in both qualitative and quantitative terms?

2. Debugging: are there unpredicted glitches in the orig-
inal design which decrease (or totally shut o�) per-
formance? Any clever �xes?

3. Optimization: Are there changes in the design which
could lead to better performance?

4. Dynamic Characterization: can the complex interac-
tions between part and moving (vibrating) substruc-
ture be reduced to a simple bulk dynamic model?

Dynamic simulation is ideal in addressing the above
questions since it eliminates the need for experimental
measurements; using it for the purposes of design is a
fairly novel idea [4], mostly due to the numerical instabil-
ity and ine�ciency of existing simulation packages. The
Impulse Tool is particularly convenient since it is the �rst
remarkably e�cient and accurate package in dealing with
a large number of moving/interacting rigid bodies. Its
impact-based collision model has been shown to work well
on both vertex- [5] and face- (sliding) [6] types of part-
surface interaction.
The remainder of this paper is organized as follows:

Section II describes the principle of operation and sim-
ulation experiments performed with the M-Chip. These
involve identifying design problems, trying new micro-
actuator shapes, and dynamically characterizing the de-
vice. Section III describes the vibrations-based parts
feeder, presents some performance results derived in [3],
comparing these to results obtained from dynamic simu-
lations with Impulse.
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II. A MEMs Parts Feeder

A picture of the fabricated MEMs parts feeder { the \M-
Chip" [2] { is shown in Figure 1(a). The device contains an
array of approx. 10,000micro-actuators, called resonators,
tiled over a few square-cm of silicon substrate. All res-
onators are oriented towards a single direction and tiled
in interleaved fashion, as shown by the electron micro-
graph in Figure 1(b). Each resonator is a rectangular slab
of silicon supported a few �mabove the substrate by a tor-
sional rod. A metallic electrode installed underneath half
of the resonator's surface is used for torsional actuation,
as shown in Figure 2(a). Typically, resonators are driven
at a few kHz. One end of the resonator is equipped with a
ridge of several vertical poles. This asymmetry in design
generates anisotropic impact forces on a small part placed
over the array, causing it to feed with constant velocity
towards a unique direction [2].

(a) (b)

Fig. 1. (a) A photo of B�ohringer's hand holding his M-
Chip, containing approx. 10,000 resonators. (b) Electron
micrograph of a portion of the array showing the interleaved
tiling of resonators.

A. Device Modeling

In modeling the M-Chip with Impulse, the focus was to
preserve original nominal parameters and dimensions as
closely as possible. We used the original resonator mass,
geometry, and oscillation frequency as given to us by the
designers. We started out by creating a 280x180x5 �m
geometric model for the resonator, shown in Figure 2(a).
To simplify collision detection, we modeled the set of poles
installed on one extreme of the resonator collectively as
a single 5 �-high ridge. The resonator body1 was mod-
eled as a rectangular slab. Electrostatic actuation was
replaced by (i) modeling the supporting rods as a single
spring-loaded revolute joint, and by (ii) a torque control-
law acting at that joint. The joint's spring and damping
constants were chosen according to the torsional elastic-
ity of silicon. The torque wave applied to the joint is a
5 kHz positive square wave, whose amplitude was chosen
to produce positive oscillations of approx. 5o (0.08 rad).
Figure 2(b) shows the driving torque law superimposed

1Fabricated resonators posses a grating of holes, but these have
no e�ect on collisions with the part.

on �, the free oscillation angle, which is roughly a 5 kHz
positive sinewave.
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Fig. 2. (a) The resonator is modeled as a rectangular slab
with a ridge at one end. The supporting rods are modeled
as a spring-loaded, damped revolute joint. The electrostatic
actuation (provided by the electrode) is replaced by a torque
control law at the joint. (b) The torque applied to the res-
onator is a 5 kHz positive square wave. The torque (not
shown in scale) is superimposed with �(t), the resonator an-
gle.

The next modeling step was to assemble the resonators
in interleaved fashion, as in Figure 1(b). Though the
actual device contains over 10,000 resonators, simulating
this manymoving parts is impractical with Impulse. How-
ever, by considering an 8x5 sub-array of resonators, and
a rectangular array-aligned part with silicon's density, we
are can remain physically consistent with the full size ex-
periment. The �nal Impulse model shown as a 3D render-
ing is depicted in Figure 3. Notice that the part's footprint
covers approx. 10 resonators, while in actuality it would
cover 100s.

Fig. 3. 3D rendering of the complete model showing a
1.15x0.4x0.25 �m, 550 �g part resting at its initial position
over an 8x5 resonator array.

The Impulse simulator resolves collisions between rigid
bodies based on a sophisticated discrete-event impulse
model. Two global parameters need to be set: the friction
coe�cient �, and the restitution coe�cient �. These were
set to the physically reasonable (and numerically-stable)
values of 1.0 and 0.5, respectively. Experiments to eval-
uate how these parameters a�ect array performance have
not yet been tried, though some theoretical results have
been derived for vibratory feeders [7].



B. Design Optimization

The �rst simulated experiment performed with the array
was to drive the resonators and simply drop the part on
it. Figure 3 shows the part at its starting position for this
experiment.

1) Part jamming: Once dropped on the array, the
part is propelled forward at a constant speed of about
0.8 mm/sec, a value in close match with experimental re-
sults performed by the designers. A problem quickly dis-
covered was that the part would jam (i.e., stop its forward
motion) as soon as it encountered a new row of resonators,
as shown in Figure 4(a). Jamming occurs since the part's
vertical hopping is not high enough to allow it to skip over
the ridges of the next row of resonators. As the part is
driven up, the next row of resonators is also doing so, and
the part bounces back.
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Fig. 4. The jamming problem: in (a) the part is shown
unable to skip over the ridges of the encountered row of
resonators. In (b) the row-strobing method is illustrated.
Consecutive rows in the array are labeled from 1-8 in the di-
rection of the part'smotion (only the �rst 5 rows are shown).
The process involves selectively turning o� consecutive rows
of resonators for a few oscillation cycles, in the direction
opposite to the part's motion.

The �rst attempted solution to eliminate jamming was
to drive consecutive resonator rows at di�erent phase o�-
sets, so that ridges in the blocking row would be going
down while other resonators would be driving the part
up. This idea did not work since the out-of-phase impacts
occurring under the part cause lower part hops which in
turn aggravate the problem of skipping a set of blocking
ridges. A solution which proved successful is called row-
strobing, illustrated in Figure 4(b). The idea is to propa-
gate a wave of o� resonators in the direction opposite to
the part's motion. Label all rows from 1 to N along the
array's feeding direction. The �rst row to be turned o�
is row N. That row is left in the o� state during 
 com-
plete oscillation cycles, at which point it is turned back
on. The process continues with row N � 1 being o� for

 cycles, and so on until row 1 is reached. At this point,
the wave wraps around and the process restarts at row N.
Since part position is not known, any resonator row is po-
tentially causing jamming, thus the need for a sweeping
wave (this could be alleviated with sensing). To ensure

that the jamming row is located faster, the wave is prop-
agated against the feeding direction so the relative speed
between the wave and the part is higher. Choosing too
small a 
 may not give the part enough time to be pushed
over the blocking ridges, however the average jam clearing
time is proportional to 
. We found that 
 = 50 oscilla-
tion cycles gave the best results. In the case of a very long
array (as in the real device) the blocking row can be found
faster by propagating several o� wavefronts separated by
a constant number � of resonator rows. If � is too small,
too many o� rows will lie under the part at any given
time, reducing the feed rate considerably. In our case we
set � = 4 rows, i.e., in our 8x5 array there will be, at any
given time, two o� rows moving in the �x direction. Since
the part is about 4 resonators long, the part receives 1=4
less impacts at any given time.
As shown in Figure 5, the row-strobing method results

in a motion of the part characterized by periods of con-
stant forward feed rate (of approx. 0.8 mm/sec) inter-
leaved with short jamming phases, where the feed rate is
null.
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Fig. 5. Plot of the part's forward displacement as a function
of time. As shown, the part's motion alternates between
constant forward motion and short periods of jamming.

2) Double bouncing: The simulator treats collisions
as discrete events; each collision is followed by a calcu-
lation which computes an impulse force applied at the
collision point and in opposite direction to the bodies col-
liding. We looked at the stream of collisions between the
part and the resonator located on the 2nd row and 3rd
column of the array during the �rst non-jamming period
of Figure 5, namely, for 0:05 < t < 0:2 sec. For every
such collision we recorded the associated (i) resonator an-
gle �, (ii) angular speed _�, and (iii) Fx, the x component
(i.e., along the feeding direction) of the impulse force cal-
culated by the simulator. Figure 6 shows a scatter plot
of the (�; _�) pairs gathered. These pairs cluster into two
separate clouds pointed to by the arrow labeled loaded. As
expected, one of the clouds (signaled by the free arrow) fol-
lows quite closely the � vs. _� relation for the resonator's
free oscillation { this is an ellipse since the free oscilla-
tion is roughly sinusoidal. However, the second cluster of



points is anomalous.
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Fig. 6. Scatter plot correlating resonator angle � (x-axis)
w/ the angular speed _� (y axis). The free arrow shows this
relationship for free oscillation { roughly an ellipsoid. The
loaded arrow points to (�; _�) pairs generated by individual
collisions when the part is over a chosen resonator. Some
of the loaded points follow the free oscillation curve, while
others lie in an anomalous region of low values of _�.

What phenomenon could be generating the lower cloud
of points? That cluster indicates that many collisions are
occurring at an angle � with a much slower _� than that
of free oscillations. We found that these collisions were
being caused by secondary bounces of the resonator on
the part occurring shortly after a normal 5 kHz bounce.
To show that, we correlated �, _�, and Fx with the colli-
sion's inter-arrival time, which measures the time elapsed
between the current collision and the one last occurring in
the simulation. This is shown in Figure 7(a,b,c). Though
one expects collisions with a single resonator to be spaced
by 1=5 kHz = 0:2 ms (i.e., the part receives one impact
per resonator cycle), the graphs show that collisions clus-
ter over :02, :18, and :2 ms interarrivals. The collisions
occurring at :02 ms after the normal :2 ms ones are dou-
ble bounces; after the �rst collision, the ridge is still being
driven upward by the torque control law, causing the res-
onator to ricochet one or more times against the part.
After the double bounce, the resonator will tend to re-
synchronize with the driving square wave, so that the next
collision occurs within :18 sec: 0:18 + 0:02 = 0:2 ms. The
(a) plot shows that the :02 collisions occur at lower values
of � than the normal :2 ms ones. This indicates that a
downward motion of the part favors the double bounces.
The (b) plot shows that double bounces occur at much
slower _� than normal bounces, implying that the former
transmit less impact energy to the part than the latter.
The (c) plot shows that most double bounces are asso-
ciated with an impulse pointing in the negative feeding
direction, i.e., they act as brakes!
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Fig. 7. Graphs (a,b,c) show �, _�, and Fx (plotted along y)
clustering over three speci�c collision inter-arrivals (plotted
along x): .02,.18, and .2 ms. Graphs (d,e,f) show the re-
clustering of the same quantities, this time solely over 0:2 ms
inter-arrivals, when a shorter duty cycle is used.

Double bounces were eliminated by reducing the duty
cycle of the square wave torque driving the resonators from
50% to 36%. This shuts o� the driving torque law just
before a double bounce is likely to occur (i.e., :02 ms after
the average time normal collisions occur). The results
of this change are shown in Figure 7(d,e,f), which side
by side with the previous plots illustrate how the cloud
of :02 and :18 ms collisions coalesce into a single cluster
over 0:2 ms inter-arrivals. These graphs also show that
the new impulses occur in average at a higher value of
_�, i.e., they transfer more momentum at every collision.
This simple reduction in duty cycle increases the feed rate
from 0:8 to 1:0 mm/sec, i.e., a 30% improvement. As an
interesting note, the points in Figure 7(f) are split evenly
in the positive and negative Fx range, indicating that the
total force applied to the part over the period considered
is zero { the part is feeding forward at a constant speed.

3) Optimizing the resonator's shape: The feed rate
� was measured against three parameters: (i) the part's
mass M , (ii) the ridge's distance L from the resonator's
midpoint, and (iii) the ridge height H. The last two pa-
rameters are illustrated in Figure 8.
The plots in Figure 9 show the results of these exper-

iments. Plots (a,b,c) show, respectively, results from the
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Fig. 8. The shape of the resonator is parametrized according
to ridge distance L, and ridge height H.

mass, ridge distance, and ridge height experiments. The
x-axis labels the parameter being varied; the feed rate is
plotted along y. The collision angle �, angular velocity _�,
and the height of the part's center of mass PartZ (aver-
aged over an entire feeding task) are superimposed over
the feed rate; their numeric values have been omitted for
the sake of clarity.
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Fig. 9. Results of the performance studies. Each graph's
y-axis presents simultaneously �, �, _�, and PartZ (averaged
over a feeding experiment) plotted against the parameter
being varied. For (a), (b), and (c), the parameters are,
respectively, M , L, and H. The y-axis is labeled in feed
rate units, numeric values for the other quantities have been
omitted for simplicity.

Figure 9(a)'s optimal � atM = 55 �g is reached since (i)
� is monotonically decreasing (as it gets heavier, the part
\sinks" into the array, tracking PartZ) and (ii) _� tends to
level o� (both these e�ects contribute to less momentum

transferred on the +x direction).
For Figure 9(b), � increases with L by a simple lever-

like e�ect (ridge gets closer to revolute joint). This e�ect
explains a monotonically decreasing PartZ, since as the
ridge gets closer to the center, it transfers less momentum
at every impact. These two opposing trends cause the _�
curve to go through a maximumat approx. L = �125 �m,
which in turn causes � to reach its highest value shortly
after _�'s maximum.
The �rst obvious fact in Figure 9(c) is that PartZ moves

linearly up with an increase in the ridge height. For the
lower region of H values, � remains constant while _� in-
creases monotonically, and so does �. At H = 16 �m
both � and _� decrease sharply, also decreasing �. At
present we haven't been able to justify what are the geo-
metric/dynamic reasons for this e�ect.

C. Dynamic Characterization

1) Array ballistics: The plot in Figure 9(a) shows
a linear relationship between M and the PartZ, i.e., the
array acts as a linear spring over which the part bounces.
This linear relationship yields a spring constant k =
294 kdyn/cm. For M = 55 �g, this mass-spring system
resonates at 370 Hz. We computed the Discrete Fourier
Transform (DFT) of PartZ for 0:05 < t < 0:2 sec, and
found two major frequency components: one at 360 and
one at 5 kHz, corresponding, respectively, to the spring-
like oscillations, and the normal resonator impacts. The
DFT also revealed that the 360 Hz component was 5 times
larger than the 5 kHz one, suggesting that too much en-
ergy is being spent in the upward vibrational mode (more
on this below).

2) Friction modeling: To understand the type of
friction experienced by the part as it \slides" on the ar-
ray, we performed the following experiment. A 55 �g part
is dropped on the array as in Figure 3. Enough time is
waited so that the part achieves its equilibrium feed rate
of 1.1 mm/sec. At that point (t = 0:05 sec), an exter-
nal force Fext in the �x direction is applied to the part's
center of mass. The experiment consists in observing the
resulting feed rate �0 for di�erent values of Fext. Figure 10
shows the part's x position vs. time, before and after Fext
is applied { this graph reveals a linear relationship be-
tween the new feed rate and Fext, i.e., the array acts as a
viscous medium, akin to a 
uid! This e�ect motivated us
to look at this problem in depth, but for lack of space we
direct the reader to another publication [3]. In a nutshell,
it is caused by the velocity-independent coulomb frictional
force combined with the temporally asymmetric stream of
part-resonator impacts.
The viscous model prescribes a frictional force pro-

portional to (i) the part's weight, and (ii) the di�er-
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velocity �0 linearly related to Fext, as in a viscous 
uid.

ence between part velocity and normal feed rate, i.e.,
Ffric = �Mg(� 0 � �), where � is the the coe�cient of
static friction. This relation was used to compute val-
ues for � for various externally applied forces, noting that
at equilibrium Ffric = Fext. The results are tabulated in
Table I. As shown, the model assumption explain the data
quite well, with � nearly independent of Fext and approx.
equal to Impulse's global coe�cient of friction.

Fext �0 �

(dyn) (mm/sec)
0 1.1 N/A

.025 .6 1.16
.05 .06 .99
.06 0 0.93
.075 -.36 1.02
.1 -.88 .99

DOF Eavg Stdev
(10�5 dyn cm)

LinX 1.78 .71
LinY .1 .15
LinZ 1.38 1.86
AngX .65 .86
AngY .63 1.28
AngZ .0081 .045
PotZ 50.1 14.3

Table I
Left: Friction coefficient (�) computed using a vis-
cous friction model, for various externally applied
forces. Right: Energies and standard deviations
present in each of the part's independent DOF's, over
0:05< t < 0:2 sec.

3) Energetics of part motion: We measured the av-
erage energy present in each of the part's degrees of free-
dom: three translational kinetic energies along X, Y, and
Z, denoted LinX, LinY, and LinZ; three angular kinetic en-
ergies about the X, Y, and Z axes, denoted AngX, AngY,
and AngZ; the part's potential energy PotZ (with g =
981 cm/sec2) with respect to its resting height. The val-
ues for these energies averaged over an 0:05 < t < 0:2 sec
(and the corresponding standard deviations) are shown in
Table I.
The above data shows that this type of array consumes

a disproportionate amount of energy to keep the part at an

average potential energy, rather than for forward motion.
This suggests that an array with longitudinal rather than
vertical actuators would be more energy e�cient (e.g., see
[8] for a novel type of design based on thermally-actuated
cilia). Notice also that a small portion of the energy is
equipartitioned between AngX and AngY, implying that
part motion along these DOF's is pretty much chaotic.
The low value of AngZ shows that the array (as expected)
is unable to accelerate the part about the Z axis.

4) An abstract model: From the above studies, the
following simpli�ed model of part/array dynamics can be
derived: the array acts as a springy conveyor belt over
which the part hops. The average part height (how much
it sinks into the array), denoted d, is a function of the
part's mass M and the supporting spring's sti�ness k.
Friction with the conveyor belt is viscous with coe�cient
�. The belt feeds at a rate �, also a function of d. This
model is depicted in Figure 11.

µ

κ

M

hops

d
(d)ν

Fig. 11. The array acts as a spring-loaded conveyor belt over
which the part hops. The friction is viscous with coe�. �.
The average part height d is a function of the part's mass
M and the supporting spring's sti�ness k. The belt's feed
rate � is a function of d.

III. A Longitudinally-Vibrating Parts Feeder

The parts feeder design originally proposed in [3] and il-
lustrated in Figure 12 is considered next. It consists of
a 
at plate actuated by a linear motor. The motor is as-
sumed to convert an input voltage into an acceleration of
the plate. A small part is placed on the plate's surface.
Coulomb friction is assumed to be the only force acting on
the part. The plate's motion (see below) is assumed to be
such that the part is always sliding over it (no sticking).
The problem of contact point indeterminacy [9] between
the plate and the part's footprint is avoided by treating
the latter as a point mass.
The feeders' principle of operation is based on one in-

teresting feature of the Coulomb frictional force: its mag-
nitude is independent of the part's velocity relative to
the plate. Namely, the plate's oscillatory motion is made
to spends more time moving forward (positive velocity)
than backward (negative velocity). Imagine a part ini-
tially at rest on the plate's surface. During one such
time-asymmetric vibration, the part will experience for-
ward force of magnitude �mg for a longer time than it



will experience the same force on the opposite direction,
resulting in net a forward momentum added to the part
after the cycle.

motor

x

z

y

feed

part plate

Fig. 12. Model of the longitudinally vibrating parts feeder.
A linear motor commands in-plane, time-asymmetric oscil-
lations of the plate, which cause a part resting on its surface
to move forward at a constant velocity called the feed rate.

A. Plate Motion

One cycle of the motor's input voltage is shown in Fig-
ure 13(a). It causes the plate to accelerate in sequence
at famax; 0;�amaxg m=s2. Shown in Figure 13(b) is the
plate's velocity pro�le, consisting of a positive (forward
displacement) semicycle of length F followed by a nega-
tive (backward displacement) semicycle of period B. No-
tice that F > B, as required for forward feeding. The
integral of this curve is the plate's displacement, shown in
Figure 13(c).

The positive semicycle is an isosceles trapezoid with
parallel bottom and top sides of lengths F , and P , respec-
tively. The trapezoid's height is the plate's maximum for-
ward velocity, �max. The negative semicycle is an isosceles
triangle of base B and height j�minj, the plate's maximum
backward velocity. The period T is equal to F + B. We
call d = F=T the duty cycle of the velocity pro�le. Con-
straining the acceleration waveform to have a null average
value derive [3]:

P = T
p
2d� 1 (1)

B. Part Dynamics

The part is idealized to a point of mass m. The plate's vi-
bratory motion gives rise to an instantaneous sliding fric-
tional force ffric acting on the part. The Coulomb friction
model states that ffric is (i) in the direction of the plate's
motion relative to the part, and (ii) of magnitude �mg,
where g = 981 cm=s2 is the acceleration of gravity and �
is the coe�cient of friction of the plate/part interface.
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Fig. 13. Details of plate motion. (a), (b), and (c) show
respectively one cycle of the plate's acceleration, velocity,
and position.

1) Quasi-static analysis: The following quasi-static
assumption is made: the part's maximumchange in veloc-
ity within one vibration cycle is assumed negligible com-
pared to the plate's maximum velocity, i.e.:

�gT << �max (2)

A given part velocity �part splits the velocity pro�le
�plate(t) into two portions: (i) �plate > �part, (ii) �plate <
�part. This can be visualized by superimposing �part (a
horizontal line according to quasi-statics) over the �plate
graph, as illustrated in Figure 14. Denote phase (i)'s dura-
tion by tfwd; phase (ii)'s duration is then simply T � tfwd.
During (i), ffric = �mg, and during (ii) ffric = ��mg.
The part will experience a net positive (resp. negative)
change in momentum over the entire cycle if tfwd > T=2
(resp. tfwd < T=2), i.e., the �part horizontal line slides up
(resp. down) over the velocity pro�le, Figure 14, resulting
in a narrower (resp. wider) cross-section of the positive
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Fig. 14. Frictional forces acting on the part. The top dia-
gram shows the plate's velocity pro�le superimposed on the
part's velocity (assumed constant during the cycle). The
bottom graph shows that while �plate > �part (which lasts
for tfwd), the frictional force ffric = �mg; during the rest of
the cycle �plate < �part and therefore ffric = ��mg. In the
cycle shown, the part will de-accelerate since tfwd < T=2.

trapezoid. This will cause the part to stop accelerating at
an equilibrium velocity �eq such that tfwd = T=2.
If P > T=2, the part will accelerate to �max and reach

a saturation point after which it can no longer accelerate,
yielding an expression for the maximum duty cycle dsat
for which �eq is smaller than �max [3]:

dsat =
5

8
= 0:625

For d < dsat, the following expression yields a value for
�eq:

�eq =
amaxT

4
(2d� 1) (3)

Notice that for d = 0:5, �eq = 0, i.e., as expected the
part doesn't feed since the velocity pro�le is perfectly sym-
metric, with P = 0, and tfwd = T=2. An \optimal" value
dopt for the duty cycle is derived [3] such that it places �eq
midrange between 0 (no feeding velocity) and �max (the
saturation point):

dopt = 2�
p
2 �= 0:586

So the �nal expression for the equilibrium velocity over
the entire d range (0.5 to 1.0) becomes:

�eq =

�
amaxT

4
(2d� 1) 0 < d < 5=8

amaxT
2

(d�p
2d� 1) 5=8 < d < 1

Notice that for d = 5=8, �eq is maximal and equals
amaxT=16. The graph for this expression in terms of the
duty cycle is shown in Figure 15(a), for amax = T = 1.
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Fig. 15. The part's feed rate �eq plotted against the duty
cycle d, assuming amax = T = 1. (a) Quasi-static assump-
tion (solid line): �eq is linear up to d = 0:625 after which it
tracks �max. (b) Non-quasi-static feed (dotted line): Non-
quasi-static saturation occurs before the quasi-static one;
from that point the non-quasi-static feed rate is strictly less
than the quasi-static one.

At the quasi-static equilibrium feeding velocity, the to-
tal force applied to the part per cycle is zero. If an ex-
ternal force fext is applied to the part in the X direction,
the latter will seek a new equilibrium velocity �0 such that
ffric = fext. In particular [3]:

fext = �K(�0 � �eq) with:

K =
4�mg

amaxT
(4)

The above equation states that around a neighborhood
of �eq the plate's frictional force (averaged over su�ciently
many cycles) is proportional to the part's velocity devia-
tion from the feed rate, i.e., the part behaves as if it were
immersed in a viscous 
uid moving forward at the feed
rate (where K is the constant of viscosity).

2) Non-quasi-static analysis: When Equation 2
does not hold, the velocity of the part within each vi-
bration cycle can be expected to vary appreciably with
respect to the plate's. As stated above, the part will
accelerate (or de-accelerate) at a constant rate equal to
ffric=m, i.e., �g.
Surprisingly, the expression for the feed rate in the

non-quasi-static case prior to saturation is identical is in-
dentical to the result derived the quasi-static assumption
(Equation 3), as shown in [3].



In the non-quasi-static case, the onset of saturation oc-
curs when the part's acceleration within the positive semi-
cycle takes �part to the upper right corner of that semi-
cycle, as shown in Figure 16. The particular duty cycle
dsat;nqs above which this occurs is given by:

dsat;nqs =
5a2max + �g(�g � 2amax)

8a2max

(5)

Notice that if �g is small compared to amax (another
phrasing of the quasi-static assumption, Equation 2), then
dsat;nqs reduces to 5=8, which matches the saturation duty
cycle for the quasi-static case.

b

maxν

abl h

t

Fig. 16. The onset of saturation in the non-quasi-static case.
This occurs when part acceleration in the positive semicycle
takes part velocity to the upper right corner of that semicy-
cle.

Equation 5 can be solved for the ratio amax=�g to give
the following alternative characterization of the onset of
saturation:

amax

�g
>

1 + 2
p
2d� 1

5� 8d
(6)

If the inequality in Equation 6 is strictly satis�ed, then
the situation becomes as depicted in Figure 17, namely,
part acceleration within the positive semicycle hits the
�max hard limit before the end of the plateau phase, and
the part follows the plate kinematically for a period of L
seconds, as shown in Figure 17. An expression has been
derived for the feed rate above saturation for the non-
quasi-static case [3]:

�sat =
amaxT

2

�
amax � �g

amax + �g

�2
(d�p

2d� 1) (7)

d > dsat;nqs

A plot of the equilibrium velocity predicted by both
models (quasi- and non-quasi-static) is presented in Fig-
ure 15(b). This Figure shows that beyond the saturation
point (where the curves intersect) �sat is strictly less than
�eq, meaning that non-quasi-static behavior reduces the

max

ha

t a at  + T

+   gµ

ν

c t

L

-   gµ

t b

h

Fig. 17. The part's velocity pro�le beyond the non-quasi-
static saturation point: the part accelerates rapidly enough
to hit the �max barrier before the end of the plateau phase.

feed rate beyond the saturation point dsat;nqs. Further-
more, the saturation point itself is strictly less than the
quasi-static one, so the peak feed rate predicted by the
quasi-static model is never reached.

C. Dynamic Simulation

As a tool for validating the analytical results derived in
the previous sections, we ran various rigid-body dynamic
simulations using the Impulse tool [1]. A rectangular part
1x1x0.1 cm and mass m = 0:1g was used though the ana-
lytical results were derived assuming the part was a point
mass. The vibrating plate was de�ned as a one link robot
with a single degree of freedom along the X axis. The
acceleration wave described earlier was implemented by
associating an Impulse control law to the plate. The sim-
ulation studies conducted involved measuring the equilib-
rium feed rates with respect to (i) the duty cycle, and (ii)
externally applied forces.

1) Choosing design parameters: A frequency of
50 Hz (T = :02 s)was chosen for the plate, correspond-
ing to the typical operating frequency of existing vibra-
tory bowl feeders [7]. The plate's oscillation amplitude
xmax was set at 1=4 cm. At d = 0:586, (for which �eq =
�max=2), Equation ?? prescribes amax

�= 15; 000cm=s2,
i.e., approx. 15g. At this level, and using � = 1:0, Equa-
tion 5 yields dsat;nqs �= 0:61, so at d = 0:586 we are well
in the non-saturating region.

2) �eq vs. d: Figure 18 shows a plot of the measured
equilibrium velocity with the above parameters for amax

set to 10, 15, and 20 103cm=s2. The data points are su-
perimposed with the analytical curves derived in previous
sections, showing good predictive behavior.
The pre-saturation values tend to be lower than the an-

alytical results, and this was due to an anomaly in the
numerical integration of Impulse, which is still being in-
vestigated. In particular, the simulator will occasionally
apply impulses to the part with a negative x component,
much higher than amax, showing that the package has
some numerical instability problems. When these anoma-
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Fig. 18. Simulation results for the part's equilibrium feed
rate for amax = f10;15;20g103cm=s2 (shown from top to
bottom).

lies are averaged out with the otherwise stable computa-
tions, they result in lower feed rates. The post-saturation
values follow closely the non-quasi-static results, tailing
o� to very small feed rates as d approaches unity.

3) �eq vs. fext: The design parameters chosen
above resulted in unstable computations for the experi-
ment in which an external force is applied to the velocity-
equilibrated part. Through trial and error it was deter-
mined that T = 0:01s, amax = 10000cm=s2, and � = 0:5
produced very stable results. Plugging these parameters
on Equation 4 yields a predicted value of 1:96 for K.
The simulations performed to estimate K consisted in

(i) dropping the part on the feeder for 1 second and then
applying a force in the -15,15 dyn range, and averaging
the resulting velocity for the two following seconds. A
total of 30 samples in that range were tried (spaced by

1 dyn each), and a linear relationship between fext and
�0 was measured, as shown in Figure 19. A least-squares
�t of the data was performed leading to the equation y =
�4:72+1:95x; the measuredK is the angular coe�cient in
this equation, 1:95 which matches within 1% the analytical
value computed above.
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Fig. 19. Plot of fext vs. �0, for values of fext ranging
from -15 to 15 dyn, and spaced by 1 dyn. the graph is
shown superimposed with the linear function�4:72+ 1:95x
obtained by a least squares �t of the data points.

IV. Conclusion

In this paper we show how dynamic simulation can be
used as an e�ective tool in the characterization an further
design optimization of two novel types of parts feeders.
Design �xes and improvements have been suggested for
the MEMs feeder which greatly improve its performance.
Simulation results found for the vibrations-based feeder
are in very good agreement with analytical results. We
have found in both cases that Impulse is an invaluable
tool in veri�cation, debugging, optimization, and dynamic
characterization of both feeders.
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