
The Simulation Library:

A Basis for Animation Programs

Version 2.0

Susan Hert Dan Reznik

Robotics Laboratory

University of Wisconsin{Madison

Contents

1 Introduction 4
1.1 Where Is the Library : 4
1.2 Compiling with the Simulation Library : 5
1.3 Overview of the Library : 5

1.3.1 Some Notes on Syntax and Types : 5
1.3.2 The Library Primitives : 5
1.3.3 Preview of the Library Modules : 6

2 The Basics 7
2.1 The User Interface Loop and Graphics Routines : 7

2.1.1 A Programming Example { example1.1.c : 7
2.1.2 Syntactic Notes : 9
2.1.3 Initializing the Simulation : 9
2.1.4 The Simulation Menu : 10
2.1.5 The Go Button : 11
2.1.6 The User Interface Loop (UI-loop) : 12

2.2 Getting Input from the Mouse and Keyboard : 13
2.2.1 A Programming Example { example1.2.c : 13
2.2.2 The Status Bar : 17
2.2.3 The Keyboard Callback : 17
2.2.4 The Mouse Click Callback : 17
2.2.5 The Mouse Motion Callback : 19
2.2.6 Intersecting the Canvas Polygon : 19

2.3 Customizing the User Interface : 19
2.3.1 A Programming Example { example1.3.c : 19
2.3.2 The Bottom Row : 24
2.3.3 Labels : 24
2.3.4 Push Buttons : 24
2.3.5 Menu Buttons : 24
2.3.6 Toggle Buttons : 25
2.3.7 Dialog Buttons : 25

2.4 Mouse Editing, Distances and Drawing Text : 26
2.4.1 A Programming Example { example1.4.c : 26

1

2

2.4.2 Changing Primitives with the Mouse : 29
2.4.3 Moving Toward a Point : 30
2.4.4 Computing Distances : 30
2.4.5 Drawing Text : 31

3 Adding Obstacles to the Environment 31
3.1 Activating the Obstacle Database : 31
3.2 Interactive Creation and Editing of the Obstacle Database : 31

3.2.1 Adding Obstacles : 31
3.2.2 Editing Obstacles : 32
3.2.3 Deleting Obstacles : 33
3.2.4 File Operations : 33

3.3 A Programming Example | obst.c : 33
3.4 Manipulating the ODB's contents : 35

4 Motion Planning Algorithms 36
4.1 Bug2 and Visbug21 : 36
4.2 A Programming Example | bug.c : 37

5 Robot Modeling 40
5.1 The Current Transformation Matrix and Modeling Transformation Stack : : : : : : : : : : : 40
5.2 A Programming Example | car.c : 40

6 Frames 42
6.1 Frames and Fixtures : 42
6.2 A Programming Example { arm.c : 43

7 The Structures, Constants, and Macros in the Library 46

8 A Browse Through the Library 49
8.1 Utility Functions : 49
8.2 Point and Vector Functions : 51
8.3 Segment Functions : 55
8.4 Polygon and Polyline Functions : 57
8.5 SL Shape Functions : 59
8.6 Canvas Polygon Functions : 60

8.6.1 Canvas Polygon Intersection Testing Functions : 60
8.6.2 Canvas Polygon Intersection Calculation Functions : 61

8.7 Containment Functions : 61
8.8 Translation Functions : 63
8.9 Intersection Functions : 64

8.9.1 Intersection Checking Functions : 64
8.9.2 Intersection Calculation Functions : 66

8.10 Distance Functions : 68
8.11 Tangent Functions : 71
8.12 User Interface Functions : 72
8.13 Graphics Functions : 75

8.13.1 Colors and Drawing Thickness : 75
8.13.2 The Primitive Drawing Functions : 76
8.13.3 Drawing text and other things : 77

8.14 Mouse Editing Functions : 77
8.14.1 Inputting Primitives with the Mouse : 77

3

8.14.2 Moving Primitives with the Mouse : 79
8.14.3 Changing Vertices and Endpoints with the Mouse : 80
8.14.4 Rotating with the Mouse : 81
8.14.5 Scaling with the Mouse : 82

8.15 Obstacle Database Functions : 83
8.16 Bug Algorithm Functions : 85
8.17 Homogeneous Matrix Functions (SL Transf Functions) : 87
8.18 Modeling Functions : 90
8.19 SL Frame Functions : 93
8.20 SL List Functions : 97

References 102

A car.c code 103

Index 109

4

1 Introduction

The Simulation Library provides a foundation for the design of motion simulation programs. The library
is written using ANSI C function prototypes. It was developed in the UW Robotics Laboratory to take
advantage of the commonality present in many independent projects, all involving the visualization of objects,
speci�cally robots, in motion. As such, the library makes few assumptions about what is meant by a \robot
in motion" but provides for e�cient animation of these entities.

Provided by the library are some basic C structures that can be used to construct robots and other
objects in an environment. These C structures represent primitive geometric entities (points, lines, polyline,
polygons, arcs, and circles) that can be combined in any fashion to produce arbitrarily complex environ-
ments and robots. Functions are provided for modeling and manipulation of two-dimensional, articulated
hierarchical structures, that may easily represent robots. Also, the library provides functions to manipulate
a database of environment obstacles and a means by which a user of an application written with the library
can change this database interactively to create arbitrarily complex environments.

Also provided are routines for performing simple geometric calculations with the structures, and routines
for computing distances, intersections, tangents, etc. between these structures. Using these geometric rou-
tines as a basis, any motion planning algorithm can be simulated in arbitrarily complex environments. In
fact, though it was designed with mobile robots in mind, the library can be used as a basis for any program
that requires geometric structures and calculations.

In addition, there are routines that allow for the development of a user interface to display the motion
simulation on either a Silicon Graphics machine (SGI) or a Sun (or, generally, any Xwindows-based) work-
station. When used on an SGI, all the features of the standard graphics library (except multiple-windowing
capabilities) remain available. The Simulation Library routines not only allow the programmer to design
the user interface to meet the needs of the particular simulation, but also provide a basic structure upon
which to build. Animation is made possible through built-in features of the user interface (although the
programmer must write the animating functions for the moving objects in any program).

Currently the library supports only 2D motion and geometry. When run on an Silicon Graphics ma-
chine, it also provides a window for drawing 3D objects, although the functions for geometric computations
and drawing in three dimensions are not currently supported in the library. Suggestions for changes and
improvements may be directed to hert@cs.wisc.edu.

This document introduces to the Simulation Library (the SL) through examples, explanation, and ex-
position. Sections 1.1 and 1.2 provide information about where the library is located and how to compile
programs using the library. Section 1.3 gives a brief overview of the primitives and families of the library.
Sections 2 through 6 provide examples that illustrate the use of many of the function modules in the library.
The examples in Section 2 illustrate the basics of building and using the user-interface. The remaining
examples are for the more advanced features of the library. Section 7 gives a complete description of the
structures, constants, and macros provided in the library. The detailed reference manual describing all the
SL functions is given in Section 8.

1.1 Where Is the Library

In the UW Robotics Laboratory, the library libSL.a and header �le SL.h are located in the directory
/usr/local/SL/2. The source code and make�les for all the example programs in this manual as well as
some other programs is given in /usr/local/SL/2/Examples.

The library is also available via anonymous ftp from robios8.me.wisc.edu. It is in the directory
/pub/SL. Both IRIX5 and SunOS4 versions are available (as irisSL.tar.gz and sunSL.tar.gz, respec-
tively). These distribution packages each contains a README �le, the header �le SL.h, the library libSL.a,
and several example programs and make�les.

5

1.2 Compiling with the Simulation Library

In order to use the routines provided by the Simulation Library, the header �le SL.h must be included using
a directive such as

#include </usr/local/SL/2/SL.h>

in your program, and the library /usr/local/SL/2/libSL.a must be linked with the rest of the program
along with some of the Xwindows and GL libraries. For the SGI, these libraries are: libSL, libc, libgl s,
libXirisw, libXaw, libXmu, libXt, libXext, libX11, and libm; for compilation on a Sun, the libraries are
libSL, libXaw, libXmu, libXt, libXext, libX11, and libm. Note that since ANSI C prototypes were used in
the library, an ANSI C compiler must be used to create the object �le(s) for your program.

For example, to compile the SL-application robot.c on a Sun workstation, the following command should
be used:

%gcc -ansi -g -o r robot.c /usr/local/SL/2/libSL.a -lXaw -lXmu -lXt -lXext -lX11 -lm

For compilation on an SGI, the command should be:

%cc -DSGI -ansi -g -o r robot.c /usr/local/SL/2/libSL.a -lc -lgl_s -lXirisw -lXaw -lXmu

-lXt -lXext -lX11 -lm

Sample make�les are given in /usr/local/SL/Examples and are available via anonymous ftp (Sec-
tion 1.1).

1.3 Overview of the Library

1.3.1 Some Notes on Syntax and Types

� All names native to the simulation library begin with the pre�x \SL " (for Simulation Library). This
includes the names of structures, constants, macros, and functions.

� All
oating point values are represented as doubles.

� Parameters to functions are either simple types (e.g., integers or doubles) or pointers to structures.

1.3.2 The Library Primitives

The geometric primitives supported in this library are: points, vectors, line segments, arcs, circles, polygons
and polylines. They are represented by the following C structures.

typedef struct f
double x; =� the x coordinate of the point or vector �=
double y; =� the y coordinate of the point or vector �=

g SL Point, SL Vector;

typedef struct f
SL Point start; =� the starting point of the segment �=
SL Point end; =� the ending point of the segment �=

g SL Segment;

typedef struct f
SL Point center; =� the center of the arc �=
double radius; =� the radius of the arc �=
double start ang; =� CCW radian measurement for starting arc angle �=
double end ang; =� CCW radian measurement for ending arc angle �=

g SL Arc;

6

typedef struct f
SL Point center; =� the center of the circle �=
double radius; =� the radius of the circle �=

g SL Circle;

typedef struct f
int size; =� the number of vertices in the polygon or polyline �=
SL Point vertex[SL MAX VTX];

=� counterclockwise list of vertices with

the first vertex not repeated �=
g SL Polygon, SL Polyline;

The library also supports a more general structure, the SL Shape, which can represent any of the geometric
primitives (Section 7). Four abstract data types (ADTs), SL Bug, SL Transf, SL Frame, and SL List are
also available (Sections 8.16, 8.17, 8.19, and 8.20, respectively).

1.3.3 Preview of the Library Modules

The functions in the library are arranged into several distinct modules. Brie
y, these modules are:

� Utilities - miscellaneous functions not speci�c to any library primitives

� PrimitiveManipulation Functions - for performing basic calculations with the geometric primitives
of the library

� Containment - for determining if one primitive is inside a given polygon or circle

� Translation - for moving primitives to speci�c locations

� Intersection - for computing or checking for intersections between pairs of library primitives

� Distance - for computing minimum distances between pairs of library primitives

� Tangent - for computing tangents between pairs of library primitives

� User Interface - for setting up the simulation window

� Graphics - for drawing the primitive structures

� Mouse Editing - for using the mouse to input or change primitive structures

� Obstacles - for adding and modifying obstacles in the simulation environment

� Bug Algorithms - for implementing the sensor-based, point automata planar motion planning algo-
rithms Bug2 and Visbug21 [1, 2]

� Homogeneous Matrices - for manipulating homogeneous transformation matrices

� Modeling - for modeling transformations

� Frame - for creating hierarchical geometric structures (e.g. arm manipulators)

� Lists - for manipulating dynamic collections of data as stacks, queues, or random access structures

These modules will be explained in the following sections through the use of example programs. Descrip-
tions of the functions provided in the various modules are given in Section 8.

7

Drawing Canvas

GoSimulation

Status Bar

Application buttons My Button My Menu

Figure 1: A sample user-interface window produced by an SL-application.

Figure 2: The window produced by program example1.1.c

2 The Basics

Any program that uses the Simulation Library is called an SL-application. Every SL-application produces a
user-interface window with the following features: a simulation menu button, a go button, a drawing canvas,
a status bar, and a row of application-speci�c buttons and labels, which may be empty (Figure 1).

In this section we explain, through the use of several simple SL-applications, the functions in the library
that are used for creating and interacting with the user interface and for performing simple geometric
calculations (e.g., intersection and distance calculations) with the library primitives.

In Section 2.1 the user interface loop (UI-loop), which controls the animation of any SL-application, is
explained along with the basic graphics functions, which are used to draw the library primitives. The example
in Section 2.2 illustrates how an SL-application can use input from the mouse and keyboard. Section 2.3
explains how application-speci�c labels, buttons, menus, and dialog boxes may be added to the user interface.
We illustrate in Section 2.4 functions that can be used for more sophisticated mouse interaction, as well as
the function for drawing text on the canvas.

2.1 The User Interface Loop and Graphics Routines

2.1.1 A Programming Example { example1.1.c

What the Program Does

8

The program shown below is a minimal SL-application that works as follows. When the application's
window appears on the screen, a dark blue, circular robot is positioned in the center of the drawing canvas
and there is a red, rectangular barrier on the right side of the canvas (Figure 2). (Without a color monitor,
both the robot and barrier will be black, of course.) When the Go button at the top of the window is pressed,
the robot will move in a horizontal line to the right toward the barrier. When the Go button is pressed
again or the robot hits the barrier, the motion stops. If the Simulation button is pressed, a menu will pop
up with three options: Redraw, Reset, and Quit. The Redraw option simply refreshes the scene drawn in
the window. Choosing the Reset option from this menu causes the robot to be placed back in the center of
the canvas. The Quit option will, as expected, cause the program to terminate.

Program example1.1.c

#include <stdio.h>

#include "SL.h"

#define CVS_SIDE 500

#define SMALL_RADIUS 10.0 /* radius of robot */

#define STEP_SIZE 1.0 /* size of step for robot to take */

static SL_Polygon Barrier = {4, {{400.0,50.0},

{410.0,50.0},

{410.0,450.0},

{400.0,450.0}}};

/* The simulation state variables */

static SL_Circle Robot;

static void SimuInit(void) /* make RobotColor */

{

SL_MakeColor("RobotColor", 0.4, 0.0, 0.7);

}

static void SimuReset(void) /* position small robot in center of canvas */

{

Robot.center.x = CVS_SIDE/2.0;

Robot.center.y = CVS_SIDE/2.0;

Robot.radius = SMALL_RADIUS;

}

static void SimuRedraw(void) /* draw circular robot and polygonal barrier */

{

SL_SetDrawColor("red");

SL_DrawPolygon(&Barrier, 1);

SL_SetDrawColor("RobotColor");

SL_DrawCircle(&Robot, 1);

}

static int SimuStep(void) /* move robot one step to the right */

{

SL_Circle SaveRobot;

SaveRobot = Robot;

Robot.center.x += STEP_SIZE;

9

/* check for intersection with the polygonal barrier */

if (SL_InterPolygonCircleCheck(&Barrier, &Robot))

{

/* undo the move since there was an intersection */

Robot = SaveRobot;

return(0); /* stop stepping */

}

else /* continue stepping */

return(1);

}

int main()

{

SL_Init(CVS_SIDE, CVS_SIDE, 0, SimuInit, SimuReset, SimuRedraw,

NULL, SimuStep, NULL, NULL, NULL);

SL_Loop();

return(0);

}

Now that you have seen how this program works, let's see why it works the way it does. This program,
simple as it is, illustrates several important properties of any SL-application.

2.1.2 Syntactic Notes

� Every SL-application must contain the line #include "SL.h" as one of the compiler directives (line 2
of program example1.1.c).

� Every function call and structure name speci�c to the library begins with the pre�x \SL ".

� Every SL-application will contain a call to the function SL Init(), which is used to initialize the user
interface produced by the program, followed by a call to SL Loop(), which sends control of the program
to the user interface. These two statements need not be contiguous but the call to SL Init() must
appear before the call to SL Loop() (Section 8.12).

2.1.3 Initializing the Simulation

Each SL-application produces a window that contains in the center a rectangular drawing canvas on which
the graphical output of the application appears. The size and shape of this drawing canvas is speci�ed in
the program by the �rst two arguments in the call to SL Init():

SL Init(CVS SIDE, CVS SIDE, 0, SimuInit, SimuReset, SimuRedraw,

NULL, SimuStep, NULL, NULL, NULL);

These two values specify the length and width of the drawing canvas in pixels. In example1.1.c, it is
speci�ed that there should be a square, 500 pixel � 500 pixel, drawing canvas. The drawing canvas is
mapped as a normal xy-plane with origin (0,0) in the lower left-hand corner and the x and y axes growing
to the right and upwards, respectively.

The third argument to SL Init() is 0 indicating that the obstacle database should not be enabled
(Section 3). The fourth argument to SL Init(), the function SimuInit() in this example, is a function that
is called when the application's window �rst appears.

SL Init(CVS SIDE, CVS SIDE, 0, SimuInit, SimuReset, SimuRedraw,

NULL, SimuStep, NULL, NULL, NULL);

10

Simulation

Redraw
Reset

Quit

Figure 3: The Simulation menu

This function, which accepts no arguments and returns no value, should contain initialization code that
should be executed only once during the run of the application. If there is no such code for your particular
application, the fourth argument to SL Init() should be NULL. In this example, the initialization that needs
to be done is the creation of the color with which the robot will be drawn. This is done by the call:

SL_MakeColor("RobotColor", 0.5, 0.2, 0.1);

The e�ect of this call is to establish \RobotColor" as one of the possible drawing color names (i.e., to
create a new drawing color option). The drawing color is the color with which primitives are drawn on the
canvas. It is set by a call to SL SetDrawColor(). (See below.) The three real numbers passed as arguments
to SL MakeColor() are the color's RGB (red, green, blue) values. These values should each be in the range
[0:0; 1:0]. They designate the relative proportions of red, green, and blue in the color. For example, red has
RGB values 1.0, 0.0, and 0.0; the RGB values for black are 0.0, 0.0, and 0.0.

SL MakeColor()may be used to de�ne a new color name (as in this example) or rede�ne an existing color
name. There are 11 prede�ned color names: \white", \black", \red", \green", \blue", \yellow", \cyan",
\magenta", \grey", \obstacles", \background". The color \obstacles" is the color with which obstacles in
the obstacles database are drawn (Sections 3 and 8.15). This color is originally de�ned to be black. The
\background" color speci�es the color of the drawing canvas; the default is white. SL MakeColor() returns
1 if the color was created or rede�ned successfully, and 0 otherwise.

Note that, in the SL, names of colors are case-insensitive, so \RobotColor" and \robotcolor" are the
same color. Also note that, for black and white monitors, colors with intensity < 0:5 will be drawn as black,
and those with intensity � 0:5 will be drawn as white. Intensity is measured as: (0:299� red) + (0:587�
green) + (0:114� blue).

At the top of an SL-application's window are two built-in buttons: the \Simulation" menu button and
the \Go" toggle button. This row of built-in buttons is called the top row. Other arguments to SL Init()

are used to establish the links between these built-in buttons and a particular application, as explained
below.

2.1.4 The Simulation Menu

When pressed, the Simulation button produces a menu with three options: Redraw, Reset, Quit (Figure 3).
The functionality of each of these options is explained below.

Redraw The e�ect of the Redraw option of the Simulation menu is to refresh the scene that appears
in the drawing canvas. In example1.1.c this is accomplished by the function SimuRedraw(). To draw the
barrier, the following call to the function SL DrawPolygon() is made:

SL_DrawPolygon(&Barrier, 1);

11

Passed as arguments to this function are the address of the Barrier structure (Remember that all
SL functions are passed pointers to structures even when the structures are not changed by the function
(Section 1.3.1).) and the integer 1. The second argument indicates that the interior of the polygon should
be �lled with the current drawing color. A 0 as this second argument would indicate that only the boundary
of the polygon should be drawn. A similar call to SL DrawCircle() is made to draw the robot as a �lled
circle. Drawing functions are available for all the primitives of the library and work in a similar manner.
However, only SL Circles, SL Polygons, and SL Arcs may be �lled. Therefore, the functions for the other
primitives have only one parameter, which is a pointer to the object to be drawn (Section 8.13.2).

The default drawing color is black. To establish a di�erent drawing color, as is done for both the barrier
and the robot in example1.1.c, a call to SL SetDrawColor() is made before the drawing is done. This
function accepts a character string representing a color name as its argument. If a color with that name
has been de�ned, either because it is one of the prede�ned colors (\red") or one that has been created with
a call to SL MakeColor() (\RobotColor"), the function returns 1 and establishes that color as the current
drawing color. It remains the drawing color until another call to SL SetDrawColor() is made. If the color
name passed as an argument to SL SetDrawColor() has not been de�ned, the function returns 0, leaving
the drawing color unchanged.

To establish that SimuRedraw() is the function to be called when the Redraw option is chosen from the
Simulation menu, it is passed as the sixth argument to SL Init() in the sample program:

SL Init(CVS SIDE, CVS SIDE, 0, SimuInit, SimuReset, SimuRedraw,

NULL, SimuStep, NULL, NULL, NULL);

This also establishes that this is the function to be called to draw the environment when the application
window �rst appears, when the window is uncovered after being obscured, and to continually update the
scene when the Go button has been toggled on. (See below.) The function should accept no arguments and
return no value.

Reset The Reset option is used to reinitialize the simulation state variables to their starting values.
The simulation state variables are the program structures used to capture the current state of the dynamic
environment that is being simulated. In example1.1.c, the only simulation state variable is Robot; Barrier
is not considered a simulation state variable since it does not change. SimuReset() repositions the robot in
the center of the drawing canvas (its initial position). Therefore, this is the function that should be called
when the Reset option is chosen. To establish this tie, SimuReset() is passed as the �fth argument to
SL Init().

SL Init(CVS SIDE, CVS SIDE, 0, SimuInit, SimuReset, SimuRedraw,

NULL, SimuStep, NULL, NULL, NULL);

Again, this argument to SL Init() should be a function of no arguments that returns no value. It is not
a coincidence that the robot's initial position corresponds to the position assigned in SimuReset(). This
function is automatically called when the application window �rst appears.

Quit Choosing this option causes the program to terminate immediately.

2.1.5 The Go Button

The Go button is a toggle that switches the simulation between a static mode and an active mode. When the
simulation is in static mode (as it is when it �rst starts), none of the objects in the scene is moving. When the
Go button is pressed, the simulation switches to an active mode in which the simulation state variables are
continuously updated and redisplayed on the drawing canvas. This continues until the Go button is pressed
again or the program indicates that there should be no more activity. To produce a smooth animation,
the variables should be updated in small increments, which we call simulation steps, or simply steps. The
function that increments the variables by a single step is provided as the eighth argument to SL Init().

SL Init(CVS SIDE, CVS SIDE, 0, SimuInit, SimuReset, SimuRedraw,

NULL, SimuStep, NULL, NULL, NULL);

12

This function should accept no arguments and return an integer value, which is nonzero if the motion is
to continue and 0 if it is to stop. When the simulation is in its active mode, the program automatically
alternates between calls to this function and the function passed as argument six of SL Init() (the redrawing
function) until the Go button is pressed again or the stepping function returns 0. In this way, the animation
of the scene is produced.

For our sample program, the continual updating of the simulation state variable and detection of when
to stop moving is done by the function SimuStep(). A step in this example consists of simply moving the
robot to the right by a certain amount (STEP SIZE). The robot should stop moving if it runs into the barrier.
To determine if this has occurred, a call to SL InterPolygonCircleCheck() is made:

SL_InterPolygonCircleCheck(&Barrier, &Robot)

This function determines if the polygon and circle whose addresses are passed as arguments to it intersect.
If they do, the function returns 1; if they do not, it returns 0. Similar intersection checking functions are
available for all possible pairs of structures in the library (Section 8.9.1). Also available for each pair of
structures is an intersection calculation function, which calculates the intersection points (if any) between
the two given primitives (Section 8.9.2).

In SimuStep(), if the robot has moved to a point where its body intersects the barrier, it is restored to
its previous position and the function returns 0, indicating that there should be no more motion. Otherwise,
the function returns 1 and the robot continues to step toward the barrier.

2.1.6 The User Interface Loop (UI-loop)

Having explained how the functions in example1.1.c are tied to the functionality of the program through
the call to SL Init(), it remains to explain the purpose of the call to SL Loop(). This function initiates
what is known as the user interface loop (UI-loop). Within this loop, the program is continually monitoring
its user interface to detect when certain events occur. An event corresponds to some sort of action being
made by the user of the program either with the mouse or the keyboard (e.g., motion of the mouse in the
application window, pressing one of the keys on the keyboard) or with the window itself (e.g., raising or
lowering the window, opening or closing the window). When such an event occurs, the program calls the
appropriate event-handling routine, also known as a callback routine. Which callback routine is appropriate
is determined by the function that is registered to handle this type of event.

The functions being passed as arguments to SL Init() are being registered as callback routines. This
example shows the handling of only �ve events on the user interface: creating the window; raising or opening
the window; the choice of \Redraw" from the Simulation menu; the choice of \Reset" from the Simulation
menu; a click on the Go button. These events are handled by the four functions of the the program, as
explained above, and are registered by the following call:

SL Init(CVS SIDE, CVS SIDE, 0, SimuInit, SimuReset, SimuRedraw,

NULL, SimuStep, NULL, NULL, NULL);

The callback that handles the event of creating the window is the initialization callback, which is the
function passed as argument four to SL Init() (SimuInit()). Raising and opening the window and selection
of the Redraw option from the Simulation menu are all handled by the redraw callback, argument six to
SL Init() (SimuRedraw()). The choice of Reset from the Simulation menu is handled by the function
passed as argument �ve to SL Init(), the reset callback (SimuReset()). Clicking on the Go button sends
the simulation into its active state from which the step callback (SimuStep()) and redraw callback are
alternately called until the simulation reverts to its static state. The step callback is passed as argument
eight to SL Init().

If there is nothing for your program to do in case one of these events occurs, the corresponding argument
to SL Init()may be NULL, as is the case for many of the arguments to SL Init() in example1.1.c. However,
remember that the reset and redraw callback routines are serving multiple purposes. Each is called when
the application window �rst appears to initialize the scene. The redraw callback is called to refresh the

13

Start

initialization callback

reset callback

redraw callback

step callback

Go toggle?

appropriate callback

No

Yes

Off

On

UI event?

Figure 4: The
ow of execution of the UI-loop for an SL-application. The loop starts with a call to SL Loop().
The \appropriate callback" referred to in the diagram is the one that has been registered to handle the type
of event that occurred.

scene whenever the window is raised again after becoming partially or completely obscured, and when the
simulation is in its active mode to update the scene on the drawing canvas for each step of the simulation.

Finally, note the di�erence between the initialization callback and the reset callback: the former contains
code that is executed only when the window �rst appears; the latter contains code that is executed when
the window �rst appears and every time the Reset option is chosen from the Simulation menu.

The program never returns from the call to SL Loop(); when the Quit option is chosen from the Simulation
menu, the program terminates immediately.

The
owchart given in Figure 4 shows the
ow of execution of the UI-loop for any SL-application. With
this example, we have shown only callback routines that are registered with the call to SL Init(), and we
have shown only some of those routines. Later examples expand the set of callback routines that may be
registered to handle other types of events, either through the call to SL Init() or through calls to other
functions.

2.2 Getting Input from the Mouse and Keyboard

2.2.1 A Programming Example { example1.2.c

What the Program Does

Program example1.2.c is an expanded version of example1.1.c in which we add more functionality
through the use of additional callbacks registered with the call to SL Init(). When the application's
window appears on the screen, the only di�erence between it and the one for example1.1.c is the text at

14

Figure 5: The window produced by program example1.2.c

the bottom of the window, which gives instructions on how to change the color of the robot (Figure 5).
Typing 'r', 'g', or 'b' changes the color of the robot to red, green, or blue, respectively.

The starting position of the robot may also be changed in this example. If you click the left mouse button
with the mouse pointer somewhere in the drawing canvas, the robot will be placed with its center at that
position. If you press the right mouse button with the pointer inside the robot's body the robot will follow
the mouse pointer until the right button is released. Pressing the middle mouse button does nothing in this
example. The built-in buttons in the top row provide the same functionality as in example1.1.c. That is,
pressing the Go button causes the robot to start moving in a horizontal line from its current position, which
may have be speci�ed using the mouse. It moves until it hits the barrier or the Go button is pressed again,
and, since the new starting position of the robot may cause it to move above or below the barrier along
its horizontal path, a new test has been added to cause the robot to stop moving if it runs into an edge of
the drawing canvas. The Reset option of the Simulation menu will reposition the robot in the center of the
canvas, just as before.

Program example1.2.c

#include <stdio.h>

#include "SL.h"

#define CVS_SIDE 500

#define SMALL_RADIUS 10.0 /* the radius of the robot */

#define STEP_SIZE 1.0 /* size of step for robot to take */

SL_Polygon Barrier = {4, {{400.0,50.0},

{410.0,50.0},

{410.0,450.0},

{400.0,450.0}}};

/* The simulation state variables */

int InMotion; /* indicates if the user is moving the robot with the mouse */

SL_Circle Robot;

static void SimuInit(void) /* make RobotColor and print color changing

info to status bar */

{

15

SL_MakeColor("RobotColor", 0.4, 0.0, 0.7);

SL_PrintToStatusBar("Type 'r' for red, 'g' for green, or 'b' for blue robot");

}

static void SimuReset(void) /* position small robot in center of canvas */

{

Robot.center.x = CVS_SIDE/2.0;

Robot.center.y = CVS_SIDE/2.0;

Robot.radius = SMALL_RADIUS;

InMotion = 0;

}

static void SimuRedraw(void) /* draw circular robot and polygonal barrier */

{

SL_SetDrawColor("red");

SL_DrawPolygon(&Barrier, 1);

SL_SetDrawColor("RobotColor");

SL_DrawCircle(&Robot, 1);

}

static int SimuStep(void) /* move robot one step to the right */

{

SL_Circle SaveRobot;

SaveRobot = Robot;

Robot.center.x += STEP_SIZE;

/* check for intersection with the polygonal barrier & canvas polygon */

if (SL_InterPolygonCircleCheck(&Barrier, &Robot) ||

SL_InterCircleCanvasPolygonCheck(&Robot))

{

/* undo the move since there was an intersection */

Robot = SaveRobot;

return(0); /* stop stepping */

}

else /* continue stepping */

return(1);

}

static void MouseClick(int x, int y, SL_Button btn)

{

SL_Point LocPnt;

if (!SL_SteppingOn()) /* mouse clicks have no effect when robot is moving */

switch (btn)

{

case SL_PRESS_LEFT : /* move robot to the mouse pointer location */

Robot.center.x = x;

Robot.center.y = y;

SL_Redraw();

break;

case SL_PRESS_RIGHT : /* make the robot follow the mouse pointer */

LocPnt.x = x;

LocPnt.y = y;

if (SL_InsidePointCircle(&LocPnt, &Robot))

16

{

Robot.center = LocPnt;

SL_Redraw();

InMotion = 1; /* robot is now being moved by the user */

}

break;

case SL_RELEASE_RIGHT :

InMotion = 0; /* robot no longer being moved by the user */

break;

default :

break;

}

}

static void MouseMove(int x, int y)

{

if (InMotion) /* if the robot is being moved by the user */

{

Robot.center.x = x; /* make its center current mouse pointer location */

Robot.center.y = y;

SL_Redraw();

}

}

static void ChangeColor(char the_key, int key_pressed)

{

if (key_pressed) /* do nothing when key is released */

{

switch (the_key)

{

case 'r' : /* change robot color to red */

SL_MakeColor("RobotColor",1.0,0.0,0.0);

SL_Redraw();

break;

case 'g' : /* change robot color to green */

SL_MakeColor("RobotColor",0.0,1.0,0.0);

SL_Redraw();

break;

case 'b' : /* change robot color to blue */

SL_MakeColor("RobotColor",0.0,0.0,1.0);

SL_Redraw();

break;

default : break;

}

}

}

int main()

{

SL_Init(CVS_SIDE, CVS_SIDE, 0, SimuInit, SimuReset, SimuRedraw,

NULL, SimuStep, MouseClick, MouseMove, ChangeColor);

SL_Loop();

return(0);

}

17

2.2.2 The Status Bar

The area below the drawing canvas in which the message giving instructions for changing the robot's color
is printed is known as the status bar. Text may be printed to this rectangular area with a call to the
function SL PrintToStatusBar(), which accepts as its argument the string of characters to be printed. In
example1.2.c, this call is made in the initialization callback, SimuInit():

SL PrintToStatusBar(``Type 'r' for red, 'g' for green, or 'b' for blue robot'');

2.2.3 The Keyboard Callback

The changing of the robot color is accomplished through the keyboard callback. This is the function that is
passed as the last argument to SL Init():

SL Init(CVS SIDE, CVS SIDE, 0, SimuInit, SimuReset, SimuRedraw,

NULL, SimuStep, MouseClick, MouseMove, ChangeColor);

Whenever the user presses or releases one of the keys on the keyboard during the run of the application,
the keyboard callback routine is called with two arguments: a character indicating which key was either
pressed or released and a
ag indicating which of these events occurred. In this example, when one of
the 'r', 'g', or 'b' keys is pressed, the color \RobotColor", which was de�ned in the initialization callback,
SimuInit(), is rede�ned to the appropriate color with a call to SL MakeColor(). Following this call to
rede�ne the color with which the robot is drawn is a call to SL Redraw():

.

.

.

case 'r' : /* change robot color to red */

SL_MakeColor("RobotColor",1.0,0.0,0.0);

SL_Redraw();

break;

.

.

.

SL Redraw() is a function that causes the scene to be redrawn on the drawing canvas. In this example,
this is accomplished in two steps. First, the canvas is cleared with the \background" color. Then, the
redraw callback is called. (When the obstacle database has been enabled, a third step is added in which the
obstacles are drawn with the color \obstacles" (Section 3).) The call to this function is necessary when the
simulation is in its static mode and changes are made to what must be drawn on the canvas. If the call to
this function is omitted, the change to the robot color would not be seen until some other event caused the
redraw callback to be called. Since SL Redraw() does more than simply call the redraw callback, you should
always call it instead of calling your redraw callback directly.

2.2.4 The Mouse Click Callback

The starting position of the robot may be changed in one of two ways using the mouse in this example. The
simplest way is by clicking the left mouse button with the mouse pointer at some position on the drawing
canvas. The mouse pointer position is assigned to be the robot's new center point. This functionality
is accomplished through the mouse click callback, which is the function passed as the ninth argument to
SL Init():

SL Init(CVS SIDE, CVS SIDE, 0, SimuInit, SimuReset, SimuRedraw,

NULL, SimuStep, MouseClick, MouseMove, ChangeColor);

The mouse click callback is a function that takes two integer arguments representing the x and y positions
of the mouse pointer on the screen and an argument of type SL Button, which takes on one of the following
six values:

18

SL PRESS LEFT SL PRESS MIDDLE SL PRESS RIGHT

SL RELEASE LEFT SL RELEASE MIDDLE SL RELEASE RIGHT

These indicate the type of mouse button event that occurred.
For this example, we are interested in mouse button events only if they occur while the application is in

its static mode. To make sure the events are ignored when the application is in its active mode, the mouse
click callback routine contains the following statement:

if (!SL_SteppingOn()) /* mouse clicks have no effect when robot is moving */

switch (btn)

{

.

. [mouse button event handling code]

.

}

SL SteppingOn() is a function that simply returns 1 when the Go button has been toggled on and 0 when
it has been toggled o�. Thus, it indicates if the application is in active or static mode.

When the left mouse button is pressed with the application in its static mode, the following code accom-
plishes the repositioning of the robot:

case SL_PRESS_LEFT : /* move robot to the mouse pointer location */

Robot.center.x = x;

Robot.center.y = y;

SL_Redraw();

break;

Notice the call to SL Redraw(), which is necessary to draw the updated environment with the robot in its
new position.

Clicking with the left mouse button is not the only way the robot may be repositioned with the mouse
in this example. The robot's position may also be changed by clicking the right mouse button with the
mouse pointer inside the robot's body, moving the mouse pointer to another position on the canvas, and
then releasing the right mouse button. During the mouse motion, the robot follows the mouse pointer.

To detect when this sort of repositioning is to begin, every time the right mouse button is clicked,
we must check whether the mouse pointer is inside the robot's body. This is accomplished by a call to
SL InsidePointCircle(), which takes a pointer to an SL Point and a pointer to an SL Circle and returns
1 if the point is inside the circle and 0 otherwise. There is a similar function for checking if a point is inside
a polygon (Section 8.9.1).

case SL_PRESS_RIGHT : /* make the robot follow the mouse pointer */

LocPnt.x = x;

LocPnt.y = y;

if (SL_InsidePointCircle(&LocPnt, &Robot))

{

Robot.center = LocPnt;

SL_Redraw();

InMotion = 1; /* robot is now being moved by the user */

}

If the mouse pointer is inside the robot's body, the pointer location becomes the new center position of
the robot, the scene is redrawn with this new robot location and the simulation state variable InMotion is
set to 1 to indicate that the user is now moving the robot with the mouse. When the right mouse button is
released, this means the user has placed the robot in its new position, so InMotion is set back to 0. Notice
that InMotion is initialized in the reset callback, SimuReset().

19

Figure 6: The window produced by program example1.3.c

2.2.5 The Mouse Motion Callback

Changing the robot position to follow the mouse pointer when InMotion has been set to 1 is accomplished
by the mouse motion callback. This is the function that is passed as the tenth argument to SL Init():

SL Init(CVS SIDE, CVS SIDE, 0, SimuInit, SimuReset, SimuRedraw,

NULL, SimuStep, MouseClick, MouseMove, ChangeColor);

This function is called every time the mouse is moved with its pointer inside the drawing canvas. It
is passed two integer arguments representing the current x and y position of the mouse pointer. Thus to
move the robot along with the mouse pointer, we need only make the point (x; y) the center of the robot
and redraw the scene with a call to SL Redraw(). This is accomplished with the function MouseMove() in
example1.2.c.

2.2.6 Intersecting the Canvas Polygon

When the robot has been repositioned using either the left or right mouse buttons, its horizontal path to the
right may not cause it to hit the barrier. In this case, we want the robot to stop when it reaches the right
edge of the canvas, or, in other words, when its body intersects the canvas polygon. The canvas polygon
is the rectangular polygon surrounding the drawing canvas. The following function call from SimuStep()
determines if an intersection has occurred:

SL InterCircleCanvasPolygonCheck(&Robot)

This function works just like the other intersection-checking functions: it returns 1 if there is an intersection
and 0 otherwise. The only di�erence is in the number of arguments. There are similar functions for checking
for intersections (and calculating intersection points) with the canvas polygon for all the primitives of the
library (Section 8.6).

2.3 Customizing the User Interface

2.3.1 A Programming Example { example1.3.c

What the Program Does

Program example1.3.c is a further expansion of the example introduced in Section 2.1 and built upon
in Section 2.2. With this expansion, �ve application-speci�c buttons labeled as the \Controls" have been
added to the bottom of the user interface (Figure 6).

20

Figure 7: A sample dialog pop-up window

The functionality of example1.2.c is retained, so the robot may be repositioned either by clicking the
left mouse button with the pointer somewhere in the canvas or by pressing the right mouse button with the
pointer in the robot's body, moving the pointer to a new position, and releasing the right button. The new
buttons on the application's window provide an additional way for the user to change the position of the
robot, as well as means of altering other environment parameters. All these buttons are available for use
while the robot is moving.

The vertical position of the robot may be changed using the buttons labeled \y+" and \y-". When a
mouse button is pressed with the pointer over one of these buttons, the robot moves in the positive (up) or
negative (down) y direction. It continues to move in this direction until the mouse button is released.

The size (radius) of the robot may be changed with the menu button labeled \Robot Size". This menu
has three options: Small, Medium, and Large. The robot initially shown on the screen is \Small". Choosing
one of the other options on this menu causes the robot to immediately change size. The button labeled
\Move Left" is a toggle button that allows the user to choose the horizontal direction the robot will move
when the Go button is toggled on. The initial direction is right (just as in the other examples).

The last button, labeled \Step Size", allows the user to change the size of the step the robot takes when
when the Go button is toggled on or when the \y+" and \y-" buttons are being used. When a mouse button
is clicked over this button, a dialog window like the one shown in Figure 7 will pop up.

When the user types a number in the text area and clicks the \OK" button, the robot's step size is
changed to that number, and the window disappears. If the \Cancel" button is clicked, the dialog window
disappears and the step size is not changed.

Program example1.3.c

#include <stdio.h>

#include <stdlib.h>

#include "SL.h"

#define CVS_SIDE 500

#define SMALL_RADIUS 10.0

#define MEDIUM_RADIUS 20.0

#define LARGE_RADIUS 40.0

static SL_Polygon Barrier = {4, {{400.0,50.0},

{410.0,50.0},

{410.0,450.0},

{400.0,450.0}}};

/* The simulation state variables */

static int InMotion; /* indicates if user is moving robot with mouse */

static int MoveLeft; /* 1/0 if robot moves left/right when stepping */

static double StepSize; /* size of step for robot to take */

static SL_Circle Robot;

static void SimuInit(void) /* initialize the simulation state variables */

21

{

MoveLeft = 0;

StepSize = 1.0;

SL_MakeColor("RobotColor", 0.4, 0.0, 0.7);

SL_PrintToStatusBar("Type 'r' for red, 'g' for green, 'b' for blue robot");

}

static void SimuReset(void) /* position small robot in center of canvas */

{

Robot.center.x = CVS_SIDE/2.0;

Robot.center.y = CVS_SIDE/2.0;

Robot.radius = SMALL_RADIUS;

InMotion = 0;

}

static void SimuRedraw(void) /* draw circular robot and polygonal barrier */

{

SL_SetDrawColor("red");

SL_DrawPolygon(&Barrier, 1);

SL_SetDrawColor("RobotColor");

SL_DrawCircle(&Robot, 1);

}

static int SimuStep(void) /* move robot one step to the left or right */

{

SL_Circle SaveRobot;

SaveRobot = Robot;

if (MoveLeft)

Robot.center.x -= StepSize;

else

Robot.center.x += StepSize;

/* check for intersection with the polygonal barrier & canvas polygon */

if (SL_InterPolygonCircleCheck(&Barrier, &Robot) ||

SL_InterCircleCanvasPolygonCheck(&Robot))

{

/* undo the move since there was an intersection */

Robot = SaveRobot;

return(0); /* stop stepping */

}

else /* continue stepping */

return(1);

}

static void MouseClick(int x, int y, SL_Button btn)

{

SL_Point LocPnt;

if (!SL_SteppingOn()) /* mouse clicks have no effect when robot is moving */

switch (btn)

{

case SL_PRESS_LEFT : /* move robot to the mouse pointer location */

Robot.center.x = x;

Robot.center.y = y;

SL_Redraw();

22

break;

case SL_PRESS_RIGHT : /* make the robot follow the mouse pointer */

LocPnt.x = x;

LocPnt.y = y;

if (SL_InsidePointCircle(&LocPnt, &Robot))

{

Robot.center = LocPnt;

SL_Redraw();

InMotion = 1; /* robot is now being moved by the user */

}

break;

case SL_RELEASE_RIGHT :

InMotion = 0; /* robot no longer being moved by the user */

break;

default :

break;

}

}

static void MouseMove(int x, int y)

{

if (InMotion) /* if the robot is being moved by the user */

{

Robot.center.x = x; /* make its center current mouse pointer location */

Robot.center.y = y;

SL_Redraw();

}

}

static void ChangeColor(char the_key, int key_pressed)

{

if (key_pressed) /* do nothing when key is released */

{

switch (the_key)

{

case 'r' : /* change robot color to red */

SL_MakeColor("RobotColor",1.0,0.0,0.0);

SL_Redraw();

break;

case 'g' : /* change robot color to green */

SL_MakeColor("RobotColor",0.0,1.0,0.0);

SL_Redraw();

break;

case 'b' : /* change robot color to blue */

SL_MakeColor("RobotColor",0.0,0.0,1.0);

SL_Redraw();

break;

default : break;

}

}

}

static void MoveRobotUp(void)

{

Robot.center.y += StepSize;

SL_Redraw();

23

}

static void MoveRobotDown(void)

{

Robot.center.y -= StepSize;

SL_Redraw();

}

static void ChangeRobotSize(int menu_index)

{

switch (menu_index)

{

case 0 :

Robot.radius = SMALL_RADIUS;

break;

case 1 :

Robot.radius = MEDIUM_RADIUS;

break;

case 2 :

Robot.radius = LARGE_RADIUS;

break;

default : break;

}

SL_Redraw();

}

static void ChangeRobotDirection(int toggle_on)

{

MoveLeft = toggle_on;

}

static void ChangeStepSize(char *step_size)

{

StepSize = atof(step_size);

}

int main()

{

char *SizeNames[] = {"Small", "Medium", "Large", NULL};

SL_Init(CVS_SIDE, CVS_SIDE, 0, SimuInit, SimuReset, SimuRedraw,

NULL, SimuStep, MouseClick, MouseMove, ChangeColor);

SL_AddLabel("Controls ");

SL_AddButton("y+", 1, MoveRobotUp);

SL_AddButton("y-", 1, MoveRobotDown);

SL_AddMenu("Robot Size", SizeNames, ChangeRobotSize);

SL_AddToggle("Move Left", ChangeRobotDirection);

SL_AddDialog("Step Size", "Enter step size",ChangeStepSize);

SL_Loop();

return(0);

}

24

2.3.2 The Bottom Row

The bottom row of an SL-application's window is the area below the status bar where the programmer may
place labels and buttons to expand the functionality of the user interface. There are four types of buttons
that may be attached to the window: push buttons, menu buttons, toggle buttons, and dialog buttons. Each
of these is illustrated in this example and explained below.

Buttons and labels are added to the bottom row through various function calls. There may be any
combination of buttons and labels; their order on the window is determined by the order in which the
corresponding functions are called. Calls to these functions must appear in the program after the call to
SL Init() and before the call to SL Loop(). Just as with the buttons on the top row of the window, the
bottom-row buttons achieve their functionality through callback routines. These are registered by the calls
to the functions that create the buttons.

2.3.3 Labels

The word \Controls" at the beginning of the bottom row in the window shown in Figure 6 is a label. It was
added to the bottom row of example1.3's window with the following function call in the main program:

SL AddLabel(``Controls '');

A label is simply a piece of text placed on the user interface, usually used to explain the uses of the
buttons on the bottom row. Unlike the text displayed in the status bar, the text of a label may not be
changed as the program is running.

2.3.4 Push Buttons

The buttons labeled \y+" and \y-" are push buttons. They are created by calls to the function SL AddButton():

SL AddButton(``y+'', 1, MoveRobotUp);

SL AddButton(``y-'', 1, MoveRobotDown);

The �rst argument to SL AddButton() is a character string, which is used to label the button. The
second argument should be either 1 or 0. This indicates if the button should have auto-repeat capabilities
or not. If it does (as in this example), when the user presses a mouse button with the mouse pointer over
the push button, the callback function will be continuously called until the mouse button is released. If a
push button does not have auto-repeat capabilities, the callback function is called once for each click of the
mouse button.

The callback routine, which accomplishes the intended function of the push button, is the third argument
in the call to SL AddButton(). It should be a function that takes no arguments and returns no value, as
here, for example:

static void MoveRobotUp(void)

{

Robot.center.y += StepSize;

SL_Redraw();

}

Note the call to SL Redraw() at the end of this function. This causes the robot to be drawn in its new
position immediately.

2.3.5 Menu Buttons

Adding a menu button to the bottom row is accomplished through a call to SL AddMenu(). This function
also takes three arguments. The �rst is a character string with which to label the button; the second is
a NULL-terminated array of character strings, which are to be the menu options; the third is the callback
function. The callback function should be a function with no return value that takes a single integer argument

25

representing the menu option chosen by the user. This integer will be in the range [0; n� 1], where n is the
number of menu options.

In example1.3.c, we created a menu button with three options with the following call:

SL AddMenu(``Robot Size'', SizeNames, ChangeRobotSize);

where SizeNames was initialized as:

char *SizeNames[] = f``Small'', ``Medium'', ``Large'', NULLg;

The callback function ChangeRobotSize() is typical of one for any menu button. It contains simply a
switch statement that changes the robot's radius to the appropriate value for the menu option chosen and
then redraws the scene.

2.3.6 Toggle Buttons

A toggle button much like the Go button in the top row may be added to the bottom row using the function
SL AddToggle(). This function takes two arguments: the character string label for the button and the
callback function. Each time a mouse button is clicked with the mouse pointer over a toggle button, its
callback function is called with either a 1 or a 0 to indicate if the button has been toggled \on" or \o�".
When the application begins, all toggle buttons are in the \o�" position.

In example1.3.c, the button labeled \Move Left" is a toggle button. Its callback function, registered
with the following call:

SL AddToggle(``Move Left'', ChangeRobotDirection);

sets the state variable MoveLeft to the toggle-on-
ag value. This variable is used in the step callback routine,
SimuStep(), to decide whether to move the robot to the left or right with each step.

2.3.7 Dialog Buttons

The �nal button on the bottom row of example1.3.c's window, labeled \Step Size", is a dialog button.
Clicking a mouse button with the mouse pointer over a dialog button causes a dialog window to appear. A
dialog window contains a dialog box, in which the user may type characters. Above this box is an area in
which text may be displayed. This text usually takes the form of instructions to the user about what to
type in the dialog box. Below the dialog box are two buttons: one labeled \OK" and the other \Cancel". If
the user clicks on the \OK" button, the characters typed in the dialog box are passed as the argument to
the callback routine associated with the dialog button, and the window disappears. If the user clicks on the
\Cancel" button, the window disappears, but the callback routine is not called.

A dialog button is added to an SL-application's window with a call to SL AddDialog(). This call speci�es
the character string with which to label the button, the character string to display above the dialog box, and
the callback routine to call when the user clicks on the OK button in the dialog window. For example1.3.c,
the call is:

SL AddDialog(``Step Size'', ``Enter step size'', ChangeStepSize);

and the resulting dialog window looks like the one shown in Figure 7.

The callback function ChangeStepSize() simply converts the character string representing the number
the user typed in the dialog box into a real number and assigns this as the new value of StepSize:

static void ChangeStepSize(char *step_size)

{

StepSize = atof(step_size);

}

26

Figure 8: The window produced by program example1.4.c

2.4 Mouse Editing, Distances and Drawing Text

2.4.1 A Programming Example { example1.4.c

What the Program Does

The example in this section is in much the same spirit as the previous three examples | a circular robot
moves along a straight line until a stopping condition is satis�ed with the user being able to specify the size
and position of the robot (as well as the polygonal barrier). The window produced by program example1.4.c

is shown in Figure 8. A small, blue circular robot appears in the center of the drawing canvas and a red
rectangular barrier is to the right of the robot. There is also a point labeled T , the target point of the robot.
A line is drawn from the robot's center to the target point, and this line is labeled with its length. A second
line is drawn from a point on the robot's body to a point on the barrier and labeled with its length. This
length represents the minimum distance between the circle and the polygon; the line is drawn between the
closest points on the two objects.

When the Go button is pressed, the robot will move along a straight line toward the point T and the two
distance measurements will be continually updated. The robot will stop when it reaches the target point or
it hits the barrier or the canvas polygon. The Reset option of the Simulation menu has no e�ect for this
program, other than to redraw the scene.

The location of the target point can be changed by clicking the left mouse button somewhere inside the
drawing canvas. The robot and barrier may also be moved using the \Move" menu in the bottom row. This
menu has two options, \Robot" and \Barrier". When one of these options is chosen the program waits
for the user to click the mouse somewhere inside the canvas. This de�nes a reference point. As the mouse
is moved within the canvas, the object chosen from the menu moves so as to maintain the same relative
position between the mouse pointer and the object center (or centroid) as between the reference point and
the original object position. When the object has been moved to its desired location, the user may press the
left or middle mouse button to place the object in its new location. If the right mouse button is pressed, the
move operation is aborted and the object returns to its original location.

The \Get" menu in the bottom row provides another means by which the robot and barrier may be
changed. Again, this menu's options are \Robot" and \Barrier". If the \Robot" option is chosen, the
program waits for the user to click either the left or middle mouse button somewhere inside the canvas. This
de�nes the new center for the robot. Then, as the mouse is moved away from this point a circle is drawn
with radius equal to the distance between the pointer position and the new center. When the desired radius
is reached, the user may click either the left or middle mouse button to de�ne the new robot. Clicking the
right mouse button aborts this operation as well and does not change the size or position of the robot. If
the \Barrier" option is chosen, the user is allowed to input a new polygonal barrier using the mouse. This

27

is done by clicking the left mouse button in the canvas at the barrier vertex points. When all vertices have
been entered using the left mouse button, the middle mouse button should be pressed to close the polygon.
As before, clicking the right mouse button at any time aborts the input process. The program will not allow
the user to input vertices that cause the polygon to be self-intersecting and if the user enters SL MAX VTX

vertices, the polygon is automatically closed since no more vertices may be added.

Program example1.4.c

#include <stdio.h>

#include <stdlib.h>

#include "SL.h"

#define CVS_SIDE 500

#define SMALL_RADIUS 10.0

#define STEP_SIZE 1.0

/* The simulation state variables */

SL_Polygon Barrier = {4, {{400.0,50.0},

{410.0,50.0},

{410.0,450.0},

{400.0,450.0}}};

SL_Circle Robot;

SL_Point Target; /* the target point for the robot */

static void SimuInit(void) /* initialize the simulation state variables */

{

Robot.center.x = CVS_SIDE/2.0;

Robot.center.y = CVS_SIDE/2.0;

Robot.radius = SMALL_RADIUS;

Target.x = 450.0;

Target.y = 100;

}

/* draws a line segment between *start and *end and, at the midpoint of this

segment, displays the distance between the two */

static void DrawDistance(SL_Point *start, SL_Point *end, double dist)

{

SL_Segment DistLine;

SL_Point MidPt;

char dist_text[32];

SL_SetDrawColor("black");

DistLine.start = *start;

DistLine.end = *end;

SL_SegmentMidpoint(&DistLine,&MidPt);

sprintf(dist_text,"%.2f",dist);

SL_DrawSegment(&DistLine);

SL_DrawText(&MidPt,dist_text);

}

static void SimuRedraw(void) /* draw the robot, barrier, and target point */

28

{

SL_Point PolyPt, CirclePt;

double dist;

SL_SetDrawColor("red");

SL_DrawPolygon(&Barrier, 1);

SL_SetDrawColor("blue");

SL_DrawCircle(&Robot, 1);

SL_DrawPoint(&Target);

SL_DrawText(&Target,"T");

dist = SL_DistPointPoint(&(Robot.center),&Target);

DrawDistance(&(Robot.center),&Target,dist);

dist = SL_DistPolygonCircle(&Barrier,&Robot,&PolyPt,&CirclePt);

DrawDistance(&PolyPt,&CirclePt,dist);

}

static int SimuStep(void) /* move robot one step to the left or right */

{

SL_Circle SaveRobot;

int AtTarget = 0;

SaveRobot = Robot;

if (SL_DistPointPoint(&Robot.center,&Target) <= STEP_SIZE)

{

Robot.center = Target;

AtTarget = 1;

}

else

SL_MoveTowardsPoint(&Robot.center,&Target,STEP_SIZE,&Robot.center);

/* check for intersection with the polygonal barrier & canvas polygon */

if (SL_InterPolygonCircleCheck(&Barrier, &Robot) ||

SL_InterCircleCanvasPolygonCheck(&Robot))

{

/* undo the move since there was an intersection */

Robot = SaveRobot;

return(0); /* stop stepping */

}

else /* continue stepping if robot not at target*/

return(!AtTarget);

}

static void SetTarget(int x, int y, SL_Button btn)

{

/* change target only when robot is not moving and left mouse button

is clicked */

if (!SL_SteppingOn() && (btn == SL_PRESS_LEFT))

{

Target.x = x;

Target.y = y;

SL_Redraw();

}

}

29

static void MoveObject(int menu_index)

{

SL_Point RefPoint;

switch(menu_index)

{

case 0 :

SL_MouseGetPoint(&RefPoint);

SL_MouseMoveCircle(&Robot);

break;

case 1 :

SL_MouseGetPoint(&RefPoint);

SL_MouseMovePolygon(&Barrier);

break;

default : break;

}

SL_Redraw();

}

static void GetObject(int menu_index)

{

switch(menu_index)

{

case 0 :

SL_MouseGetCircle(&Robot);

break;

case 1 :

SL_MouseGetPolygon(&Barrier);

break;

default : break;

}

SL_Redraw();

}

int main()

{

char *Objects[] = {"Robot", "Barrier", NULL};

SL_Init(CVS_SIDE, CVS_SIDE, 0, SimuInit, NULL, SimuRedraw,

NULL, SimuStep, SetTarget, NULL, NULL);

SL_AddMenu("Get", Objects, GetObject);

SL_AddMenu("Move", Objects, MoveObject);

SL_Loop();

return(0);

}

2.4.2 Changing Primitives with the Mouse

The functionality of the Get and Move menus in the bottom row of example1.4.c's application window
is provided by the SL Mouse* family of functions (Section 8.14). These functions allow the user to in-
put, move, rotate, and scale library primitives using the mouse. The functions SL MouseGetCircle() and
SL MouseGetPolygon() used in this program, each accepts a pointer to the location in which to store the
input object. The input process for each primitive is slightly di�erent, as explained in Section 8.14.

To move the robot and barrier using the mouse, the functions SL MouseMoveCircle()and SL MouseMovePolygon()

30

are used. Again, each accepts a pointer to the object to be moved. When each function is called, the rel-
ative positions of the mouse pointer and the given object's center is determined. This relative position is
maintained throughout the move operation. To allow the user to specify the point of reference for moving,
a call to SL MouseGetPoint() precedes the calls to the SL MouseMove* functions:

case 0 :

SL_MouseGetPoint(&RefPoint);

SL_MouseMoveCircle(&Robot);

break;

.

.

.

SL MouseGetPoint() allows the user to input a point by clicking the left or middle mouse button with
the mouse pointer somewhere inside the canvas. Without the call to SL MouseGetPoint(), the point of
reference would be determined by the point at which the mouse pointer entered the canvas after choosing
the appropriate option from the Move menu. This entry point could potentially be very far from the object
in question, which may limit the range of mobility for that object.

2.4.3 Moving Toward a Point

The step callback of this program (SimuStep()) causes the robot to move a certain distance (STEP SIZE)
along a straight line toward its target point, as in the previous three examples. However, since this straight
line may be at any orientation, simply adding STEP SIZE to the x coordinate of the robot's center is not
su�cient. Instead, the function SL MoveTowardsPoint() is used:

SL_MoveTowardsPoint(&Robot.center,&Target,STEP_SIZE,&Robot.center);

This function accepts three input parameters: the starting point (&RobotCenter) the ending point (&Target)
and the amount by which to move (STEP SIZE). Its single output parameter (&Robot.center) is the point
along the line from the starting point to the target point that is the designated distance from the starting
point. The function returns 0 if the starting point and ending point coincide and leaves the output parameter
unchanged. Otherwise, the function returns 1. Note that in this program it is �rst determined if the robot
is currently less than a single step away from the target:

if (SL_DistPointPoint(&Robot.center,&Target) <= STEP_SIZE)

{

Robot.center = Target;

AtTarget = 1;

}

else

SL_MoveTowardsPoint(&Robot.center,&Target,STEP_SIZE,&Robot.center);

If this test were not done, then in moving toward the target point by a distance of STEP SIZE, the robot could
overshoot the target point any number of times with the potential of never actually reaching the target.

2.4.4 Computing Distances

The SL Dist* family of functions (Section 8.10) is used to compute minimum distances between pairs of
library primitives. In each case, for each nonpoint primitive, the function returns though an output parameter
the point on the primitive to which the distance corresponds. For example, in example1.4.c, the following
call is made to compute the distance between the robot and the barrier:

dist = SL_DistPolygonCircle(&Barrier,&Robot,&PolyPt,&CirclePt);

PolyPt and CirclePt are the two endpoints of the minimum distance line drawn on the canvas.

31

2.4.5 Drawing Text

To label the line segments with their respective lengths, the function SL DrawText() is used. This function
prints a string of text at a speci�ed location in the current drawing color. In this example, the location at
which the text is drawn is the midpoint of the line segment being labeled. The midpoint is calculated using
the function SL SegmentMidpoint:

SL_SegmentMidpoint(&DistLine,&MidPt);

sprintf(dist_text,"%.2f",dist);

SL_DrawSegment(&DistLine);

SL_DrawText(&MidPt,dist_text);

3 Adding Obstacles to the Environment

The motion of a robot within an environment �lled with obstacles is a feature common to many simulation
programs . SL supports this feature by maintaining a list of SL geometric primitives (circles, polygons, etc.)
called the obstacle database (ODB) SL provides an on-screen interface for creating and editing the ODB's
contents. Additionally, SL provides a set of routines that check for inclusion and intersection of geometric
primitives and obstacles stored in the ODB. The contents of the ODB can also be retrieved and set at
the programming level. This feature allows for simulations involving moving or deforming obstacles. The
functions for activating and interacting with the ODB are introduced in this section and describe in more
detail in Section 8.15.

3.1 Activating the Obstacle Database

To activate the obstacle database, a non-zero integer must be passed as the third parameter in the call to
SL Init():

SL Init(200, 200, 1, SimuInit, SimuReset, SimuRedraw, NULL, SimuStep, NULL, NULL, NULL);

When the window is opened, its top row will contain the usual Simulation menu button and Go button, plus
the Obstacle menu, as shown in Figure 9.

3.2 Interactive Creation and Editing of the Obstacle Database

The options within the Obstacle menu are grouped into 4 sections: (1) Adding an obstacle (Circle, Triangle,
Square, Rectangle, Polygon), (2) Editing an existing obstacle (Move vtx, Move, Copy, Scale, Rotate), (3)
Removing obstacle(s) (Delete, Delete All), and (4) File operations (Save, Load, Merge) (Figure 9).

The text below describes the means by which the user interacts with the obstacle database through this
menu. In what follows, \clicks" refer to clicks of the left mouse button. All operations explained below can
be cancelled at any time by a click of the right mouse button.

3.2.1 Adding Obstacles

The database contains no obstacles when the application starts. To add an obstacle to the environment,
the user may choose the appropriate shape from the �rst section of the Obstacle menu. After either \Cir-
cle", \Triangle", or \Square" is chosen from the menu, an outline of the corresponding obstacle shape will
follow the mouse pointer until a click \drops" the
oating obstacle at its current location. A �lled obstacle
will be drawn at that location in the color \obstables" (either as prede�ned (black) or as rede�ned using
SL MakeColor() (Sections 2.1 and 8.13)).

If the \Rectangle" option is chosen from the �rst section of the Obstacle menu, the user may specify
the rectangle by �rst clicking on the desired top left corner and then moving the pointer to the desired
lower right corner and clicking again. After the click for the upper left corner, a rubber-band outline of the

32

GoSimulation Obstacles

Rotate
Delete
Delete All
File Save
File Load

Copy

Move Vtx
Move

Circle
Triangle
Square

Polygon
Rectangle

an obstacle

Scale

File Merge

Figure 9: The obstacle database menu.

rectangle will be drawn with its lower right corner at the mouse pointer position. For the \Polygon" option,
each polygon vertex is speci�ed by a click of the left mouse button. The middle mouse button is used to
close the polygon. Just as for the function SL MouseGetPolygon() (Section 2.4), self-intersecting polygons
and polygons with more than SL MAX VTX vertices are not allowed.

Any number of obstacles can be added to the environment using these �rst �ve menu options.

3.2.2 Editing Obstacles

The options in the second section of the Obstacle menu may be used to modify the shape or position of
obstacles already in the database.

To change the position of individual polygon vertices, the \Move Vtx" option from the Obstacle menu
should be chosen. Then the user must click on the polygon that is to be reshaped (This will turn it into
an outline.) and then click as near as possible to the vertex to be moved. From then on the sides meeting
at the selected vertex will follow the mouse pointer. When the pointer has been moved to the desired new
location for the selected vertex, another click will e�ectuate the change. Again, self-intersecting polygons
will not be accepted.

To move an obstacle currently in the ODB, the \Move" option from the Obstacle menu is used. The user
clicks on the obstacle to move (The selected obstacle becomes a pointer-following outline.), and clicks again
at the obstacle's new location.

To place a copy of an existing obstacle at another location, the user should select the \Copy" option and
click on the obstacle to be copied. (An outline of the selected obstacle will follow the pointer.) The pointer
should then be moved to place the copied obstacle somewhere in the environment and then a click will drop
it into place.

Scaling (rotating) an obstacle can be accomplished by selecting \Scale" (\Rotate") from the Obstacle
menu, and then clicking on the obstacle to be scaled (rotated). This will turn the selected obstacle into an
outline that will resize (turn) according to the pointer's location relative to the obstacle's center. A click
�nishes the operation when the desired size (orientation) is achieved.

33

Figure 10: The application window for obst.c

3.2.3 Deleting Obstacles

An individual obstacle currently in the database can be deleted by selecting \Delete" from the Obstacle
menu and clicking in the interior of the obstacle to be deleted. The deleted obstacle will disappear. To
delete all obstacles currently in the database, select \Delete All".

3.2.4 File Operations

The ODB's contents can be saved to a �le by selecting \File Save" within the Obstacle menu. A dialog
window will appear in which the name of the �le in which to save the obstacles may be entered. To load
a previously saved �le, select \File Load" from the obstacle menu, enter the name of the �le you wish to
load in the the dialog window, and click on \OK". The contents of the named �le will replace the current
contents of the ODB. If you wish to merge the contents of an obstacle �le with the ODB's current contents,
select \File Merge" from the Obstacle menu. See Section 8.5 for a description of the shape �le format.

3.3 A Programming Example | obst.c

For the purposes of illustration, let us refer back to program example1.1.c, presented in Section 2.1. In
that program, a circular robot is made to move to the right along a horizontal line until it intersects with a
polygonal barrier. Below, a variant of this program is shown in which the barrier becomes the set of obstacles
currently in the ODB. The window produced by this program is shown in Figure 10.

#include <stdio.h>

#include "SL.h"

#define CVS_SIDE 500 /* window side in pixels */

#define SMALL_RADIUS 10.0 /* radius of robot */

#define STEP_SIZE 1.0 /* size of step for robot to take */

/* The simulation state variables */

static SL_Circle Robot;

static void SimuInit(void)

{

SL_MakeColor("obstacles", 0.35, 0.1, 0.1);

SL_MakeColor("RobotColor", 0.4, 0.0, 0.7);

}

static void SimuReset(void) /* position small robot in center of canvas */

34

start

end

s1

(b)(a)

obstacle

boundary
intersection

start

end

s1

Figure 11: (a) Segment s1 does not intersect the boundary of the circular obstacle and
SL InterSegmentObstCheck(&s1) returns 0. (b) The addition of another obstacle causes the same function
call to return 1.

{

Robot.center.x = CVS_SIDE/2.0;

Robot.center.y = CVS_SIDE/2.0;

Robot.radius = SMALL_RADIUS;

}

static void SimuRedraw(void) /* draw circular robot */

{

SL_SetDrawColor("RobotColor");

SL_DrawCircle(&Robot, 1);

}

static int SimuStep(void) /* move robot one step to the right */

{

SL_Circle SaveRobot;

SaveRobot = Robot;

Robot.center.x += STEP_SIZE; /* move robot to the right */

/* check for intersection with any obstacle in the ODB */

if (SL_InterCircleObstCheck(&Robot))

{ /* undo the move since there was an intersection */

Robot = SaveRobot;

return(0); /* stop stepping */

}

else /* continue stepping */

return(1);

}

int main()

{

SL_Init(CVS_SIDE, CVS_SIDE, 1, SimuInit, SimuReset, SimuRedraw,

NULL, SimuStep, NULL, NULL, NULL);

SL_Loop();

return(0);

}

The above program is essentially a copy of example1.1.c with the following modi�cations:

35

� In main() the third argument passed to SL Init() has been changed to 1, so as to activate the obstacle
database.

� In SimuInit() the call SL MakeColor(``obstacles'', 0.35, 0.1, 0.1); has been added. This
de�nes a reddish-brown drawing color for the obstacles.

� The SL Polygon Barrier global variable has been eliminated. (The barrier is now whatever is in the
ODB.)

� In the function SimuStep(), the call to SL InterPolygonCircleCheck(&Barrier, &Robot) has been
replaced by a call to SL InterCircleObstCheck(&Robot). The intersection test determines if the robot
intersects any obstacle in the ODB. Note that the intersection checking functions (SL InterSegmentObstCheck(),
SL InterPolylineObstCheck(), etc.) test for boundary intersections only. Figure 11(a) shows an ex-
ample of a segment s1 with its two endpoints in the interior of a circular obstacle. Assuming the
latter was the only obstacle in the ODB, SL InterSegmentObstCheck(&s1) would return 0, since the
segment does not intersect the circle's boundary. However, the same call would return 1 in the case
illustrated in Figure 11(b).

Though the case illustrated in Figure 11(a) is not considered an intersection, from a robotics standpoint
it should represent a collision between the interior of segment s1 and the circular obstacle, since the
intersection of the interiors of the shapes is nonempty. The function SL CollideShapeObst(SL Shape

*shape ptr) returns 1 if the intersection of the interior of *shape ptr with any of the obstacles in
ODB is nonempty.

� The calls to SL SetDrawColor() and SL DrawPolygon(), which were issued from SimuRedraw() to
redraw the polygonal barrier, have been eliminated. As long as the ODB is activated, its contents are
automatically redrawn by the system at the end of each execution of the step callback.

3.4 Manipulating the ODB's contents

In program obst.c, the contents of the obstacle database could be manipulated only through the Obstacle
menu. Functions are provided for manipulation of the obstacles from within a program as well. For example,
the contents of the ODB can be completely deleted by issuing a call to:

int SL_ObstDeleteAll(void);

The functions

int SL_ObstLoadFile(char *filename);

int SL_ObstMergeFile(char *filename);

provide a means for loading the contents of a shapes �le into the ODB. SL ObstLoadFile() will replace the
current contents of the ODB with the shapes in the designated �le (if it is readable); SL ObstMergeFile()
will add the shapes from the �le to the current contents of the ODB. The function

int SL_ObstSaveFile(char *filename);

normalsize can be used to store a set of obstacles in a �le for later use. (See Section 8.5 for the �le format assumed
by these three functions.)

The contents of the ODB can be retrieved into an SL List through the call to:

SL_List SL_ObstRetrieveShapes(void);

Conversely, an existing SL List can be \loaded" as the new contents of the ODB via a call to:

void SL_ObstLoadShapes(SL_List shape_list);

36

The shapes in shape list replace the current contents of the ODB.
The functions SL ObstRetrieveShapes() and SL ObstLoadShapes() allow the programmer to use the

ODB for simulations in which obstacles are moving, disappearing or reappearing, and/or changing dimen-
sions. One such application would typically require its step callback to be organized in the following fashion:

static int SimuStep(void) /* the step callback */

{

/* ... */

SL_List ODB = SL_ObstRetrieveShapes(); /* get contents of ODB */

/* change position and dimension of obstacles, e.g., using

SL_ListApply(ODB, ...) */

SL_LoadShapes(ODB); /* replace old contents of ODB */

/* test for collision, move robot, etc. */

return(1);

}

Each time the step callback is executed, the ODB's contents are retrieved and stored in a local SL List.
This list is then modi�ed (by changing the number, shape, position, etc. of the obstacles) and reloaded into
the ODB, replacing the previous contents. In this way, the obstacles are animated along with the robot.

4 Motion Planning Algorithms

4.1 Bug2 and Visbug21

The on-line motion planning algorithms Bug2 and Visbug21 for bug-like (point automaton) robots moving in
the unknown planar environment, containing any number of obstacles have been implemented in the library
using the abstract data type SL Bug. The functions for this ADT are introduced here and described in more
detail in Section 8.16. Bug2 is designed for a robot with only tactile sensing; Visbug21 assumes the robot
is equipped with range sensing. In each of these algorithms, the robot (bug) is given a target point it must
reach. It moves along a straight line (the Mline) toward the target point until it reaches the point or runs
into (for Bug2) or sees (for Visbug21) an obstacle. Upon encountering an obstacle, the robot turns in its local
direction (either left or right) to move around the obstacle. When it returns to (or sees) the Mline again, it
stops moving around the obstacle and moves along the Mline toward the target again. These algorithms are
described in detail in [1] and [2], respectively.

A variable of type SL Bug is initialized using one of the following functions:

SL_Bug SL_Bug2Init(SL_Point *start_ptr, SL_Point *target_ptr,

int left_loc_dir, double step_size,

int (*coll_fn)(SL_Segment *));

SL_Bug SL_Visbug21Init(SL_Point *start_ptr, SL_Point *target_ptr,

int left_loc_dir, double step_size, double vision_rad,

int (*coll_fn)(SL_Segment *));

as appropriate for the chosen algorithm. The initialization parameters are the robot's starting and target
points, a
ag indicating if its local direction is left or not, a step size by which to move at each iteration, a
radius of vision for the Visbug21 algorithm, and a collision function that determines if the robot has collided
with any of the obstacles in the obstacle database (Section 3). By specifying these parameters in the robot's
con�guration space, these point-robot algorithms may also be used for nonpoint robots.

Once initialized, a given robot's collision function may not be changed. For all other parameters, however,
functions are provided that allow them to be changed.

void SL_BugReset(SL_Bug the_bug, SL_Point *new_start_ptr, SL_Point *new_target_ptr);

void SL_BugSetPos(SL_Bug the_bug, SL_Point *new_pos_ptr);

void SL_BugSetLocDir(SL_Bug the_bug, int left_loc_dir);

37

Figure 12: Application window for bug.c

void SL_BugSetStepSize(SL_Bug the_bug, double step_size);

void SL_BugSetVisionRadius(SL_Bug the_bug,double vision_rad);

The current position of the bug may be queried using

void SL_BugGetPos(SL_Bug the_bug, SL_Point *pos_ptr);

Once a given bug's parameters have been set using the above functions, the function

int SL_BugStep(SL_Bug the_bug);

should be used to move the speci�ed bug one step according to the chosen algorithm. This functions returns 1
if the algorithm is to continue or 0 if it should terminate (since the robot has reached its target or determined
that it is unreachable).

The function

void SL_BugDrawPath(SL_Bug the_bug);

provides an easy way to draw the path a given robot has followed from it starting point to its current position.

4.2 A Programming Example | bug.c

The following program illustrates the use of the SL Bug ADT in all its glory (well, most of its glory anyway).
The application window produced by this program is shown in Figure 12. There are two circular robots in the
environment, one (the larger one) using the Bug2 algorithm to plan its motion and the other using Visbug21.
The target point for the Bug2 robot can be speci�ed by clicking the left mouse button inside the drawing
canvas. The Visbug21 robot's target point can be speci�ed using the middle mouse button. The Mlines for
each robot are drawn. Obstacles can be added to the environment using the Obstacle menu (Section 3).
For the window shown in Figure 12, a single circular obstacle has been placed in the environment. When
the Go button is pressed, the robots will each move along their respective Mlines following their respective
algorithms. This motion is accomplished by a single call to SL BugStep() for each robot in the step callback
function SimuStep(). As the robots move, their paths are drawn using the SL BugDrawPath() function.
Choosing the Reset option from the Simulation menu causes the robots to be positioned back at their
respective starting points. The toggle button labeled \L/R" in the bottom row switches the local directions
of the bugs from left to right and back again.

38

#include <stdio.h>

#include <math.h>

#include "SL.h"

#define CVS_SIDE 500

#define ROBOT_RADIUS 10.0

#define STEP_SIZE 3.0

#define VISION_RADIUS 100.0

/* simulation state variables */

static SL_Bug TactileBug, VisionBug;

static SL_Segment TactileMLine = { {50,50},{100,100} };

static SL_Segment VisionMLine = { {450,50},{350,100} };

/* determines if TactileBug will collide with an obstacle if it moves to the

end of the given segment */

static int RobotCollision(SL_Segment *trans_ptr)

{

SL_Circle LocCirc;

LocCirc.radius = ROBOT_RADIUS;

LocCirc.center = trans_ptr->end;

return(SL_InterCircleObstCheck(&LocCirc));

}

/* determines if VisionBug can see an obstacle from the beginning of the

given segment */

static int VisionCollision(SL_Segment *trans_ptr)

{

return(SL_InterSegmentObstCheck(trans_ptr));

}

static void SimuInit(void)

{

SL_MakeColor("obstacles", 0.35, 0.1, 0.1);

TactileBug = SL_Bug2Init(&(TactileMLine.start), &(TactileMLine.end),

0, STEP_SIZE, RobotCollision);

VisionBug = SL_Visbug21Init(&(VisionMLine.start), &(VisionMLine.end),

0, STEP_SIZE, VISION_RADIUS, VisionCollision);

}

static void SimuReset(void)

{

SL_BugReset(TactileBug, &(TactileMLine.start),&(TactileMLine.end));

SL_BugReset(VisionBug, &(VisionMLine.start),&(VisionMLine.end));

}

static void SimuRedraw(void)

{

SL_Circle bug_circle;

SL_SetDrawColor("blue");

bug_circle.radius = ROBOT_RADIUS;

SL_BugGetPos(TactileBug, &(bug_circle.center));

SL_DrawCircle(&bug_circle, 1);

bug_circle.radius = ROBOT_RADIUS/2;

39

SL_BugGetPos(VisionBug, &(bug_circle.center));

SL_DrawCircle(&bug_circle, 1);

SL_SetDrawColor("black");

SL_BugDrawPath(TactileBug);

SL_BugDrawPath(VisionBug);

SL_SetDrawThickness(2);

SL_SetDrawColor("magenta");

SL_DrawSegment(&TactileMLine);

SL_SetDrawColor("red");

SL_DrawSegment(&VisionMLine);

}

static int SimuStep(void) /* move each bug one step according to their

respective algorithms */

{

int tactile_step = SL_BugStep(TactileBug);

int vision_step = SL_BugStep(VisionBug);

return(tactile_step||vision_step);

}

static void ClickTarget(int x, int y, SL_Button btn) /* change target point */

{

if (!SL_SteppingOn())

switch(btn)

{

case SL_PRESS_LEFT:

TactileMLine.end.x = x; TactileMLine.end.y = y;

SL_BugGetPos(TactileBug, &(TactileMLine.start));

SL_BugReset(TactileBug, &(TactileMLine.start),&(TactileMLine.end));

SL_Redraw();

break;

case SL_PRESS_MIDDLE:

VisionMLine.end.x = x; VisionMLine.end.y = y;

SL_BugGetPos(VisionBug, &(VisionMLine.start));

SL_BugReset(VisionBug, &(VisionMLine.start),&(VisionMLine.end));

SL_Redraw();

break;

}

}

static void ChangeLocDir(int tog_on) /* change turning direction for bugs */

{

SL_BugSetLocDir(TactileBug, tog_on);

SL_BugSetLocDir(VisionBug, tog_on);

}

int main()

{

SL_Init(CVS_SIDE, CVS_SIDE, 1, SimuInit, SimuReset, SimuRedraw,

NULL, SimuStep, ClickTarget, NULL, NULL);

SL_AddToggle("L/R", ChangeLocDir);

SL_Loop();

return(0);

}

40

Figure 13: Application window for car.c

5 Robot Modeling

5.1 The Current Transformation Matrix and Modeling Transformation Stack

For building and manipulating complicated robot structures, the library provides a set of modeling functions,
which are described in Section 8.18. These functions are used to maintain a homogeneous matrix, the current
transformation matrix (CTM), that encodes a transformed coordinate system with respect to which objects
in the scene are speci�ed and drawn. The drawing functions assume objects are speci�ed with respect to
the CTM, which is the identity by default. The modeling functions provide a means by which this CTM
coordinate system may be translated, rotated, and scaled. Also provided are functions that extract the
rotation, translation, or scaling factor from the CTM and functions that transform primitives speci�ed in
world coordinates to CTM coordinates, and vice versa.

The modeling transformation stack (MTS) is a sequence of CTMs that can be maintained using the
functions SL ModelPush() and SL ModelPop(). This is useful for manipulating structures that are naturally
hierarchical, as the following program fragment illustrates.

5.2 A Programming Example | car.c

The program car.c, shown in its entirety in Appendix A, produces a window like the one shown in Figure 13.
The car shown in the middle of the screen can be moved using the buttons in the bottom row. The buttons
labeled \W+" and \W-" turn the wheels; the \W0" button straightens them. The \Fwd" and \Bwd"
buttons move the car forward and backward. The car is a hierarchical structure consisting of a body to
which are attached two axes, each with two wheels attached. Extracted below are the functions that are
used to draw the car.

static ModelAtFrontAxle(Car the_car)

{

SL_ModelIdentity();

SL_ModelTranslate(the_car->conf.front_axle.x, the_car->conf.front_axle.y);

SL_ModelRotateSinCos(-1.0, 0.0);

SL_ModelRotateSinCos(the_car->conf.axle_sin, the_car->conf.axle_cos);

}

static void DrawHeadLights(void)

{

static SL_Polygon LeftHL = {4, {{0,0},{-.2,0},{-.2,.05},{0,.1}}};

static SL_Polygon RightHL = {4, {{0,0},{.2,0},{.2,.05},{0,.1}}};

41

SL_ModelPush();

SL_ModelTranslate(-0.1, 0.2);

SL_DrawPolygon(&LeftHL, 0);

SL_ModelTranslate(0.2, 0.0);

SL_DrawPolygon(&RightHL, 0);

SL_ModelPop();

}

static void DrawWheel(double wheel_sin, double wheel_cos)

{

static SL_Polygon wheel_poly = {4, {{.05,-.2}, {.05,.2},

{-.05,.2}, {-.05,-.2}}};

SL_ModelPush();

SL_ModelRotateSinCos(wheel_sin, wheel_cos);

SL_DrawPolygon(&wheel_poly, 1);

SL_ModelPop();

}

static void DrawAxle(double wheel_sin, double wheel_cos)

{

static SL_Segment axle_segm = {{-.4,0},{.4,0}};

SL_DrawSegment(&axle_segm);

SL_ModelPush();

SL_ModelTranslate(-.4, 0.0);

DrawWheel(wheel_sin, wheel_cos);

SL_ModelTranslate(.8, 0.0);

DrawWheel(wheel_sin, wheel_cos);

SL_ModelPop();

}

void CarDraw(Car the_car)

{

static SL_Segment CenterAxle = {{0,0},{0,1.0}};

SL_SetDrawColor(the_car->body_color); /* draw the car body */

SL_DrawPolygon(&(the_car->body), 1);

SL_SetDrawColor("black");

SL_DrawPolygon(&(the_car->body), 0); /* outline it in black */

SL_ModelPush();

ModelAtFrontAxle(the_car);

SL_ModelScale(the_car->length);

DrawHeadLights();

DrawAxle(the_car->conf.wheel_sin, the_car->conf.wheel_cos);

SL_ModelTranslate(0.0, -1.0);

DrawAxle(0.0, 1.0);

SL_DrawSegment(&CenterAxle);

SL_ModelPop();

}

The CarDraw() function is called from the redraw callback. In this function, �rst the car body is drawn
with respect to the CTM (which is the identity), then this CTM is pushed onto the MTS and the coordinate
system is transformed in ModelAtFronAxle() so its origin is at the center of the front axle

SL_ModelTranslate(the_car->conf.front_axle.x, the_car->conf.front_axle.y);

and its x axis is aligned with the axle in the car's current con�guration.

SL_ModelRotateSinCos(-1.0, 0.0);

42

SL_ModelRotateSinCos(the_car->conf.axle_sin, the_car->conf.axle_cos);

The coordinate system is then scaled to correspond to the length of the car's body:

SL_ModelScale(the_car->length);

In the function DrawHeadlights(), the CTM for the front wheel axle is pushed onto the MTS and then
translations are performed to put the coordinate system at the appropriate place for the headlights. When the
headlights have been drawn, the call to SL ModelPop() restores the CTM to the front wheel axle coordinate
system. Similar manipulations of the CTM and MTS are done in DrawAxle() and DrawWheel(). Before
exiting the CarDraw() function, a call to SL ModelPop() is made to restore the CTM to its original state
before CarDraw()was called. As the structure of the code indicates, each call to SL ModelPush() is generally
paired with a call to SL ModelPop(). These calls are used to move up and down the model hierarchy. Using
the SL Model*() functions, the programmer is required to travel through the model hierarchy in this way.
The SL Frame ADT is a naturally hierarchical data structure that is built using the SL Model*() functions.
The functions for the SL Frame ADT, which eliminate the need for manually traversing the hierarchy after
it has been built, are described in the following section.

6 Frames

6.1 Frames and Fixtures

Hierarchical geometric structures, such as multi-link arm manipulators, can be built using the SL Frame
ADT, as the example in this section illustrates. The functions for this ADT are described in Section 8.19.
A frame is a transformable coordinate system with which a number of geometric primitives (�xtures) are
associated. The origin of each frame is considered to be the location of a joint in the geometric structure.
The joint may be either �xed, revolute, or prismatic. Each frame that is not a root frame also has a single
parent frame associated with it in the hierarchy. All transformations for the child frame are speci�ed with
respect to the parent frame. Each frame is created using the function:

SL_Frame SL_FrameCreate(SL_Frame the_parent, SL_FrameJoint j_type,

int draw_axes);

The parameter j type speci�es the type of joint to be located at the origin of the new coordinate system
(Section 7). The parameter draw axes indicates if the axes of the coordinate systems should be drawn when
the geometric structures attached to the frame are drawn.

After the call to SL FrameCreate(), the frame is considered to be \open". Transformations (transla-
tions, rotations, scalings) with respect to the parent frame can then be done using SL FrameTranslate(),
SL FrameRotate(), SL FrameRotateSinCos(), and SL FrameScale(). The location of the frame may also
be changed using SL FramSet() and SL FramePostMultiply(). If a frame is created as the root of the
hierarchy (by passing NULL as the �rst argument to SL FrameCreate()), transformations are done with
respect to the world coordinate system, the origin of which is in the lower left corner of the drawing canvas.

Fixtures are added to an open frame using the SL FrameAdd*() functions. When all transformations
have been performed and all �xtures have been added, a call to SL FrameClose() closes the frame.

Each of the SL FrameAdd*() functions has four parameters

void SL_FrameAddCircle(SL_Circle *circ_ptr, int check_collision,

char *draw_color, int draw_solid);

void SL_FrameAddPolygon(SL_Polygon *poly_ptr, int check_collision,

char *draw_color, int draw_solid);

void SL_FrameAddShape(SL_Shape *shape_ptr, int check_collision,

char *draw_color, int draw_solid);

The �rst is a pointer to the geometric primitive that is to be the new �xture. The third and fourth
indicate the drawing color and drawing mode (�lled or outline) for the primitive. The second is a
ag that

43

Figure 14: Application window for arm.c

indicates if this �xture should be checked for collisions with obstacles or shapes when either of the functions
SL CollideFrameObst() or SL CollideFrameShape() is called. These two functions accept a frame that is
the root of a hierarchy and check if any of the �xtures attached to the frame hierarchy for which this second
argument to the SL FrameAdd*() function was 1 collides with any of the obstacles in the ODB (Sections 3
and 8.15) or with the given shape.

To change the joint values of a speci�c frame's joint, the functions

void SL_FrameSetJoint(SL_Frame the_frame, double j_value);

void SL_FrameJointDelta(SL_Frame the_frame, double j_delta);

are provided in the library. Because of the hierarchical method of constructing frames, the positions of the
frames descendant from the frame are automatically updated to re
ect the frame's joint value change.

To draw the �xtures in a given frame hierarchy, a single call to

void SL_FrameDraw(SL_Frame the_frame);

is made with the hierarchy's root frame as the argument. All �xtures in the hierarchy are drawn in the color
and mode speci�ed when they were added to their respective frames.

Functions are also provided in the library for querying a given frame for its joint value, or its translation
vector, rotation angle, or scaling factor with respect to its parent frame or the world coordinate system and
for transforming points speci�ed in one frame into another frame. See Section 8.19 for more details.

6.2 A Programming Example { arm.c

The application window produced by the following program is shown in Figure 14. The arm shown has two
�xed joints (at its base and the base of the gripper), one prismatic joint (at the base of the long rectangle)
and four revolute joints. The non�xed joints are numbered from 1 to 5 and their values may be changed
using the keys indicated in the status bar message. Obstacles may be added to the environment using the
Obstacle menu. When the Go button is pressed, all the non�xed joints of the arm will begin to move. If the
arm collides with an obstacle, it will rebound o� the obstacle and begin to move in the opposite direction.
This continues until the Go button is pressed again. The Reset option of the Simulation menu puts the arm
back in its starting position (where all joint values are 0).

#include <stdio.h>

#include <math.h>

#include <string.h>

#include "SL.h"

44

#define CVS_SIDE 500

/* simulation state variables */

static SL_Frame Base, Th1, Th2, D3, Hand, Th4, Th5;

static double arg;

static double arg_step;

static void MakeArm(void)

{

static SL_Polygon FloorPoly = {4, {{70,-10},{70,0},{-70,0},{-70,-10}}};

static SL_Polygon BasePoly = {8, {{40,0},{50,0},{50,35},{-50,35},

{-50,0},{-40,0},{-40,25},{40,25}}};

static SL_Polygon L1Poly = {4, {{19.6,4},{9.8,52},{-9.8,52},{-19.6,4}}};

static SL_Circle L1Base = {20, {0,0}};

static SL_Circle L1Tip = {10, {0,0}};

static SL_Polygon L2Poly = {4, {{5,-25},{5,75},{-5,75},{-5,-25}}};

static SL_Polygon PalmPoly = {4, {{10,0},{10,5},{-10,5},{-10,0}}};

static SL_Polygon FingerPoly = {4, {{2.5,0},{2.5,15},{-2.5,15},{-2.5,0}}};

Base = SL_FrameCreate(NULL, SL_FIXED, 1);

SL_FrameTranslate(CVS_SIDE*0.5, CVS_SIDE*0.25);

SL_FrameScale(1.5);

SL_FrameAddPolygon(&FloorPoly, 0, "black", 1);

SL_FrameAddPolygon(&BasePoly, 0, "magenta", 1);

SL_FrameClose();

Th1 = SL_FrameCreate(Base, SL_REVOL_CW, 1);

SL_FrameTranslate(0.0, 25.0);

SL_FrameAddCircle(&L1Base, 1, "grey", 1);

SL_FrameAddPolygon(&L1Poly, 1, "grey", 1);

SL_FrameClose();

Th2 = SL_FrameCreate(Th1, SL_REVOL_CCW, 1);

SL_FrameTranslate(0.0, 50.0);

SL_FrameRotate(-SL_PI_OV_2);

SL_FrameAddCircle(&L1Tip, 1, "grey", 1);

SL_FrameClose();

D3 = SL_FrameCreate(Th2, SL_PRISM_Y, 1);

SL_FrameAddPolygon(&L2Poly, 1, "red", 1);

SL_FrameClose();

Hand = SL_FrameCreate(D3, SL_FIXED, 1);

SL_FrameTranslate(0.0, 75.0);

SL_FrameAddPolygon(&PalmPoly, 1, "blue", 1);

SL_FrameClose();

Th4 = SL_FrameCreate(Hand, SL_REVOL_CW, 1);

SL_FrameTranslate(-7.5, 5.0);

SL_FrameRotate(SL_PI*0.25);

SL_FrameAddPolygon(&FingerPoly, 1, "blue", 1);

SL_FrameClose();

Th5 = SL_FrameCreate(Hand, SL_REVOL_CCW, 1);

SL_FrameTranslate(7.5, 5.0);

45

SL_FrameRotate(-SL_PI*0.25);

SL_FrameAddPolygon(&FingerPoly, 1, "blue", 1);

SL_FrameClose();

}

static void SimuInit(void)

{

SL_MakeColor("obstacles", 0.35, 0.1, 0.1);

MakeArm();

SL_PrintToStatusBar("1:Th1+, q:Th1-, 2:Th2+, w:Th2-, 3:D3+, e:D3-, 4:Th4 & Th5+, r:Th4 & Th5-");

}

static void SimuReset(void)

{

arg = 0;

arg_step = SL_PI*0.01;

SL_FrameSetJoint(Th1, 0.0);

SL_FrameSetJoint(Th2, 0.0);

SL_FrameSetJoint(D3, 0.0);

SL_FrameSetJoint(Th4, 0.0);

SL_FrameSetJoint(Th5, 0.0);

}

static void SimuRedraw(void)

{

SL_FrameDraw(Base);

}

static int SimuStep(void)

{

arg+=arg_step;

SL_FrameSetJoint(Th1, sin(arg));

SL_FrameSetJoint(Th2, sin(2.0*arg));

SL_FrameSetJoint(D3, 15.0*sin(arg));

SL_FrameSetJoint(Th4, sin(arg));

SL_FrameSetJoint(Th5, sin(arg));

if (SL_CollideFrameObst(Base))

{

arg_step*=-1.0;

arg+=arg_step;

SL_FrameSetJoint(Th1, sin(arg));

SL_FrameSetJoint(Th2, sin(2.0*arg));

SL_FrameSetJoint(D3, 15.0*sin(arg));

SL_FrameSetJoint(Th4, sin(arg));

SL_FrameSetJoint(Th5, sin(arg));

}

return(1);

}

static void KbdCbk(char the_key, int key_pressed)

{

if (key_pressed)

{

switch(the_key)

{

case '1': SL_FrameJointDelta(Th1, SL_PI*0.05);

46

break;

case 'q': SL_FrameJointDelta(Th1, -SL_PI*0.05);

break;

case '2': SL_FrameJointDelta(Th2, SL_PI*0.05);

break;

case 'w': SL_FrameJointDelta(Th2, -SL_PI*0.05);

break;

case '3': SL_FrameJointDelta(D3, 5.0);

break;

case 'e': SL_FrameJointDelta(D3, -5.0);

break;

case '4': SL_FrameJointDelta(Th4, SL_PI*0.05);

SL_FrameJointDelta(Th5, SL_PI*0.05);

break;

case 'r': SL_FrameJointDelta(Th4, -SL_PI*0.05);

SL_FrameJointDelta(Th5, -SL_PI*0.05);

break;

}

SL_Redraw();

}

}

int main()

{

SL_Init(CVS_SIDE, CVS_SIDE, 1, SimuInit, SimuReset, SimuRedraw,

NULL, SimuStep, NULL, NULL, KbdCbk);

SL_Loop();

return(0);

}

7 The Structures, Constants, and Macros in the Library

The header �le, SL.h, contains the de�nitions of all structures, constants, and macros used in the library.
These are described below.

The following constants are de�ned in SL.h.

=� Some utility constants not specific to the simulation library �=
SL PI =� � �=
SL TWO PI =� 2� �=
SL PI OV 2 =� �=2 �=
SL PI OV 4 =� �=4 �=
SL 1 OV PI =� 1=� �=
SL 180 OV PI =� 180=� �=
SL PI OV 180 =� �=180 �=
SL E =� e, the natural log base �=

SL SQRT2 =� p
2 �=

SL SQRT3 =� p
3 �=

SL SMALL =� 1.0e-12, a floating point number close to 0 �=
SL LARGE =� 1.0e+12, a large floating point number �=

=� Constant used to define the SL Polygon and SL Polyline structures �=

SL MAX VTX =� maximum number of vertices for a polygon (polyline) �=

47

=� The constant values that are used to represent to the mouse click

callback function which mouse button was either pressed or released. �=

typedef enum f
SL PRESS LEFT, =� left mouse button pressed �=
SL PRESS MIDDLE, =� middle mouse button pressed �=
SL PRESS RIGHT, =� right mouse button pressed �=
SL RELEASE LEFT, =� left mouse button released �=
SL RELEASE MIDDLE, =� middle mouse button released �=
SL RELEASE RIGHT =� right mouse button released �=

g SL Button;

=� The constant values used to indicate the type of shape stored in

an SL Shape structure �=

typedef enum f
SL POINT,

SL VECTOR,

SL SEGMENT,

SL CIRCLE,

SL ARC,

SL POLYLINE,

SL POLYGON

g SL ShapeType;

=� The constant values used to indicate the joint types for the SL Frame ADT �=

typedef enum f
SL FIXED, =� a fixed joint (i.e., it does not move) �=
SL REVOL CW, =� a clockwise revolute joint �=
SL REVOL CCW, =� a counterclockwise revolue joint �=
SL PRISM X, =� a prisimatic joint moving in the x direction �=
SL PRISM Y =� a prismatic joint moving in the y direction �=

g SL FrameJoint;

Also de�ned are the following handy macros.

SL SIGNUM(a) =� 1, 0, or -1 depending on if a is >;=; or < 0,

respectively �=
SL MAX(a,b) =� computes the maximum of a and b �=
SL MIN(a,b) =� computes the minimum of a and b �=
SL ABS(a) =� computes the absolute value of a �=
SL ODD(a) =� determines if a is odd or not �=
SL SQR(a) =� computes a2 �=
SL SWAP(a,b,type) =� given the type (e.g., int) of the two values a

and b will interchange their values �=
SL Negligible(val) =� determines if val is sufficiently close to 0

to be ignored �=
SL BoundVal(val,low,hi) =� returns the value in the range [low; hi]

closest to val �=
SL InClosedInterval(t,low,hi) =� determines if t 2 [low; hi] �=
SL InOpenInterval(t,low,hi) =� determines if t 2 (low; hi) �=

The primitive structures of the library are shown below.

typedef struct f

48

double x; =� the x coordinate of the point �=
double y; =� the y coordinate of the point �=

g SL Point, SL Vector;

typedef struct f
SL Point start; =� the starting point of the segment �=
SL Point end; =� the ending point of the segment �=

g SL Segment;

typedef struct f
SL Point center; =� the center of the arc �=
double radius; =� the radius of the arc �=
double start ang; =� CCW radian measurement for starting arc angle �=
double end ang; =� CCW radian measurement for ending arc angle �=

g SL Arc;

typedef struct f
SL Point center; =� the center of the circle �=
double radius; =� the radius of the circle �=

g SL Circle;

typedef struct f
int size; =� the number of vertices in the polygon �=
SL Point vertex[SL MAX VTX];

=� counterclockwise list of vertices with

the first vertex not repeated �=
g SL Polygon, SL Polyline;

In addition, a more general structure, the SL Shape, is provided.

typedef struct f
SL ShapeType type; =� indicates which primitive structure this shape is �=
union

f
SL Point the point;

SL Vector the vector;

SL Segment the segment;

SL Circle the circle;

SL Arc the arc;

SL Polyline the polyline;

SL Polygon the polygon;

g data;

g SL Shape;

The following abstract data types (ADTs) are also de�ned:

SL Bug;

SL List;

SL Transf;

SL Frame;

The routines for manipulating objects of type SL Bug are described in Section 8.16; routines for the SL Transf

ADT are described in Section 8.17; SL Frame functions are described in Section 8.19; routines for the SL List

ADT and described in Section 8.20.

49

8 A Browse Through the Library

8.1 Utility Functions

The following functions are not speci�c to any of the library structures.

double SL Modulo(

double value =� a real number to compute modulus of �=
double modulo =� the modulo, a positive real number �=

)

SL Modulo() accepts two real numbers and returns the value of the �rst number modulo the second. If the
second number is negative, the function returns 0.

double SL DegreesToRadians(

double degrees =� the degree measurement �=
)

SL DegreesToRadians() accepts a number representing a certain degree angle measurement and returns the
equivalent angle value in radians.

double SL RadiansToDegrees(

double radians =� the radian angle measurement �=
)

SL RadiansToDegrees() accepts a number representing a certain radian angle measurement and returns the
equivalent angle value in degrees.

double SL RandomNumber(

double min, =� lower bound of range for generated number �=
double max =� upper bound of range for generated number �=

)

SL RandomNumber() returns a random number in the range [min,max].

int SL QuadraticRoots(

double a, =� the coefficient of the quadratic term �=
double b, =� the coefficient of the linear term �=
double c, =� the constant term �=
double �root1 ptr, =� pointer to first root of equation �=
double �root2 ptr =� pointer to second root of equation �=

)

SL QuadraticRoots() computes the real roots of the quadratic equation ax2 + bx + c = 0. The function
returns the number of real roots found. If the equation is of the form c = 0, the function returns 0 indicating
that there are either no roots or an in�nite number of roots. If the roots are imaginary, the function also
returns 0. In both of these cases, �root1 and �root2 will remain unchanged. If the equation is linear, the
single root will be stored in �root1, and �root2 will remain unchanged.

void SL MatrixTranspose2x2(

double the matrix[2][2] =� matrix to transpose �=
double transp mat[2][2]) =� the transposed matrix �=

)

void SL MatrixTranspose3x3(

double the matrix[3][3] =� matrix to transpose �=
double transp mat[3][3]) =� the transposed matrix �=

)

50

These two functions compute transposes of given 2� 2 or 3� 3 matrices.

double SL MatrixDeterminant2x2(

double the matrix[2][2] =� matrix to compute determinant of �=
)

double SL MatrixDeterminant3x3(

double the matrix[3][3] =� matrix ot compute determinant of �=
)

These two functions compute determinants of given 2� 2 or 3� 3 matrices.

int SL MatrixInvert2x2(

double orig matrix[2][2], =� the matrix to invert �=
double inv matrix[2][2] =� the inverted matrix �=

)

int SL MatrixInvert3x3(

double orig matrix[3][3], =� the matrix to invert �=
double inv matrix[3][3] =� the inverted matrix �=

)

These two functions invert given 2� 2 or 3� 3 matrices. If the determinant of the original matrix is 0, the
function returns 0 leaving inv matrix unchanged. Otherwise, the function returns 1.

void SL MatrixProduct2x2(

double m1[2][2], =� the first matrix �=
double m2[2][2] =� the second matrix �=
double m1xm2[2][2] =� the product of m1 and m2 �=

)

void SL MatrixProduct3x3(

double m1[3][3], =� the first matrix �=
double m2[3][3] =� the second matrix �=
double m1xm2[3][3] =� the product of m1 and m2 �=

)

These two functions compute the matrix product m1m2 for two given 2� 2 or 3� 3 matrices.

void SL MatrixTimesVector2x2(

double the mat[2][2], =� the matrix �=
double the vec[2] =� the vector to multiply �=
double res vec[2] =� the product the mat * the vec �=

)

void SL MatrixTimesVector3x3(

double the mat[3][3], =� the matrix �=
double the vec[3] =� the vector to multiply �=
double res vec[3] =� the product the mat * the vec �=

)

Each of these two functions computes the product of a given 2 � 2 or 3 � 3 matrix the mat and a given
column vector the vec. The resulting vector is stored in res vec.

51

int SL MatrixSolve2x2(

double coeff[2][2], =� row-major matrix of linear coefficients �=
double rhs[2], =� column vector of right-hand-side values �=
double result[2] =� column vector of solutions �=

)

SL MatrixSolve2x2() solves a linear system of two equations with two unknowns given in the form:
�
coeff0;0 coeff0;1
coeff1;0 coeff1;1

� �
result0
result1

�
=

�
rhs0
rhs1

�

If this linear system does not have a solution, the function returns 0 and leaves the array result unchanged.
Otherwise, the function returns 1.

int SL MatrixSolve3x3(

double coeff[3][3], =� row-major matrix of linear coefficients �=
double rhs[3], =� column vector of right-hand-side values �=
double result[3] =� column vector of solutions �=

)

SL MatrixSolve3x3() solves a linear system of three equations with three unknowns given in the form:
2
4 coeff0;0 coeff0;1 coeff0;2

coeff1;0 coeff1;1 coeff1;2
coeff2;0 coeff2;1 coeff2;2

3
5
2
4 result0

result1
result2

3
5 =

2
4 rhs0

rhs1
rhs2

3
5

If this linear system does not have a solution, the function returns 0 and leaves the array result unchanged.
Otherwise, the function returns 1.

8.2 Point and Vector Functions

double SL VectorDotProduct(

SL Vector �vec1 ptr, =� pointer to first vector �=
SL Vector �vec2 ptr =� pointer to second vector �=

)

SL VectorDotProduct() returns the dot product (scalar product) of two vectors based at the origin.

double SL VectorCrossProduct(

SL Vector �vec1 ptr, =� pointer to first vector �=
SL Vector �vec2 ptr =� pointer to second vector �=

)

SL VectorCrossProduct computes the signed magnitude of the z component of �vec1 ptr � �vec2 ptr.
Since the vectors are two-dimensional, the x and y components of the cross product are trivially zero.

double SL VectorLength(

SL Vector �vec ptr =� pointer to vector of which to compute length �=
)

SL VectorLength() returns the length (magnitude) of the given vector.

double SL VectorLengthSQR(

SL Vector �vec ptr =� pointer to vector of which to compute length �=
)

SL VectorLengthSQR() returns the square of the length of the given vector, thus avoiding the expensive
square-root operation.

52

int SL VectorNull(

SL Vector �vec ptr =� pointer to vector in question �=
)

SL VectorNull() returns 1 if the input vector is of length 0 and returns 0 otherwise.

int SL VectorNormalize(

SL Vector �vec ptr, =� pointer to vector to normalize �=
SL Vector �unit vec ptr =� pointer to resulting unit length vector �=

)

SL VectorNormalize() converts a given vector based at the origin into a unit length vector in the same
direction. If the length of �vec ptr is 0, the function returns 0, leaving �unit vec ptr unchanged. Otherwise,
the function returns 1 and stores the resulting normalized vector in �unit vec ptr.

double SL VectorPolarAngle(

SL Vector �vec ptr =� pointer to vector of which to compute angle �=
)

SL VectorPolarAngle() computes the counterclockwise angle the given vector makes with the horizontal.
The value returned will be this radian angle measurement in the range [��; �]. If the vector is of length 0,
the function returns 0.

int SL VectorPolarAttributes(

SL Vector �vec ptr, =� pointer to the vector in question �=
double �sin ptr, =� pointer to sine of polar angle �=
double �cos ptr, =� pointer to cosine of polar angle �=
double �length ptr =� pointer to length of vector �=

)

SL VectorPolarAttributes() computes the sine and cosine of the counterclockwise angle the given vector
makes with the horizontal and stores these values in �sin ptr and �cos ptr, respectively. It also computes
the length of the given vector and stores the result in �length ptr. The function returns 0 if the length of
the vector is 0, leaving �sin ptr and �cos ptr unchanged (�length ptr will have the value 0); otherwise,
the function returns 1.

double SL VectorToVectorAngle(

SL Vector �vec1 ptr, =� pointer to vector from which to compute angle �=
SL Vector �vec2 ptr =� pointer to vector to which to compute angle �=

)

SL VectorToVectorAngle() computes the counterclockwise angle from �vec1 ptr to �vec2 ptr. The radian
angle measurement returned by the function will be in the range [��; �]. If either of the vectors is of length
0, the function returns 0.

void SL VectorRotate(

SL Vector �vec ptr, =� pointer to vector to be rotated �=
double angle, =� number of radians by which to rotate vector about

the origin in the counterclockwise direction �=
SL Vector �rot vec ptr, =� pointer to vector that results from rotation �=

)

SL VectorRotate() rotates a vector about the origin by a speci�ed number of radians producing a new
vector, �rot vec ptr. The rotation is done in the counterclockwise direction.

53

void SL VectorRotateSinCos(

SL Vector �vec ptr, =� pointer to vector to be rotated �=
double the sin, =� sine of the angle by which to rotate �=
double the cos, =� cosine of the angle by which to rotate �=
SL Vector �rot vec ptr =� pointer to vector that results from rotation �=

)

SL VectorRotateSinCos() rotates a vector about the origin by a certain angle, the sine and cosine of which
are provided. (This avoids the rather expensive calls to the functions to compute the sine and cosine.) The
rotation is done in the counterclockwise direction and the resulting vector is stored in �rot vec ptr.

void SL VectorScale(

SL Vector �vec ptr, =� pointer to vector to be scaled �=
double scale, =� the amount by which to scale the vector �=
SL Vector �scaled vec ptr =� pointer to vector that results from scaling �=

)

SL VectorScale()multiplies a given vector by a scaling factor storing the vector that results in �scaled vec ptr.

int SL VectorProjection(

SL Vector �vec1 ptr, =� pointer to vector to be projected �=
SL Vector �vec2 ptr, =� pointer to vector onto which to project �=
SL Vector �proj vec ptr =� pointer to vector that results when �vec1 ptr

is projected onto �vec2 ptr �=
)

SL VectorProjection() projects one vector (�vec1 ptr) onto another (�vec2 ptr) producing a third vector
(�proj vec ptr). If the vector onto which the projection is to be done is of length 0, the function returns 0
without changing �proj vec ptr; otherwise, the function returns 1.

void SL VectorMidpoint(

SL Vector �vec ptr, =� pointer to vector of which to find midpoint �=
SL Point �mid ptr =� pointer to location in which to store midpoint �=

)

SL VectorMidpoint() computes the coordinates of the point in the middle of a given vector.

void SL VectorNormal(

SL Vector �vec ptr, =� pointer to vector to which to find normal �=
SL Vector �norm ptr =� pointer to location in which to store normal �=

)

SL VectorNormal() computes a normal to a given vector. The normal calculated is the one that is 90 degrees
in the counterclockwise direction from the original.

void SL VectorAdd(

SL Vector �vec1 ptr, =� pointer to vector to be added �=
SL Vector �vec2 ptr, =� pointer to vector to be added �=
SL Vector �v1 plus v2 ptr =� pointer to resulting vector �=

)

SL VectorAdd() adds two given vectors producing a new vector.

void SL VectorSubtract(

SL Vector �vec1 ptr, =� pointer to vector to subtract �vec2 ptr from �=
SL Vector �vec2 ptr, =� pointer to vector to subtract from �vec1 ptr �=
SL Vector �v1 minus v2 ptr =� pointer to resulting vector �=

)

54

SL VectorSubtract() subtracts �vec2 ptr from �vec1 ptr storing the result in �v1 minus v2 ptr.

int SL MoveTowardsPoint(

SL Point �current ptr, =� pointer to current point �=
SL Point �target ptr, =� pointer to target point �=
double distance, =� the distance to move �=
SL Point �new pos ptr =� pointer to new location resulting from moving

the given distance �=
)

SL MoveTowardsPoint() computes the new point that results from moving from �current ptr a certain
distance along the directed line de�ned by �current ptr and �target ptr. This distance has no bounds
(i.e, it may be greater than the distance between �current ptr and �target ptr and may be negative).
The resulting point is stored in �new pos ptr. If the two points that de�ne the line segment coincide, the
function returns 0 leaving �new pos ptr unchanged; otherwise the function returns 1.

int SL PointInRightSemiPlane(

SL Segment �seg ptr, =� pointer to segment in question �=
SL Point �pnt ptr =� pointer to point in question �=

)

SL PointInRightSemiPlane() determines if the given point is in the right semiplane of the line de�ned by
the given segment. If the point lies to the right of the de�ned line, the function returns 1; if the point lies to
the left of the de�ned line, the function returns 0; if the length of the segment is 0, the function returns -1.

void SL PointInterpolate(

SL Point �start ptr, =� pointer to starting interpolation point �=
SL Point �end ptr, =� pointer to ending interpolation point �=
double t, =� the interpolation parameter �=
SL Point �result ptr =� pointer to resulting interpolated point �=

)

SL PointInterpolate() performs a linear interpolation between two points using a given parameter value
t. For t 2 [0; 1] the interpolated point (�result ptr) will fall linearly in the interval [�start ptr,�end ptr].

int SL LeftTurn(

SL Point �pnt1 ptr =� pointer to the first point �=
SL Point �pnt2 ptr =� pointer to the second point �=
SL Point �pnt3 ptr =� pointer to the third point �=

)

SL LeftTurn() determines if a left turn is made when moving from �pnt1 ptr through �pnt2 ptr to
�pnt3 ptr (i.e., if the movement is counterclockwise with respect to �pnt1 ptr) returning 1 if this is true
and 0 otherwise.

int SL RightTurn(

SL Point �pnt1 ptr =� pointer to the first point �=
SL Point �pnt2 ptr =� pointer to the second point �=
SL Point �pnt3 ptr =� pointer to the third point �=

)

SL RightTurn() determines if a right turn is made when moving from �pnt1 ptr through �pnt2 ptr to
�pnt3 ptr (i.e., if the movement is clockwise with respect to �pnt1 ptr) returning 1 if this is true and 0
otherwise.

55

int SL Collinear(

SL Point �pnt1 ptr =� pointer to the first point �=
SL Point �pnt2 ptr =� pointer to the second point �=
SL Point �pnt3 ptr =� pointer to the third point �=

)

SL Collinear() determines if the three given points are all on the same line and returns 1 if this is true
and 0 otherwise.

8.3 Segment Functions

Many of the functions listed in this section are completely analogous to those listed in Section 8.2 for vectors.
These functions should be used when dealing with directed segments, which can also be thought of as vectors
not based at the origin.

double SL SegmentDotProduct(

SL Segment �seg1 ptr, =� pointer to first segment �=
SL Segment �seg2 ptr =� pointer to second segment �=

)

SL SegmentDotProduct() returns the dot product (scalar product) of two segments after each has been
translated to the origin. The two segments remain unchanged.

double SL SegmentLength(

SL Segment �seg ptr =� pointer to segment of which to compute length �=
)

SL SegmentLength() returns the length (magnitude) of the given segment.

double SL SegmentLengthSQR(

SL Segment �seg ptr =� pointer to segment of which to compute length �=
)

SL SegmentLengthSQR() returns the squared length of the give segment (thus avoiding the rather expensive
square-root operation).

int SL SegmentNull(

SL Segment �seg ptr =� pointer to segment in question �=
)

SL SegmentNull() returns 1 if the given segment is of length 0 and returns 0 otherwise.

double SL SegmentPolarAngle(

SL Segment �seg ptr =� pointer to segment of which to compute angle �=
)

SL SegmentPolarAngle() computes the counterclockwise angle the given segment makes with the horizontal.
The value returned will be in radians in the range [��; �]. If the segment is of length 0, the function returns
0.

int SL SegmentPolarAttributes(

SL Segment �seg ptr, =� pointer to the segment in question �=
double �sin ptr, =� pointer to sine of polar angle �=
double �cos ptr, =� pointer to cosine of polar angle �=
double �length ptr =� pointer to length of segment �=

)

56

SL SegmentPolarAttributes() computes the sine and cosine of the counterclockwise angle the given seg-
ment makes with the horizontal and stores these values in �sin ptr and �cos ptr, respectively. It also
computes the length of the given segment and stores the result in �length ptr. The function returns 0 if
the length of the segment is 0, leaving �sin ptr and �cos ptr unchanged (�length ptr will have the value
0); otherwise, the function returns 1.

double SL SegmentToSegmentAngle(

SL Segment �seg1 ptr, =� pointer to segment from which to compute angle �=
SL Segment �seg2 ptr =� pointer to segment to which to compute angle �=

)

SL SegmentToSegmentAngle() computes the counterclockwise angle from �seg1 ptr to �seg2 ptr. The
radian angle measurement returned by the function will be in the range [��; �]. If either of the segments is
of length 0, the function returns 0.

void SL SegmentRotate(

SL Segment �seg ptr, =� pointer to segment to be rotated �=
double angle =� number of radians by which to rotate segment

about starting point in the CCW direction �=
SL Segment �rot seg ptr, =� pointer to rotated segment �=

)

SL SegmentRotate() rotates a segment about its starting point by a speci�ed number of radians producing
a new segment, �rot seg ptr. The rotation is done in the counterclockwise direction.

void SL SegmentRotateSinCos(

SL Segment �seg ptr, =� pointer to segment to be rotated �=
double the sin, =� the sine of the angle by which to rotate �=
double the cos, =� the cosine of the angle by which to rotate �=
SL Segment �rot seg ptr =� pointer to rotated segment �=

)

SL SegmentRotateSinCos() rotates a segment about its starting point by a certain angle, the sine and
cosine of which are provided. (This avoids the rather expensive calls to the functions to compute the sine
and cosine.) The rotation is done in the counterclockwise direction and the resulting segment is stored in
�rot seg ptr.

void SL SegmentMove(

SL Segment �seg ptr, =� pointer to segment to be translated �=
SL Point �new start ptr =� pointer to new starting point for segment �=
SL Segment �trans seg ptr, =� pointer to translated segment �=

)

SL SegmentMove() moves a segment, maintaining its length and orientation, so its starting point is at the
point �new start ptr. The translated segment is returned in the parameter �trans seg ptr.

void SL SegmentScale(

SL Segment �seg ptr, =� pointer to segment to be scaled �=
double scale, =� the amount by which to scale the segment �=
SL Segment �scaled seg ptr =� pointer to scaled segment �=

)

SL SegmentScale() resizes a given segment using a given scaling factor storing the resulting segment in
�scaled seg ptr. The scaled segment has the same starting point as the original segment and an adjusted
ending point. The scaling factor represents a fraction of the segment length by which to adjust the ending
point. For example, if the segment has starting point (5; 5) and ending point (7; 8) and the scaling factor is
3.5, the scaled segment will have starting point (5; 5) and ending point (12:0; 15:5).

57

int SL SegmentProjection(

SL Point �pnt ptr, =� pointer to point to be projected �=
SL Segment �seg ptr, =� pointer to segment onto which to project �=
SL Point �proj pnt ptr =� pointer to projected point �=

)

SL SegmentProjection() projects a point onto a directed segment producing another point that is on the
line de�ned by the segment. The projected point will not necessarily be between the endpoints of the
segment. If the length of the segment is 0, the function returns 0; otherwise, the function returns 1.

void SL SegmentMidpoint(

SL Segment �seg ptr, =� pointer to segment of which to find midpoint �=
SL Point �mid ptr =� pointer to location in which to store midpoint �=

)

SL SegmentMidpoint() computes the location of the point in the middle of the given segment.

8.4 Polygon and Polyline Functions

Note that all the SL Polygon*() functions described in this section work equally well for variables declared as
SL Polyline structures. The one case where the computation di�ers for the SL Polygon and SL Polyline

structures is in deciding if there is a self-intersection. In this case, there is a separate function provided
speci�cally for the SL Polyline structure.

int SL PolygonConvexHull(

SL Polygon �pgon ptr, =� pointer to the polygon in question �=
SL Polygon �hull ptr =� pointer to location for convex hull �=

)

SL PolygonConvexHull() computes the convex hull of a given polygon and returns the list of vertices of the
convex hull in the parameter �hull ptr. The convex hull vertices are listed in counterclockwise order, which
may not be the same order as they appear in the original polygon, �pgon ptr. If the �pgon ptr has less
than three vertices, the function returns 0, leaving �hull ptr unchanged. Otherwise, the function returns
1.

int SL PolygonInCCWOrder(

SL Polygon �pgon ptr =� pointer to the polygon in question �=
)

SL PolygonInCCWOrder() determines if the vertices of the given polygon are listed in counterclockwise order.
If so, the function returns 1. If the vertices are in clockwise order, the function returns 0.

void SL PolygonCentroid(

SL Polygon �pgon ptr, =� pointer to polygon in question �=
SL Point �centroid ptr =� pointer to location for average vertex �=

)

SL PolygonCentroid() computes the average position of the vertices of a polygon, storing the average vertex
in �centroid ptr.

void SL PolygonScale(

SL Polygon �pgon ptr, =� pointer to polygon to scale �=
double scale =� amount by which to scale �=

)

58

SL PolygonScale() scales the vertices of a polyon with respect to the polygon's centroid. That is, if scale
= 0, all vertices shrink to the centroid; if scale = 1, the polygon remains unchanged. The scaled polygon
is returned through the parameter �pgon ptr.

void SL PolygonRotate(

SL Polygon �pgon ptr, =� pointer to polygon to rotate �=
double angle =� angle by which to rotate �=

)

SL PolygonRotate() rotates all the vertices of a polygon about its centroid in the counterclockwise direction
by the given angle. The rotated polygon is returned through the parameter �pgon ptr.

void SL PolygonRotateSinCos(

SL Polygon �pgon ptr, =� pointer to polygon to rotate �=
double the sin, =� sine of the rotation angle �=
double the cos =� cosine of the rotation angle �=

)

SL PolygonRotateSinCos() rotates all the vertices of a polygon about is centroid in the counterclockwise
direction by a certain angle, the sine and cosine of which are given. The rotated polygon is returned through
the parameter �pgon ptr.

void SL PolygonPointRotate(

SL Polygon �pgon ptr, =� pointer to polygon to rotate �=
SL Point �pnt ptr, =� point around which to rotate �=
double angle =� angle by which to rotate �=

)

SL PolygonPointRotate() rotates all the vertices of a polygon about a given point in the counterclockwise
direction by a certain angle. The rotated polygon is returned through the parameter �pgon ptr.

void SL PolygonPointRotateSinCos(

SL Polygon �pgon ptr, =� pointer to polygon to rotate �=
SL Point �pnt ptr, =� point around which to rotate �=
double the sin =� sine of rotation angle �=
double the cos =� cosine of rotation angle �=

)

SL PolygonPointRotateSinCos() rotates all the vertices of a polygon about a given point in the coun-
terclockwise direction by a certain angle, the sine and cosine of which are given. The rotated polygon is
returned through the parameter �pgon ptr.

void SL PolygonMove(

SL Polygon �pgon ptr, =� pointer to polygon to be translated �=
SL Point �new centroid ptr =� pointer to desired centroid �=

)

SL PolygonMove()moves a polygon rigidly to make its new centroid corresponds to the point �new centroid ptr.
The repositioned polygon is returned through the parameter �pgon ptr.

double SL PolygonAverageRadius(

SL Polygon �pgon ptr =� pointer to polygon in question �=
)

SL PolygonAverageRadius() computes the average distance of all the polygon's vertices from the polygon's
centroid.

59

int SL PolygonClosestVertex(

SL Polygon �pgon ptr, =� pointer to polygon in question �=
SL Point �pnt ptr =� pointer to point in question �=

)

SL PolygonClosestVertex() returns the index of the vertex of a given polygon that is closest to a given
point. If the polygon has less than 3 vertices, the function returns -1.

int SL PolylineSelfInter(

SL Polyline �pline ptr =� pointer to polyline in question �=
)

int SL PolygonSelfInter(

SL Polygon �pgon ptr =� pointer to polygon in question �=
)

SL PolylineSelfInter() (SL PolygonSelfInter()) determines if a polyline (polygon) is self-intersecting.
The function returns 1 if any two nonconsecutive edges of the given polyline (polygon) intersect and returns
0 otherwise.

8.5 SL Shape Functions

The SL Shape data type is a generalized library primitive. It can represent any primitive using using appro-
priate values for its type and data �elds. Generalized functions for computing, for example, distances and
intersections between shapes are presented in the appropriate sections. The following two functions are used
to save and load SL Lists of shapes to and from �les. The format of a shapes �le is as follows. The data for
each shape is on a single line in the �le. Each line begins with a word indicating the type of shape, followed
by the data for that shape as indicated below:

POINT x y

VECTOR x y

SEGMENT xstart ystart xend yend
POLYLINE size xv1 yv1 xv2 yv2 : : :

POLYGON size xv1 yv1 xv2 yv2 : : :

ARC radius xcenter ycenter StartAngle EndAngle

CIRCLE radius xcenter ycenter

void SL SaveShapesFile(

char �filename =� name of file in which to save shapes �=
SL List shape list =� list of shapes to save �=

)

SL SaveShapesFile() stores an SL List of shapes in a �le so the shapes may be restored for future use. If
the �le �filename already exists, it will be overwritten.

SL List SL LoadShapesFile(

char �filename =� name of file from which to load shapes �=
)

SL LoadShapesFile() reads a collection of shapes from a �le and returns an SL List in which each element
is an SL Shape. If the �le �filename does not exist or is unreadable, the function returns NULL.

int SL CollideShapeShape(

SL Shape �shape1 ptr =� pointer to first shape �=
SL Shape �shape2 ptr =� pointer to second shape �=

)

60

SL CollideShapeShape() determines if the two shapes �shape1 ptr and �shape2 ptr collide with each
other. Two shapes are said to collide if they intersect or one is completely contained within the other. If the
shapes collide, the function returns 1; otherwise it returns 0.

8.6 Canvas Polygon Functions

The canvas polygon is the four-vertex polygon that surrounds the rectangular drawing canvas. The vertices
of this polygon may be retrieved using the following function:

void SL GetCanvasPolygon(

SL Polygon �pgon ptr, =� pointer to the polygon �=
)

SL GetCanvasPolygon() stores the vertices of the canvas polygon in the parameter �pgon ptr.
Manipulation of the vertices of this polygon will not alter the shape or size of the drawing canvas. The

following functions are used to test for and calculate intersections with the canvas polygon for each of the
primitives in the library. Note that it is not necessary to call SL GetCanvasPolygon() before calling these
functions.

8.6.1 Canvas Polygon Intersection Testing Functions

int SL InsidePointCanvasPolygon(

SL Point �pnt ptr, =� pointer to the point �=
)

SL InsidePointCanvasPolygon() checks if a point is inside the canvas polygon and returns 1 if it is and 0
otherwise.

int SL InterSegmentCanvasPolygonCheck(

SL Segment �seg ptr =� pointer to the segment �=
)

int SL InterPolylineCanvasPolygonCheck(

SL Polyline �pline ptr =� pointer to polyline �=
)

int SL InterPolygonCanvasPolygonCheck(

SL Polygon �pgon ptr =� pointer to polygon �=
)

int SL InterArcCanvasPolygonCheck(

SL Arc �arc ptr =� pointer to arc �=
)

int SL InterCircleCanvasPolygonCheck(

SL Circle �circ ptr =� pointer to circle �=
)

int SL InterShapeCanvasPolygonCheck(

SL Shape �shape ptr =� pointer to shape �=
)

Each of the above functions checks if a given library primitive (segment, polyline, polygon, arc, circle, or
shape) intersects some edge of the canvas polygon and returns 1 if it does and 0 otherwise. Line segments
or edges that are collinear and overlap are not considered to intersect.

61

8.6.2 Canvas Polygon Intersection Calculation Functions

int SL InterSegmentCanvasPolygon(

SL Segment �seg ptr =� pointer to the segment �=
SL Point ��inter ptr =� pointer to the array of intersection points �=

)

int SL InterPolylineCanvasPolygon(

SL Polyline �pline ptr =� pointer to polyline �=
SL Point ��inter ptr =� pointer to the array of intersection points �=

)

int SL InterPolygonCanvasPolygon(

SL Polygon �pgon ptr =� pointer to polygon �=
SL Point ��inter ptr =� pointer to the array of intersection points �=

)

int SL InterArcCanvasPolygon(

SL Arc �arc ptr =� pointer to arc �=
SL Point ��inter ptr =� pointer to the array of intersection points �=

)

int SL InterCircleCanvasPolygon(

SL Circle �circ ptr =� pointer to circle �=
SL Point ��inter ptr =� pointer to the array of intersection points �=

)

int SL InterShapeCanvasPolygon(

SL Shape �shape ptr =� pointer to shape �=
SL Point ��inter ptr =� pointer to the array of intersection points �=

)

Each of the above functions computes the intersection points (if any) of a given library primitive (segment,
polyline, polygon, arc, circle, or shape) and the canvas polygon. If the primitive does not intersect the
canvas polygon, the function returns 0 and ��inter ptr remains unchanged. Otherwise, the intersection
of the primitive with each side of the canvas polygon is tested and the points of intersection are stored in
(�inter ptr)[0], : : : , (�inter ptr)[n�1], where n is the return value of the function. Note that the memory
for the array of intersection points is allocated within this function. The function ignores intersection points
that result when a line segment is collinear with and overlaps any side of the canvas polygon.

8.7 Containment Functions

The following functions are used to test for the inclusion of one object inside another. For every geometric
primitive, there are two functions: one to test for containment in a polygon and the other to test for
containment in a circle. In each case, if the �rst argument passed to the function is completely contained
in the second, the function returns 1, otherwise it returns 0. Note that the line segment connecting the
endpoints of an arc is not considered part of the arc.

int SL InsidePointPolygon(

SL Point �pnt ptr, =� pointer to the point �=
SL Polygon �pgon ptr =� pointer to the polygon �=

)

62

int SL InsidePointCircle(

SL Point �pnt ptr, =� pointer to the point �=
SL Circle �circ ptr =� pointer to the circle �=

)

int SL InsidePointShape(

SL Point �pnt ptr, =� pointer to the point �=
SL Shape �shape ptr =� pointer to the shape �=

)

SL InsidePointShape() returns 0 if �shape ptr is not a polygon or a circle.

int SL InsideSegmentPolygon(

SL Segment �seg ptr, =� pointer to the segment �=
SL Polygon �pgon ptr =� pointer to the polygon �=

)

int SL InsideSegmentCircle(

SL Segment �seg ptr, =� pointer to the segment �=
SL Circle �circ ptr =� pointer to the circle �=

)

int SL InsidePolylinePolygon(

SL Polyline �pline ptr, =� pointer to the polyline �=
SL Polygon �pgon ptr =� pointer to the polygon �=

)

int SL InsidePolylineCircle(

SL Polyline �pline ptr, =� pointer to the polyline �=
SL Circle �circ ptr =� pointer to the circle �=

)

int SL InsidePolygonPolygon(

SL Polygon �pgon1 ptr, =� pointer to the first polygon �=
SL Polygon �pgon2 ptr =� pointer to the second polygon �=

)

int SL InsidePolygonCircle(

SL Polygon �pgon ptr, =� pointer to the polygon �=
SL Circle �circ ptr =� pointer to the circle �=

)

int SL InsideArcPolygon(

SL Arc �arc ptr, =� pointer to the arc �=
SL Polygon �pgon ptr =� pointer to the polygon �=

)

int SL InsideArcCircle(

SL Arc �arc ptr, =� pointer to the arc �=
SL Circle �circ ptr =� pointer to the circle �=

)

63

int SL InsideCirclePolygon(

SL Circle �circ ptr, =� pointer to the circle �=
SL Polygon �pgon ptr =� pointer to the polygon �=

)

int SL InsideCircleCircle(

SL Circle �circ1 ptr, =� pointer to the first circle �=
SL Circle �circ2 ptr =� pointer to the second circle �=

)

int SL InsideShapeShape(

SL Shape �shape1 ptr, =� pointer to the first shape �=
SL Shape �shape2 ptr =� pointer to the second shape �=

)

SL InsideShapeShape() returns 0 if �shape2 ptr is something other than a polygon or a circle.

8.8 Translation Functions

The following functions are used to translate geometric primitives rigidly by a given translation vector.

void SL TranslateVector(

SL Vector �vec ptr, =� the vector to translate �=
SL Vector �transl ptr =� the vector by which to translate �=

)

SL TranslateVector() may also be used to translate objects of type SL Point.

void SL TranslateSegment(

SL Segment �segm ptr, =� the segment to translate �=
SL Vector �transl ptr =� the vector by which to translate �=

)

void SL TranslatePolygon(

SL Polygon �pgon ptr, =� the polygon to translate �=
SL Vector �transl ptr =� the vector by which to translate �=

)

SL TranslatePolygon() may also be used to translate objects of type SL Polyline.

void SL TranslateArc(

SL Arc �arc ptr, =� the arc to translate �=
SL Vector �transl ptr =� the vector by which to translate �=

)

void SL TranslateCircle(

SL Circle �circ ptr, =� the circle to translate �=
SL Vector �transl ptr =� the vector by which to translate �=

)

void SL TranslateShape(

SL Shape �shape ptr, =� the shape to translate �=
SL Vector �transl ptr =� the vector by which to translate �=

)

64

8.9 Intersection Functions

There are two sets of functions in this section. The �rst set return either 1 or 0 depending on whether the
intersection condition they were designed to test is true or not. Intersection checking functions are provided
for all pairs of objects.

The second set of functions are the intersection calculation routines that compute the actual points of
intersection of any two structures in the library. The return values of these functions represent the number
of intersections between the two structures.

In all cases, edges or segments that are collinear and overlap are not considered to intersect.

8.9.1 Intersection Checking Functions

int SL PointOnSegment(

SL Point �pnt ptr, =� pointer to the point �=
SL Segment �seg ptr =� pointer to the segment �=

)

SL PointOnSegment() determines if the given point is on the given line segment. If the point is on the
line de�ned by the segment and between the two segment endpoints, the function returns 1; otherwise, the
function returns 0.

The remaining functions in this section all work in the same manner. In each case, the functions check for
intersections between two entities of the type implied by the name of the function. If the entities intersect,
the function returns 1, otherwise it returns 0.

int SL InterSegmentSegmentCheck(

SL Segment �seg1 ptr, =� pointer to the first segment �=
SL Segment �seg2 ptr =� pointer to the second segment �=

)

int SL InterSegmentPolylineCheck(

SL Segment �seg ptr, =� pointer to the segment �=
SL Polyline �plin ptr =� pointer to the polyline �=

)

int SL InterSegmentPolygonCheck(

SL Segment �seg ptr, =� pointer to the segment �=
SL Polygon �pgon ptr =� pointer to the polygon �=

)

int SL InterSegmentArcCheck(

SL Segment �seg ptr, =� pointer to the segment �=
SL Arc �arc ptr =� pointer to the arc �=

)

int SL InterSegmentCircleCheck(

SL Segment �seg ptr, =� pointer to the segment �=
SL Circle �circ ptr =� pointer to the circle �=

)

int SL InterPolylinePolylineCheck(

SL Polyline �pline1 ptr, =� pointer to the first polyline �=
SL Polyline �pline2 ptr =� pointer to the second polyline �=

)

65

int SL InterPolylinePolygonCheck(

SL Polyline �pline ptr, =� pointer to the polyline �=
SL Polygon �pgon ptr =� pointer to the polygon �=

)

int SL InterPolylineArcCheck(

SL Polyline �pline ptr, =� pointer to the polyline �=
SL Arc �arc ptr =� pointer to the arc �=

)

int SL InterPolylineCircleCheck(

SL Polyline �pline ptr, =� pointer to the polyline �=
SL Circle �circ ptr =� pointer to the circle �=

)

int SL InterPolygonPolygonCheck(

SL Polygon �poly1 ptr, =� pointer to the first polygon �=
SL Polygon �poly2 ptr =� pointer to the second polygon �=

)

int SL InterPolygonArcCheck(

SL Polygon �pgon ptr, =� pointer to the polygon �=
SL Arc �arc ptr =� pointer to the arc �=

)

int SL InterPolygonCircleCheck(

SL Polygon �pgon ptr, =� pointer to the polygon �=
SL Circle �circ ptr =� pointer to the circle �=

)

int SL InterArcArcCheck(

SL Arc �arc1 ptr, =� pointer to the first arc �=
SL Arc �arc2 ptr =� pointer to the second arc �=

)

int SL InterArcCircleCheck(

SL Arc �arc ptr, =� pointer to the arc �=
SL Circle �circ ptr =� pointer to the circle �=

)

int SL InterCircleCircleCheck(

SL Circle �circle1, =� pointer to the first circle �=
SL Circle �circle2 =� pointer to the second circle �=

)

int SL InterShapeShapeCheck(

SL Shape �shape1 ptr, =� pointer to the first shape �=
SL Shape �shape2 ptr =� pointer to the second shape �=

)

66

8.9.2 Intersection Calculation Functions

The functions in this section compute the points of intersection between any two structures in the library.
(Again, edges and segments that are collinear and overlap are not considered to intersect.) The return values
of these functions represent the number of points of intersection between the two structures. When there
can be only one or two intersection points (between two segments, a segment and an arc, a segment and
a circle, two arcs, an arc and a cricle, or two circles), the memory for the intersection point(s) is assumed
to be allocated outside these functions (avoiding the costly calls to malloc()). In all other cases, since
there can be an arbitrary number of intersection points, the memory for the array of intersection points
is allocated within the intersection function. In this case, the function's third argument is a pointer to an
array of intersection points, ��inter ptr. The coordinates of the points of intersection are then stored in
(�inter ptr)[0], : : : , (�inter ptr)[n�1], where n is the return value of the function. Note that this memory
allocation is expensive, and each call to one of these intersection function causes a new array to be allocated,
which can cause a drain on the available memory for your program.

int SL InterSegmentSegment(

SL Segment �seg1 ptr, =� pointer to the first segment �=
SL Segment �seg2 ptr, =� pointer to the second segment �=
SL Point �inter ptr =� pointer to the intersection point �=

)

int SL InterSegmentPolyline(

SL Segment �seg ptr, =� pointer to the segment �=
SL Polyline �pline ptr, =� pointer to the polyline �=
SL Point ��inter ptr =� pointer to the array of intersection points �=

)

int SL InterSegmentPolygon(

SL Segment �seg ptr, =� pointer to the segment �=
SL Polygon �pgon ptr, =� pointer to the polygon �=
SL Point ��inter ptr =� pointer to the array of intersection points �=

)

int SL InterSegmentArc(

SL Segment �seg ptr, =� pointer to the segment �=
SL Arc �arc ptr, =� pointer to the arc �=
SL Point inter[2] =� array of intersection points �=

)

int SL InterSegmentCircle(

SL Segment �seg ptr, =� pointer to the segment �=
SL Circle �circ ptr, =� pointer to the circle �=
SL Point inter[2] =� array of intersection points �=

)

int SL InterPolylinePolyline(

SL Polyline �pline1 ptr, =� pointer to the first polyline �=
SL Polyline �pline2 ptr, =� pointer to the second polyline �=
SL Point ��inter ptr =� pointer to the array of intersection points �=

)

67

int SL InterPolylinePolygon(

SL Polyline �pline ptr, =� pointer to the polyline �=
SL Polygon �pgon ptr, =� pointer to the polygon �=
SL Point ��inter ptr =� pointer to the array of intersection points �=

)

int SL InterPolylineArc(

SL Polyline �pline ptr, =� pointer to the polyline �=
SL Arc �arc ptr, =� pointer to the arc �=
SL Point ��inter ptr =� pointer to the array of intersection points �=

)

int SL InterPolylineCircle(

SL Polyline �pline ptr, =� pointer to the polyline �=
SL Circle �circ ptr, =� pointer to the circle �=
SL Point ��inter ptr =� pointer to the array of intersection points �=

)

int SL InterPolygonPolygon(

SL Polygon �pgon1 ptr, =� pointer to the first polygon �=
SL Polygon �pgon2 ptr, =� pointer to the second polygon �=
SL Point ��inter ptr =� pointer to the array of intersection points �=

)

int SL IntertPolygonArc(

SL Polygon �pgon ptr, =� pointer to the polygon �=
SL Arc �arc ptr, =� pointer to the arc �=
SL Point ��inter ptr =� pointer to the array of intersection points �=

)

int SL InterPolygonCircle(

SL Polygon �pgon ptr, =� pointer to the polygon �=
SL Circle �circ ptr, =� pointer to the circle �=
SL Point ��inter ptr =� pointer to the array of intersection points �=

)

int SL InterArcArc(

SL Arc �arc1 ptr, =� pointer to the first arc �=
SL Arc �arc2 ptr, =� pointer to the second arc �=
SL Point inter[2] =� array of intersection points �=

)

int SL InterArcCircle(

SL Arc �arc ptr, =� pointer to the arc �=
SL Circle �circ ptr, =� pointer to the circle �=
SL Point inter[2] =� array of intersection points �=

)

int SL InterCircleCircle(

SL Circle �circ1 ptr, =� pointer to the first circle �=
SL Circle �circ2 ptr, =� pointer to the second circle �=
SL Point intersect[2] =� array of intersection points �=

)

68

int SL InterShapeShape(

SL Shape �shape1 ptr, =� pointer to first shape �=
SL Shape �shape2 ptr, =� pointer to second shape �=
SL Point ��inter ptr =� pointer to array of intersection points �=

)

8.10 Distance Functions

The functions in this section of the library are used to compute the minimum distance between any two
library structures (excluding arcs). Each function's return value is a double representing the computed
distance. In each case, if the two objects intersect, the return value is 0.

For each function that computes the distance using a structure other than SL Point, there is an output
parameter for each non-point object that will contain the point on that object to which the minimum distance
corresponds. If the return value of a function is 0, these output parameters remain unchanged.

double SL DistPointPoint(

SL Point �pnt1 ptr, =� pointer to the first point �=
SL Point �pnt2 ptr =� pointer to the second point �=

)

double SL DistPointPointSQR(

SL Point �pnt1 ptr, =� pointer to the first point �=
SL Point �pnt2 ptr =� pointer to the second point �=

)

SL DistPointPointSQR() returns the square of the Euclidean distance between the two given points (thus
avoiding the rather expensive call to the square-root function).

int SL DistPointPointNull(

SL Point �pnt1 ptr, =� pointer to the first point �=
SL Point �pnt2 ptr =� pointer to the second point �=

)

SL DistPointPointNull() returns 1 if the distance between the two points provided is negligible and 0
otherwise.

double SL DistPointSegment(

SL Point �pnt ptr, =� pointer to point to compute distance from �=
SL Segment �seg ptr, =� pointer to segment to compute distance to �=
SL Point �closest ptr =� pointer to point on �seg ptr closest to

�pnt ptr �=
)

SL DistPointSegment() returns the distance between a point and a line segment. If the projection of the
point onto the line de�ned by the segment lies between the endpoints of the segment, then the value returned
by the function is the distance between the point and the projected point. If the projection lies somewhere
outside the segment, the value of the function is the distance between the given point and the closer endpoint
of the segment.

double SL DistPointPolyline(

SL Point �pnt ptr, =� pointer to point �=
SL Polyline �pline ptr, =� pointer to polyline �=
SL Point �closest ptr =� pointer to point on �pline ptr closest to

�pnt ptr �=
)

69

double SL DistPointPolygon(

SL Point �pnt ptr, =� pointer to point �=
SL Polygon �pgon ptr, =� pointer to polygon �=
SL Point �closest ptr =� pointer to point on �pgon ptr closest to

�pnt ptr �=
)

double SL DistPointCircle(

SL Point �pnt ptr, =� pointer to point �=
SL Circle �circ ptr, =� pointer to circle �=
SL Point �closest ptr =� pointer to point on �circ ptr closest to

�pnt ptr �=
)

If point �pnt ptr is contained in �circ ptr, SL DistPointCircle() returns 0 and �closest ptr remains
unchanged.

double SL DistSegmentSegment(

SL Segment �seg1 ptr, =� pointer to first segment �=
SL Segment �seg2 ptr, =� pointer to second segment �=
SL Point �closest1 ptr, =� pointer to point on �seg1 ptr closest to

�seg2 ptr �=
SL Point �closest2 ptr =� pointer to point on �seg2 ptr closest to

�seg1 ptr �=
)

double SL DistSegmentPolyline(

SL Segment �seg ptr, =� pointer to segment �=
SL Polyline �pline ptr, =� pointer to polyline �=
SL Point �closest1 ptr, =� pointer to point on �seg ptr closest to

�pline ptr �=
SL Point �closest2 ptr =� pointer to point on �pline ptr closest to

�seg ptr �=
)

double SL DistSegmentPolygon(

SL Segment �seg ptr, =� pointer to segment �=
SL Polygon �pgon ptr, =� pointer to polygon �=
SL Point �closest1 ptr, =� pointer to point on �seg ptr closest to

�pgon ptr �=
SL Point �closest2 =� pointer to point on �pgon ptr closest to

�seg ptr �=
)

double SL DistSegmentCircle(

SL Segment �seg ptr, =� pointer to segment �=
SL Circle �circ ptr, =� pointer to circle �=
SL Point �closest1 ptr, =� pointer to point on �seg ptr closest to

�circ ptr �=
SL Point �closest2 ptr =� pointer to point on �circ ptr closest to

�seg ptr �=
)

70

double SL DistPolylinePolyline(

SL Polyline �pline1 ptr, =� pointer to first polyline �=
SL Polyline �pline2 ptr, =� pointer to second polyline �=
SL Point �closest1 ptr, =� pointer to point on �pline1 ptr closest to

�pline2 ptr �=
SL Point �closest2 ptr =� pointer to point on �pline2 ptr closest to

�pline1 ptr �=
)

double SL DistPolylinePolygon(

SL Polyline �pline ptr, =� pointer to polyline �=
SL Polygon �pgon ptr, =� pointer to polygon �=
SL Point �closest1 ptr, =� pointer to point on �pline ptr closest to

�pgon ptr �=
SL Point �closest2 ptr =� pointer to point on �pgon ptr closest to

�pline ptr �=
)

double SL DistPolylineCircle(

SL Polyline �pline ptr, =� pointer to polyline �=
SL Circle �circ ptr, =� pointer to circle �=
SL Point �closest1 ptr, =� pointer to point on �pline ptr closest to

�circ ptr �=
SL Point �closest2 ptr =� pointer to point on �circ ptr closest to

�pline ptr �=
)

double SL DistPolygonPolygon(

SL Polygon �pgon1 ptr, =� pointer to first polygon �=
SL Polygon �pgon2 ptr, =� pointer to second polygon �=
SL Point �closest1 ptr, =� pointer to point on �pgon1 ptr closest to

�pgon2 ptr �=
SL Point �closest2 ptr =� pointer to point on �pgon2 ptr closest to

�pgon1 ptr �=
)

double SL DistPolygonCircle(

SL Polygon �pgon ptr, =� pointer to polygon �=
SL Circle �circ ptr, =� pointer to circle �=
SL Point �closest1 ptr, =� pointer to point on �pgon ptr closest to

�circ ptr �=
SL Point �closest2 ptr =� pointer to point on �circ ptr closest to

�pgon ptr �=
)

double SL DistCircleCircle(

SL Circle �circ1 ptr, =� pointer to first circle �=
SL Circle �circ2 ptr, =� pointer to second circle �=
SL Point �closest1 ptr, =� pointer to point on �circ1 ptr closest to

�circ2 ptr �=
SL Point �closest2 ptr =� pointer to point on �circ2 ptr closest to

�circ1 ptr �=
)

71

double SL DistShapeShape(

SL Shape �shape1 ptr, =� pointer to first shape �=
SL Shape �shape2 ptr, =� pointer to second shape �=
SL Shape �closest1 ptr, =� pointer to point on �shape1 ptr closest to

�shape2 ptr �=
SL Shape �closest2 ptr =� pointer to point on �shape2 ptr closests to

�shape1 ptr �=
)

SL DistShapeShape() returns as its value the minimum distance between two shapes and returns through its
parameters �closest1 ptr and �closest2 ptr the point on each shape to which this distance corresponds.
However, if either or both shapes are points, the corresponding output parameter(s) remains unchanged. If
one of the shapes is either a vector or an arc or if the two shapes intersect, the function returns 0, leaving
the output parameters unchanged.

8.11 Tangent Functions

SL TangentPointPolygon(

SL Point �pnt ptr, =� pointer to the point in question �=
SL Polygon �pgon ptr, =� pointer to the polygon in question �=
SL Point tangents[2] =� the location for the two tangent points �=

)

SL TangentPointPolygon() calculates the two tangent points from a given point in the plane to the convex
hull of a given polygon. If the point is contained inside the convex hull of the polygon or the polygon has
fewer than 3 vertices, the function returns 0 leaving tangents unchanged, otherwise the function returns 1
and stores the coordinates of the two tangent points in the array tangents.

SL TangentPointCircle(

SL Point �pnt ptr, =� pointer to the point in question �=
SL Circle �circ ptr, =� pointer to the circle in question �=
SL Point tangents[2] =� the location for the two tangent points �=

)

SL TangentPointCircle() calculates the two tangent points from a given point in the plane to a given
circle. If the point is contained inside the circle, the function returns 0 and leaves tangents unchanged,
otherwise the function returns 1 and stores the coordinates of the two tangent points in the array tangents.

SL TangentCircleCircle(

SL Circle �circ1 ptr, =� pointer to the first circle �=
SL Circle �circ2 ptr, =� pointer to the second circle �=
SL Point tangents[8] =� location for the four pairs of tangent points �=

)

SL TangentCircleCircle() calculates the points of tangency between two given circles. For two circles that
do not intersect, there are four tangent lines and the function returns 4. The four pairs of tangent points are
returned in the array tangents. The tangent points for �circ1 ptr are returned in the array entries with
odd indices (1, 3, 5, 7) with the corresponding tangents for �circ2 ptr in the even numbered entries (0, 2, 4
and 6, respectively). If the two circles intersect, there are only two tangent lines. The function returns 2 in
this case, and the tangent points for these line are returned in tangents[0 : : :3], leaving tangents[4 : : :7]
unchanged. If one circle is completely contained within the other, there are no tangent lines, so the function
returns 0, leaving the entire tangents array unchanged.

72

8.12 User Interface Functions

void SL Init(

int width, =� width of the drawing canvas in pixels �=
int height, =� height of the drawing canvas in pixels �=
int obst enable, =� 1 to enable the use of the obstacle database �=
void (�InitCbk)(void), =� callback for initialization �=
void (�ResetCbk)(void), =� callback for resetting simulation �=
void (�RedrawCbk)(void),=� callback for redrawing simulation �=
void (�GoCbk)(int stepping on),

=� callback evoked when `Go' button pressed �=
int (�StepCbk)(void), =� callback that updates simulation by one step �=
void (�ClickCbk)(int x, int y, SL Button btn),

=� callback for mouse button clicks �=
void (�MotionCbk)(int x, int y),

=� callback for mouse motions �=
void (�KeyboardCbk)(char the key, int key pressed)

=� callback for keyboard input �=
)

SL Init() is the function called to initialize the user interface. It should be called once before any of the
other user-interface routines are called. The parameters height and width specify the size of the rectangular
drawing canvas. If the SL-application is to use the obstacle database (Section 3) the parameter obst enable

should be passed a value of 1, otherwise it should be 0. The other parameters of SL Init() are the callback
functions that are called during the UI-loop when certain events occur (Sections 2.1 and 2.2). They are:

void (�InitCbk)(void)

This parameter de�nes the function that will be called once when the application's window appears
on the screen. The function is called with no arguments and should contain initialization code that
is to be performed only once during a run of an application. If no such initialization is needed, this
argument should be NULL.

void (�ResetCbk)(void)

This parameter de�nes the function that will be called when the \Reset" option on the built-in \Sim-
ulation" menu is selected. It is also called immediately after the InitCbk() when the SL-application
is �rst started. This function is called with no arguments and should generally be used to restore
simulation-speci�c data (e.g., a robot's location) to some initial state (Section 2.1). This argument
may be NULL if no such resetting is desired or required.

void (�RedrawCbk)(void)

This parameter de�nes the function that will be called when the \Redraw" option on the built-in
\Simulation" menu is selected. This function should redraw the simulation environment and will be
called with no arguments. This is also the function called during the UI loop to update the scene after
a step (as de�ned by StepCbk()) has been made and thus produces the simulation's animation. This
argument to SL Init() may also be NULL if you never wish to redraw the scene, but it will probably
make for a rather uninteresting simulation.

void (�GoCbk)(int stepping on)

This parameter de�nes the function that will be called each time the built-in \Go" button is pressed.
This function will be called with a single integer argument that has a value of 1 or 0 to indicate if the
Go button is being toggled on or o�. If there is not need to detect when this button is pressed, this
argument to SL Init() should be NULL (Section 2.1).

73

int (�StepCbk)(void)

This parameter de�nes the function that will be called when the simulation is in active mode (i.e., the
\Go" button has been pressed to start the motion of the objects in the environment). This function
will be called with no arguments and should generally move the objects in the environment a single
step. The function should return a 0 if the stepping is to stop (e.g., if the robot reaches its target
point) and 1 otherwise (Section 2.1).

void (�ClickCbk)(int x, int y, SL Button btn)

This parameter de�nes the function that will be called when a mouse button is pressed or released
with the mouse pointer inside the drawing canvas. This will be called with three integer arguments:
the x coordinate of the position of the pointer on the canvas, the y coordinate of the position of the
pointer on the canvas, an integer value of type SL Button (Section 7) that indicates which button (left,
middle or right) was either pressed or released and whether it was pressed or released. If there is no
need to detect when the mouse is clicked, this argument to SL Init() should be NULL (Section 2.2).

void (�MotionCbk)(int x, int y)

This parameter de�nes the function that will be called when the mouse pointer is moved inside the
drawing canvas. The function will be called with two integer arguments: the x and y coordinates of the
current mouse pointer position. If there is no need to detect when the mouse is moved, this argument
to SL Init() should be NULL (Section 2.2).

void (�KeyboardCbk)(char the key, int key pressed)

This parameter de�nes the function that will be called when a key on the keyboard is pressed or
released. The function will be called with two arguments, one (the key) representing the key for
which the action occurred and the other (key pressed) indicating whether the key was pressed or
released. If there is no need to detect when a key is pressed, this argument to SL Init() should be
NULL (Section 2.2).

void SL SetUp3dCanvas(

int cube rad, =� the dimensions of the 3d drawing cube �=
void (�redraw fn)(void) =� the function that redraws the 3d scene �=

)

SL SetUp3dCanvas()adds a double-bu�ered three-dimensional drawing area to the right of the two-dimensional
canvas speci�ed by the call to SL Init(). If this function is used, it must be called right after the call to
SL Init(). A toggle button, labeled \Draw3d," is automatically added to the top of the 3d canvas, allowing
the user to choose whether the 3d objects are drawn or not. Pose control buttons are added to the bottom
of the 3d canvas to allow the user to adjust the viewpoint from which the objects are seen. This function is
available only when working on the SGI machines.

The user interface generally consists of a single window with a drawing canvas in the center on which the
motion simulation is displayed. There is an area below the drawing canvas (the bottom row) into which the
buttons and labels de�ned with the following routines will be placed. Using these routines, the user interface
can be tailored to the particular needs of a speci�c application. The order in which these routines are called
determines the order in which the buttons and labels are placed on the user interface (Section 2.3).

void SL AddLabel(

char �label =� the string that is to be printed �=
)

SL AddLabel() puts a string of characters in the bottom row below the drawing canvas.

void SL AddButton(

char �btn label, =� the string labeling the button �=

74

void (�cback fn)(void) =� the function to be called when the

button is clicked with the mouse �=
)

SL AddButton() adds a button to the bottom row of the user interface and labels it with the speci�ed
string. This function also associates the callback function (�cback fn)() with the button so that whenever
the mouse is clicked on this button, the function (�cback fn)() will be called with no arguments.

void SL AddToggle(

char �tog label, =� label for toggle button �=
void �cback fn(int tog on)

=� function to call when the toggle

button is clicked �=
)

SL AddToggle() adds a toggle button to the bottom row of the user interface and labels it with the speci�ed
string. The function also associates the callback function (�cback fn)() with the button. Whenever the
mouse is clicked with the pointer over this button, the function will be called. If the toggle button is \on",
(�cback fn)() will be called with a 1, otherwise it will be called with a 0. The toggle is initially in the \o�"
state, so the �rst click will turn it \on".

void SL AddDialog(

char �btn label, =� the string labeling the button �=
char �dialog label, =� the text to appear at top of dialog window �=
void (�cback fn)(�the string)

=� the function to be called from the

dialog window with the entered text �=
)

SL AddDialog() adds a button labeled with a speci�ed string to the bottom row of the user interface. When
this button is pressed, a window that contains an area for the user to input text will pop up. At the top
of this dialog window will be the text passed to �dialog label (e.g., a prompt to the user). Also in the
dialog window there will be two buttons: one labeled \OK" and the other labeled \CANCEL" (Figure 7).
The function (�cback fn)() will be called when the user clicks on the \OK" button. This callback function
should accept one argument that is a pointer to the character string entered by the user. If the \CANCEL"
button is clicked, the dialog window will disappear and the callback function will not be called.

void SL AddMenu(

char �btn label, =� the string labeling the menu button �=
char ��entry labels, =� the names of the distinct menu options �=
void (�cback fn)(int menu index)

=� the function to be called when a menu

option is selected �=
)

SL AddMenu() adds a menu button to the bottom row of the user interface. This menu button will be labeled
with the string �btn label. The second parameter to this function, entry labels, is a NULL-terminated
array of char pointers. Each element of this array is a string that represents the name of one of the distinct
menu options. When the menu button is pressed, the menu will pop up. When the user selects one of
the options in the menu, the function (�cback fn)() will be called with a single integer argument that
represents the number of the menu option selected. The �rst menu option is option 0, so if there are N

options displayed in the menu, (�cback fn)() will be called with the argument value in the range [0; N�1].
Once the user interface has been designed and the proper callback routines have been established, the

following function should be called to invoke the UI loop.

void SL Loop(void)

75

SL Loop() is the function that passes control to the user interface. It should be called when the whole user
interface is set up and the program is ready to fall into an event-loop in which the callback routines provided
by the functions described in this section will be called whenever appropriate.

int SL SteppingOn(void)

SL SteppingOn() may be called to determine if the Go button is currently toggled on or o�. The function
has no parameters and returns 1 if the Go button is on and 0 if not.

8.13 Graphics Functions

This section contains descriptions of the routines that are used to produce graphical output for a simulation.
Drawing is displayed on the drawing canvas of the application's window (Figure 1). This area is mapped

as a normal xy-plane, with the origin (x; y) = (0; 0) in the lower left corner and the x and y axes growing to
the right and upwards, respectively. The maximum values of x and y are de�ned by the �rst two arguments
of the call to SL Init() (Sections 2.1 and 8.12).

8.13.1 Colors and Drawing Thickness

int SL MakeColor(

char �color name =� name of the color to change or create �=
double red =� amount of red in new color �=
double green =� amount of green in new color �=
double blue =� amount of blue in new color �=

)

SL MakeColor() is used to create or change a color by specifying the appropriate red, green, and blue (RGB)
values. The color name is a case-insensitive character string designating the name by which the color is to
be referred. There are 11 prede�ned color names:

\white" \black" \yellow"
\green" \blue" \red"
\grey" \cyan" \magenta"
\obstacles" \background"

The color \obstacles", used to draw elements of the obstacle database (Sections 3 and 8.15), is black
by default; \background", the color of the canvas, defaults to white. Any of these prede�ned colors may
be rede�ned (although it probably makes sense for only \obstacles" and \background"). The red, green,
and blue values should each be in the range [0; 1]. The function returns 1 if the color is created or changed
successfully and 0 if no more colors can be created.

int SL GetColor(

char �color name =� name of the color �=
double �red ptr =� amount of red in color �=
double �green ptr =� amount of green in color �=
double �blue ptr =� amount of blue in color �=

)

SL GetColor() returns the RGB values of an existing color through the parameters �red ptr, �green ptr,
or �blue ptr. If the color name does not exist, the function returns 0 and leaves �red ptr, �green ptr,
and �blue ptr unchanged, otherwise the function returns 1.

int SL SetDrawColor(

char �color name =� name of the color �=
)

76

SL SetDrawColor() de�nes the color with which primitives are to be drawn. (The default drawing color is
black.) If the argument is one of the prede�ned color names or a color name de�ned by SL MakeColor(),
the function returns 1, otherwise it returns 0. Matching of color names is case-insensitive. Note that, on
non-color monitors, colors with intensity < 0:5 are drawn as black and those with intensity � 0:5 are drawn
as white. Intensity is measured as: (0:299� red) + (0:587� green) + (0:114� blue).

void SL SetDrawThickness(

int thickness =� an integer greater than 0 specifying the

desired drawing thickness in pixels �=
)

SL SetDrawThickness() de�nes the width (in pixels) with which the boundary of primitives are to be drawn.
The default drawing thickness is one pixel.

8.13.2 The Primitive Drawing Functions

The following functions are used to draw the library primitives on the drawing canvas. The primitive is
drawn in the default color (black) or the color indicated by the most recent call to SL SetDrawColor(). The
functions for drawing SL Polygons, SL Arcs, SL Circles and SL Shapes accept two arguments, the second
of which is a
ag which should be 0 if the primitive should be drawn as an outline only or 1 if it is to be
�lled with the current drawing color.

void SL DrawPoint(

SL Point �pnt ptr =� pointer to the point to be drawn �=
)

Note that calls to SL SetDrawThickness() do not a�ect how large a point will be drawn. It will always be
rather small. This function should also be used to draw SL Vectors.

void SL DrawSegment(

SL Segment �seg ptr =� pointer to the segment to be drawn �=
)

void SL DrawPolyline(

SL Polyline �pline ptr =� pointer to the polyline to be drawn �=
)

void SL DrawPolygon(

SL Polygon �pgon ptr, =� pointer to the polygon to be drawn �=
int filled =� flag indicting if polygon should be filled �=

)

void SL DrawArc(

SL Arc �arc ptr, =� pointer to the arc to be drawn �=
int filled =� flag indicating if arc should be filled �=

)

void SL DrawCircle(

SL Circle �circ ptr, =� pointer to the circle to be drawn �=
int filled =� flag indicating if circle should be filled �=

)

void SL DrawShape(

SL Shape �shape ptr, =� pointer to the shape to be drawn �=
int filled =� flag indicating if shape should be filled �=

)

The filled parameter has no e�ect when the shape is other than a polygon, arc, or circle.

77

8.13.3 Drawing text and other things

SL DrawText(

SL Point �point =� pointer to coordinates for the lower left

coordinates of the drawn string �=
char �text =� the string to display �=

)

SL DrawText() draws a string of text at a speci�ed location in the current drawing color. Note that the
style of the text will not be a�ected by calls to SL SetDrawThickness().

SL PrintToStatusBar(

char �what to print =� the text to print �=
)

SL PrintToStatusBar() displays a string of text in the status bar that appears between the drawing canvas
and bottom row.

SL DrawAxes(

double length =� the length of the axes �=
)

SL DrawAxes() draws a pair of axes of length length with origin in the lower left corner of the drawing
canvas. The axes are labeled \x" and \y".

void SL ClearCanvas(void)

SL ClearCanvas() clears the contents of the canvas with the currently active color, as speci�ed by the latest
call to SL SetDrawColor() (Section 2.1). The default color (white) is used if no calls to SL SetDrawColor()

have been made.

void SL Redraw(void)

SL Redraw() causes three things to happen when it is called: (1) the canvas is cleared to the \background"
color; (2) the user's redrawing callback routine, established in the call to SL Init(), is called (Section 2.1);
(3) the obstacles are redrawn if the obstacle database has been enabled (Section 3). This function is typically
called when a callback routine changes what needs to be drawn but the Go button is not toggled on.

8.14 Mouse Editing Functions

The following functions allow the user to manipulate SL primitives using the mouse. For each primitive, there
is a function for inputting the structure with the mouse. All primitives except SL Point and SL Vector have
functions that allow them to be moved with the mouse. Functions that move a single vertex of a polygon
or polyline are also provided. Functions are available for rotating SL Polygons, SL Polylines, and SL Arcs
and for scaling these structures as well as SL Circles using mouse movements.

8.14.1 Inputting Primitives with the Mouse

int SL MouseGetPosition(

SL Point �pnt ptr =� pointer to location for input point �=
)

SL MouseGetPosition() allows the user to determine the position of the mouse pointer on the canvas. If
the mouse pointer is inside the drawing canvas, the x and y coordinates of the pointer position are stored in
�pnt ptr and the function returns 1. Otherwise, the function returns 0, leaving �pnt ptr unchanged.

78

int SL MouseGetPoint(

SL Point �pnt ptr =� pointer to location for input point �=
)

SL MouseGetPoint() allows the user to input an SL Point using the mouse. (It may also be used to input
an SL Vector.) When the function is called, the program waits for the user to click one of the mouse buttons
inside the drawing canvas before proceeding. If the left or middle mouse button is clicked inside the drawing
canvas, the function stores in �pnt ptr the x and y coordinates of the mouse pointer position and returns
1. If the right button is clicked, the function returns 0, leaving �pnt ptr unchanged.

int SL MouseGetSegment(

SL Segment �seg ptr =� pointer to location for input segment �=
)

SL MouseGetSegment() allows the user to input an SL Segment using the mouse. When the function is
called, the program waits for the user to click one of the mouse buttons inside the drawing canvas. If the left
or middle mouse button is clicked, this de�nes the starting point for the input segment. The ending point is
de�ned by the position of the mouse pointer. This segment is drawn on the canvas as the mouse is moved.
This continues until the user presses a mouse button again. If the left or middle mouse button is pressed,
the current mouse pointer position is stored as the endpoint of the segment and the function returns 1. If
at any time the right mouse button is clicked, the function returns 0, leaving �seg ptr unchanged.

int SL MouseGetRectangle(

SL Polygon �rect pgon ptr =� pointer to location for input rectangle �=
)

SL MouseGetRectangle() allows the user to enter a rectangular SL Polygon using the mouse. When the
function is called, the program waits for the user to click a mouse button inside the drawing canvas. If the
left or middle mouse button is clicked, this de�nes one of the corners of the rectangle. The opposite corner
(across the diagonal from the �rst corner) is de�ned by the position of the mouse pointer as the mouse is
moved in the drawing canvas. As the mouse is moved, this rectangle is drawn on the canvas. This continues
until a mouse button is clicked. If the left or middle mouse button is pressed, the coordinates of the rectangle
drawn on the screen are stored in �rect pgon ptr, and the function returns 1. If the right mouse button is
clicked at any time, the function returns 0, leaving �rect pgon ptr unchanged.

int SL MouseGetPolyline(

SL Polyline �pline ptr =� pointer to location for input polyline �=
)

int SL MouseGetPolygon(

SL Polygon �pgon ptr =� pointer to location for input polygon �=
)

SL MouseGetPolyline() (SL MouseGetPolygon()) allows the user to input an SL Polyline (SL Polygon)
using the mouse. When the function is called, the program waits for the user to click one of the mouse
buttons inside the drawing canvas. If the left or middle mouse button is clicked, the position of the mouse
pointer at that time is recorded as the �rst vertex of the polyline (polygon). Additional vertices of the
polyline (polygon) (up to a limit of SL MAX VTX) may be de�ned by moving the mouse pointer to a point on
the drawing canvas and clicking the left mouse button. The polyline (polygon) being constructed is drawn on
the canvas during this process, with the endpoint of the last edge following the mouse pointer as it is moved.
When all the desired vertices have been so speci�ed, a click with the middle mouse button will terminate
the input process. The position of the pointer when the middle mouse button is clicked is not stored as one
of the vertices. If the input process is ended with a click of the middle mouse button or SL MAX VTX vertices
have been de�ned, the polyline (polygon) that has been speci�ed is stored in �pline ptr (�pgon ptr), and
the function returns 1. At any time during this process a click with the right mouse button aborts the input
process, causing the function to return 0 without changing �pline ptr (�pgon ptr).

79

int SL MouseGetArc(

SL Arc �arc ptr =� pointer to location for input arc �=
)

SL MouseGetArc() allows the user to input an SL Arc using the mouse. When the function is called, the
program waits for the user to click one of the mouse buttons inside the drawing canvas. A click with the
left or middle mouse button speci�es the position of the mouse pointer as the center c of the arc. Then as
the mouse is moved on the canvas, a line is drawn between c and the pointer position. This line represents
the arc radius. Another click of the left or middle mouse button speci�es the starting point of the arc and
thus de�nes the arc radius, r. Once the starting point has been speci�ed, the mouse pointer position is used
to de�ne the ending point of the arc. This point is the point on the circle of radius r centered at c that
makes the same angle with the line from c to the starting point as a point at the mouse pointer position
does. The arc so de�ned is drawn on the canvas as the mouse is moved. Note that the arc is always drawn
counterclockwise from the starting point to the ending point. Another click of the left or middle mouse
button causes the arc speci�ed by the previous clicks of the mouse and the current mouse pointer position
to be stored in �arc ptr. The function then returns 1. If at any time the right mouse button is clicked, the
function returns 0, leaving �arc ptr unchanged.

int SL MouseGetCircle(

SL Circle �circ ptr =� pointer to location for input circle �=
)

SL MouseGetCircle() allows the user to input an SL Circle using the mouse. When the function is called,
the program waits for the user to click one of the mouse buttons inside the drawing canvas. If the left or
middle mouse button is clicked, the position of the mouse pointer at that time is stored as the center of the
circle. Then, the distance of the mouse pointer from this center point is used as the radius of the circle. This
circle of changing size is drawn on the canvas as the mouse is moved. If the left or middle mouse button is
clicked, the circle that has been speci�ed by the position of the mouse pointer and the center point is stored
in �circ ptr and the function returns 1. If the right mouse button is clicked at any time, the function
returns 0, leaving �circ ptr unchanged.

int SL MouseGetShape(

SL Shape �shape ptr =� pointer to location for input shape �=
)

SL MouseGetShape() allows the user to input an SL Shape using the mouse. The argument to this function,
�shape ptr, must have had its type �eld set to one of the seven values of type SL ShapeType (Section 7) be-
fore this function is called. Then this function performs just as the corresponding primitive-getting functions
previously described in this section. If the primitive is entered successfully, it is stored in the data �eld of
�shape ptr and the function returns 1. Otherwise, the function returns 0, leaving �shape ptr unchanged.

8.14.2 Moving Primitives with the Mouse

int SL MouseMoveSegment(

SL Segment �seg ptr =� pointer to segment to move �=
)

SL MouseMoveSegment() allows the user to reposition an SL Segment using the mouse. When this function
is called, the segment �seg ptr is moved, without changing length or direction, so its starting point coincides
with the mouse pointer position. Then, as the mouse is moved within the canvas, the segment follows the
mouse pointer with its starting point attached to the mouse pointer position. This continues until the user
clicks one of the mouse buttons. If the left or middle button is clicked, the endpoints of the segment, translated
so its starting point is at the mouse pointer position, are stored in �seg ptr and the function returns 1. If
the right mouse button is clicked at any time, the function returns 0, leaving �seg ptr unchanged.

80

int SL MouseMovePolyline(

SL Polyline �pline ptr =� pointer to polyline to move �=
)

int SL MouseMovePolygon(

SL Polygon �pgon ptr =� pointer to polygon to move �=
)

SL MouseMovePolyline()and SL MouseMovePolygon()allow the user to reposition SL Polyline and SL Polygons
using the mouse. When this function is called, �pline ptr (�pgon ptr) is moved so its centroid coincides
with the mouse pointer position. Then, as the mouse is moved within the canvas, the polyline (polygon) is
translated to keep the centroid at the mouse pointer position. This continues until the user clicks one of the
mouse buttons. If the left or middle button is clicked, the new vertices of the polyline (polygon), translated
to have its centroid at the mouse pointer position, are stored in �pline ptr (�pgon ptr) and the function
returns 1. If the right mouse button is clicked at any time, the function returns 0, leaving �pline ptr

(�pgon ptr) unchanged.

int SL MouseMoveArc(

SL Arc �arc ptr =� pointer to arc to move �=
)

int SL MouseMoveCircle(

SL Circle �circ ptr =� pointer to circle to move �=
)

SL MouseMoveArc() (SL MouseMoveCircle()) allows the user to reposition an SL Arc (SL Circle) using
the mouse. When the function is called, arc �arc ptr (circle �circ ptr) is moved so its center coincides
with the mouse pointer position. Then, as the mouse is moved within the canvas, the arc (circle) follows the
mouse pointer with its center attached to the mouse pointer position. This continues until the user clicks
one of the mouse buttons. If the left or middle button is clicked, the mouse pointer position is stored as the
new center of �arc ptr (�circ ptr), and the function returns 1. If the right mouse button is clicked at any
time, the function returns 0, leaving �arc ptr (�circ ptr) unchanged.

int SL MouseMoveShape(

SL Shape �shape ptr =� pointer to shape to move �=
)

SL MouseMoveShape() allows the user to reposition an SL Shape using the mouse. The argument to this
function, �shape ptr, must have had its type �eld set to one of the seven values of type SL ShapeType

(Section 7) before this function is called. If this value is either SL POINT or SL VECTOR, this function has no
e�ect on its data �eld and returns 0. Otherwise, the function performs just as the corresponding primitive-
moving functions previously described in this section. If the primitive is moved successfully (i.e., the right
mouse button is not clicked to abort the moving), it is stored in the data �eld of �shape ptr and the function
returns 1. Otherwise, the function returns 0, leaving �shape ptr unchanged.

8.14.3 Changing Vertices and Endpoints with the Mouse

int SL MouseMoveSegmentEndpoint(

SL Segment �seg ptr =� pointer to segment which is to change �=
)

SL MouseMoveSegmentEndpoint() allows the user to reposition one endpoint of an SL Segment using the
mouse. When the function is called, the program waits for the user to click one of the mouse buttons near
one of the segment's endpoints. If the left or middle button is pressed, the function �nds the closer endpoint

81

and assigns the mouse pointer position as the new location of that endpoint. The endpoint follows the mouse
pointer as it is moved within the canvas until the user clicks a mouse button again. If the left or middle
button is clicked, the position of the mouse pointer is stored in �seg ptr as the new segment endpoint, and
the function returns 1. If the user presses the right mouse button at any time, the function returns 0 leaving
�seg ptr unchanged.

int SL MouseMovePolylineVertex(

SL Polyline �pline ptr =� pointer to polyline whose vertex is to change �=
)

int SL MouseMovePolygonVertex(

SL Polygon �pgon ptr =� pointer to polygon whose vertex is to change �=
)

SL MouseMovePolylineVertex() (SL MouseMovePolygonVertex() allows the user to reposition a single ver-
tex of an SL Polyline (SL Polygon) using the mouse. When the function is called, the program waits for
the user to click one of the mouse buttons near a vertex of the polyline �pline ptr (polygon �pgon ptr). If
the left or middle mouse button is clicked, the function �nds the vertex of �pline ptr (�pgon ptr) closest
to the mouse pointer position and assigns the mouse pointer position as the new position of this vertex. The
vertex follows the mouse pointer as it is moved on the canvas until the user clicks a mouse button again. If
the left or middle button is clicked, the position of the mouse pointer is stored as the new position of the
moved vertex in �pline ptr (�pgon ptr), and the function returns 1. If the user clicks the middle mouse
button at any time, the function returns 0, leaving �pline ptr (�pgon ptr) unchanged.

8.14.4 Rotating with the Mouse

int SL MouseRotatePolyline(

SL Polyline �pline ptr =� pointer to polyline to rotate �=
)

int SL MouseRotatePolygon(

SL Polygon �pgon ptr =� pointer to polygon to rotate �=
)

SL MouseRotatePolyline() (SL MouseRotatePolygon()) allows the user to rotate an SL Polyline (SL Polygon)
using the mouse. When the function is called, the polar angle made by the vector from �pline ptr's
(�pgon ptr's) centroid to the mouse pointer position is measured and all vertices are rotated by this angle
about the centroid. Then, as the mouse pointer is moved in the canvas, the polyline (polygon) continues to
rotate by the angle dictated by the pointer position until the user clicks a mouse button again. If the left
or middle button is pressed, the rotated vertices corresponding to the current pointer position are stored in
�pline ptr (�pgon ptr) and the function returns 1. If the user presses the right mouse button at any time,
the function returns 0 leaving �pline ptr (�pgon ptr) unchanged.

int SL MouseRotateArc(

SL Arc �arc ptr =� pointer to arc to rotate �=
)

SL MouseRotateArc() allows the user to rotate an SL Arc using the mouse. When the function is called,
the polar angle made by the vector from the arc's center to the mouse pointer position is measured. This
becomes the new starting angle for the arc. Then, as the mouse pointer is moved in the canvas, the arc
continues to rotate by the angle dictated by the pointer position until the user clicks a mouse button again.
If the left or middle button is pressed, the angles for the rotated arc corresponding to the current pointer
position are stored in �arc ptr and the function returns 1. If the user presses the right mouse button at
any time, the function returns 0 leaving �arc ptr unchanged.

82

int SL MouseRotateShape(

SL Shape �shape ptr =� pointer to shape to rotate �=
)

SL MouseRotateShape() allows the user to rotate an SL Shape using the mouse. The argument to this
function, �shape ptr, must have had its type �eld set to one of the seven values of type SL ShapeType

(Section 7) before this function is called. If this value is other than SL POLYGON, SL POLYLINE or SL ARC,
this function has no e�ect on its data �eld and returns 0. Otherwise, the function performs just as the
corresponding primitive-rotating functions previously described in this section. If the primitive is rotated
successfully (i.e., the right mouse button is not clicked to abort the rotation), it is stored in the data �eld of
�shape ptr and the function returns 1. Otherwise, the function returns 0, leaving �shape ptr unchanged.

8.14.5 Scaling with the Mouse

int SL MouseScalePolyline(

SL Polyline �pline ptr =� pointer to polyline to scale �=
)

int SL MouseScalePolygon(

SL Polygon �pgon ptr =� pointer to polygon to scale �=
)

SL MouseScalePolyline() (SL MouseScalePolygon()allows the user to scale an SL Polyline (SL Polygon)
using the mouse. When the function is called, the distance between the current mouse pointer position and
the polyline's (polygon's) centroid is measured. This distance divided by the average distance to any polyline
(polygon) vertex from the centroid is used as the scaling factor for the polyline (polygon). As the mouse
is moved in the canvas, this scaling factor is recomputed and the polyline (polygon) grows and shrinks ac-
cordingly. This continues until the user clicks a mouse button again. If the left or middle button is pressed,
the scaled polyline (polygon) vertices determined by the current pointer position are stored in �pline ptr

(�pgon ptr) and the function returns 1. If the user presses the right mouse button at any time, the function
returns 0 leaving �pline ptr (�pgon ptr) unchanged.

int SL MouseScaleArc(

SL Arc �arc ptr =� pointer to arc to scale �=
)

int SL MouseScaleCircle(

SL Circle �circ ptr =� pointer to circle to scale �=
)

SL MouseScaleArc() (SL MouseScaleCircle()) allows the user to scale an SL Arc (SL Circle) using the
mouse. When the function is called, the distance between the current mouse pointer position and the arc's
(circle's) center is measured. This distance is assigned as the new arc (circle) radius. As the mouse is moved
in the canvas, the arc (circle) grows and shrinks depending on the relative positions of the mouse pointer
and the arc's (circle's) center. This continues until the user clicks a mouse button again. If the left or middle
button is pressed, the radius of the scaled arc (circle) determined by the current pointer position is stored
in �arc ptr (�circ ptr) and the function returns 1. If the user presses the right mouse button at any time,
the function returns 0 leaving �arc ptr (�circ ptr unchanged.

int SL MouseScaleShape(

SL Shape �shape ptr =� pointer to shape to scale �=
)

83

SL MouseScaleShape() allows the user to scale an SL Shape using the mouse. The argument to this function,
�shape ptr, must have had its type �eld set to one of the seven values of type SL ShapeType (Section 7)
before this function is called. If this value is other than SL POLYGON, SL POLYLINE, SL CIRCLE or SL ARC,
this function has no e�ect on its data �eld and returns 0. Otherwise, the function performs just as the
corresponding primitive-scaling functions previously described in this section. If the primitive is scaled
successfully (i.e., the right mouse button is not clicked to abort the scaling), it is stored in the data �eld of
�shape ptr and the function returns 1. Otherwise, the function returns 0, leaving �shape ptr unchanged.

8.15 Obstacle Database Functions

The functions in this section are used to interact with the obstacle database, which is enabled by passing
a 1 as the third argument to SL Init() (Sections 3 and 8.12). When the database is enabled, an Obstacle
menu button appears in the top row of the user interface next to the Go button. This menu allows the
user to manipulate (add, delete, move, scale, etc.) the primitives included in the database. These primitives
are automatically drawn on the canvas whenever the scene is redrawn and are not generally available for
manipulation within a program, except through the following functions. Provided in this section of the library
are functions for saving and loading obstacles to and from �les or lists and for testing for intersections or
collisions with the obstacles in the database.

For the following three functions, the �le format used is the shape �le format described in Section 8.5).

void SL ObstSaveFile(

char �filename =� name of file in which to save obstacles �=
)

SL ObstSaveFile() saves the current set of obstacles in the named �le. If the �le already exists, it will be
overwritten.

int SL ObstLoadFile(

char �filename =� name of file from which to load obstacles �=
)

SL ObstLoadFile() loads a set of obstacles from a named �le, replacing the current set of obstacles in the
database, if any. If the named �le (filename) is unreadable or does not exist the function returns 0, leaving
the obstacle database unchanged. Otherwise, the function returns 1.

int SL ObstMergeFile(

char �filename =� name of file from which to merge obstacles �=
)

SL ObstMergeFile() loads a set of obstacles from a named �le, and adds them to the current set of obstacles
in the database. If the named �le (filename) is unreadable or does not exist the function returns 0, leaving
the obstacle database unchanged. Otherwise, the function returns 1.

void SL ObstLoadShapes(

SL List �shape list =� list of new obstacle shapes �=
)

SL ObstLoadShapes() transfers a set of shapes stored in �shape list to the obstacle database, replacing
the current set of obstacles in the database.

SL List SL ObstRetrieveShapes(void)

SL ObstRetrieveShapes() copies the shapes in the obstacle database into an SL List of SL Shapes. If
there are no obstacles in the database, the return value of this function is NULL.

void SL ObstDeleteAll(void)

SL ObstDeleteAll() removes all existing obstacles from the database.

84

int SL InsidePointObst(

SL Point �pnt ptr =� pointer to point to test for inclusion �=
)

SL InsidePointObst() determines if the point �pnt ptr is inside any of the obstacles in the database,
returning 1 if it is and 0 otherwise.

The following functions determine if a given library primitive (segment, polyline, polygon, arc, circle, or
shape) intersects any of the obstacles in the database. If it does, the function returns 1; otherwise it returns
0.

int SL InterSegmentObstCheck(

SL Segment �seg ptr =� pointer to segment to test for intersection �=
)

int SL InterPolylineObstCheck(

SL Polyline �pline ptr =� pointer to polyline to test for intersection �=
)

int SL InterPolygonObstCheck(

SL Polygon �pgon ptr =� pointer to polygon to test for intersection �=
)

int SL InterArcObstCheck(

SL Arc �arc ptr =� pointer to arc to test for intersection �=
)

int SL InterCircleObstCheck(

SL Circle �circ ptr =� pointer to circle to test for intersection �=
)

int SL InterShapeObstCheck(

SL Shape �shape ptr =� pointer to shape to test for intersection �=
)

int SL CollideShapeObst(

SL Shape �shape ptr =� pointer to shape to test for collision �=
)

SL CollideShapeObst() determines if the shape �shape ptr collides with any of the obstacles in the
database. Collision is de�ned as one shape intersecting with another or one shape being inside the other. If
the given shape collides with any of the obstacles the function returns 1, otherwise it returns 0.

double SL ObstRayHit(

SL Point �ray from ptr =� pointer to base of ray �=
SL Point �ray to ptr =� pointer to final point of the ray �=

)

SL ObstRayHit() indicates where along a ray being �red from �ray from ptr to �ray to ptr the �rst
obstacle intersection occurs. Note that the ray does not extend beyond the point �ray to ptr. The return
value of this function is a value in the range [0:0; 1:0] indicating the linear displacement from �ray from ptr

toward �ray to ptr of the �rst obstacle intersection point. For example, a return value of 0:5 indicates the
ray �rst hits an obstacle at its midpoint. If the ray hits no obstacle or is of length 0, the function returns
1.0.

85

8.16 Bug Algorithm Functions

The following functions are used to implement the sensor-based motion planning algorithms Bug2 and
Visbug21 for bug-like point automata moving in the plane. These algorithms are designed to move a point
robot from a starting point to a target point in an unknown environment cluttered with obstacles. The same
algorithm may be used to move nonpoint robots if the algorithm is implemented in the robot's con�guration
space. This functionality is provided here as well by simply allowing the programmer to specify the function
that determines if a collision with an obstacle has occurred. For nonpoint robots, the bug parameters (starting
point, target point, etc.) are given in con�guration-space coordinates. The collision function tests for the
collision of the entire nonpoint robot structure with the obstacles. If the robot in the given con�guration
collides with an obstacle, then the point robot moving in the robot's con�guration space has collided with
a con�guration-space obstacle. See Section 4 for an example of how these functions are used with nonpoint
robots.

SL Bug SL Bug2Init(

SL Point �start ptr, =� the starting point for the bug (robot) �=
SL Point �target ptr, =� the target point for the robot �=
int left loc dir, =� 1/0 of local turning direction is left/right �=
double step size, =� size of the step to be taken by the robot �=
int (�coll fn)(SL Segment �)

=� the function used to check for collision

of robot with obstacles in environment �=
)

SL Bug SL Visbug21Init(

SL Point �start ptr, =� the starting point for the bug (robot) �=
SL Point �target ptr, =� the target point for the robot �=
int left loc dir, =� 1/0 if local turning direction is left/right �=
double step size, =� size of the step to be taken by the robot �=
double vision rad, =� the robot's radius of vision �=
int (�coll fn)(SL Segment �)

=� the function used to check for collision

of robot with obstacles in environment �=
)

SL Bug2Init() initializes a data structure that represents a bug, or point automaton, that may be moved
in the simulation environment in accordance with the Bug2 algorithm [1]. The bug is initialized to have
a starting point (�start ptr) and a target point (�target ptr). In addition, a local turning direction in
which the bug will turn to move around an obstacle is established by the
ag left loc dir. If this
ag
is 1, the robot will turn left; otherwise the robot will turn right. The distance the bug travels in a single
step is initialized to step size. Finally, coll fn() is a function that takes as an argument a pointer to an
SL Segment and returns 1 or 0 depending on if there would be a collision with an obstacle if the bug move
from the starting point to the ending point of this segment.

SL Visbug21Init() similarly initializes a data structure that represents a point automaton that may be
moved in accordance with the Visbug21 algorithm [2]. The parameter vision rad is the robot's radius of
vision.

void SL BugReset(

SL Bug the bug, =� the bug that is to be reset �=
SL Point �new start ptr, =� new starting point for the robot �=
SL Point �new target ptr =� new target point for the robot �=

)

SL BugReset() establishes a new start and target point for the bug and places the bug at the point
�new start ptr.

86

void SL BugGetPos(

SL Bug the bug, =� the bug whose position is of interest �=
SL Point �pos ptr =� the current position of the robot �=

)

SL BugGetPos() returns through �pos ptr the current position of the bug.

void SL BugSetPos(

SL Bug the bug, =� the bug for which to set position �=
SL Point �new pos ptr =� the new position of the robot �=

)

SL BugSetPos() places the bug at the position �new pos ptr.

void SL BugSetLocDir(

SL Bug the bug, =� the bug for which to set local direction �=
int left loc dir =� 1 if new direction is to be left; 0 if right �=

)

SL BugSetLocDir() establishes a new local turning direction for the bug. If the parameter left loc dir

is passed a nonzero value, the local turning direction is set to Left. Otherwise, the local turning direction is
set to Right.

void SL BugSetStepSize(

SL Bug the bug, =� the bug for which to set step size �=
double step size =� the new step size for the robot �=

)

SL BugSetStepSize() establishes step size as the new distance the bug will move in a single step.

int SL BugSetVisionRaidus(

SL Bug the bug, =� the bug for which to set radius of vision �=
double vision rad =� the new radius of vision for the robot �=

)

SL BugSetVisionRadius() establishes vision rad as the new radius of vision for the bug, assuming it was
created by a call to SL Visbug21Init(). If the bug was created by a call to the function SL Bug2Init(),
it has no radius of vision. This function, therefore, has no e�ect in this case.

int SL BugStep(

SL Bug the bug =� the bug that is to move a single step �=
)

SL BugStep() moves the bug a single step according to either the Bug2 or VisBug21 algorithm. Which
of these algorithms is used depends on whether SL Bug2Init() or SL Visbug21Init() was used to create
the bug.

void SL BugDrawPath(

SL Bug the bug =� the bug whose path is to be drawn �=
)

SL BugDrawPath() draws a series of points on the drawing canvas that represents the path of the bug from
its starting point to its current position.

87

8.17 Homogeneous Matrix Functions (SL Transf Functions)

The following set of functions are used for manipulating homogeneous transformation matrices and are part
of the ADT SL Transf.

void SL TransfCopy(

SL Transf t from, =� the transformation matrix to be copied �=
SL Transf t to =� the place to put the copied matrix �=

)

SL TransfCopy() makes a copy of a given transformation matrix.

void SL TransfLoadIdentity(

SL Transf the transf =� the place to put the identity matrix �=
)

SL TransfLoadIdentity() loads the identity transformation into a given matrix.

void SL TransfLoadTranslation(

double x, =� the amount of translation in the x direction �=
double y, =� the amount of translation in the y direction �=
SL Transf the transf =� the transformation representing the translation �=

)

SL TransfLoadTranslation() loads the transformation matrix corresponding to a given xy translation into
a given matrix (the transf).

void SL TransfLoadScale(

double scale, =� the scaling factor �=
SL Transf the transf =� the transformation representing the scaling �=

)

SL TransfLoadScale() loads the transformation matrix corresponding to a given scaling factor (scale) into
a give matrix (the transf).

void SL TransfLoadRotation(

double rad angle, =� the angle by which to rotate �=
SL Transf the transf =� the transformation representing the rotation �=

)

SL TransfLoadRotation() loads into a given matrix (the transf) the transformation matrix corresponding
to a rotation through a certain angle given in radians (rad angle).

void SL TransfLoadRotationSinCos(

double sin, =� sine of the angle by which to rotate �=
double cos, =� cosine of the angle by which to rotate �=
SL Transf the transf =� the transformation representing the rotation �=

)

SL TransfLoadRoatationSinCos() loads into a given matrix (the transf) the transformation matrix cor-
responding to a rotation through a certain angle, the sine and cosine of which are given.

void SL TransfPostMultiply(

SL Transf t1, =� the first transformation matrix �=
SL Transf t2, =� the second transformation matrix �=
SL Transf t1 times t2 =� the product matrix �=

)

88

SL TransfPostMultiply() creates a new transformation matrix (t1 times t2) that is the result of the
multiplication of two other matrices (t1t2).

void SL TransfPostMultiplyD(

SL Transf t1 in out, =� the first transformation matrix and

then the product �=
SL Transf t2 =� the second transformation matrix �=

)

SL TransfPostMultiplyD()multiplies two transformation matrices, t1 in out and t2 and replaces the �rst
matrix with the resulting matrix (t1 in outt2).

void SL TransfTranslate(

double x, =� the amount to translate in the x direction �=
double y, =� the amount to translate in the y direction �=
SL Transf the transf =� the transformation to change �=

)

SL TransfTranslate() alters a given transformation matrix to re
ect a translation in the xy-plane.

void SL TransfScale(

double scale, =� the scaling factor �=
SL Transf the transf =� the transformation to change �=

)

SL TransfScale() alters a given transformation matrix to re
ect a uniform scaling by a given factor.

void SL TransfRotate(

double rad angle, =� the radian angle by which to rotate �=
SL Transf the transf =� the transformation to change �=

)

SL TransfRotate() alters a given transformation matrix to re
ect a rotation by a certain angle given in
radians.

void SL TransfRotateSinCos(

double the sin, =� the sine of the angle by which to rotate �=
double the cos, =� the cosine of the angle by which to rotate �=
SL Transf the transf =� the transformation to change �=

)

SL TransfRotateSinCos() alters a given transformation matrix to re
ect a rotation by a certain angle, the
sine and cosine of which are given.

void SL TransfGetTranslation(

SL Transf the transf, =� the transformation matrix in question �=
SL Vector �origin ptr =� pointer to place to store translated origin �=

)

SL TransfGetTranslation() extracts from a given transformation matrix the translation vector encoded
there. This may also be seen as the origin of the transformed coordinate system. The translation information
is stored in �origin ptr.

double SL TransfGetScale(

SL Transf the transf =� the transformation matrix in question �=
)

89

SL TransfGetScale() extracts from the given transformation matrix the scaling factor encoded there. This
scaling factor is given as the return value of the function.

void SL TransfGetRotationSinCos(

SL Transf the transf, =� the transformation matrix in question �=
double �sin ptr, =� pointer to the sine of the rotation angle �=
double �cos ptr =� pointer to the cosine of the rotation angle �=

)

SL TransfGetRotationSinCos() extracts from the given transformation matrix the sine and cosine of the
rotation angle encoded there.

double SL TransfGetRotation(

SL Transf the transf =� the transformation matrix in question �=
)

SL TransfGetRotation() extracts from the given transformation matrix the rotation angle encoded there.
This angle, given in radians, is the return value of the function.

void SL TransfTimesPoint(

SL Transf the transf, =� the transformation matrix �=
SL Point �point ptr, =� the point to transform �=
SL Point �result ptr =� the transformed point �=

)

SL TransfTimesPoint() transforms the position of a point (�point ptr) using a given transformation ma-
trix. The transformed point is given in �result ptr.

void SL TransfGetWorld(

SL Transf the transf, =� the transformation matrix �=
SL Point �local ptr, =� the point in the local coordinate system �=
SL Point �world ptr =� the point in the world coordinate system �=

)

SL TransfGetWorld() converts a point given in a local coordinate system (�local ptr) as represented by
the given transformation matrix (the transf) to one in the world coordinate system (�world ptr). (Note
that this function is identical to SL TransfTimesPoint(). I'm not sure why we have both.)

void SL TransfGetLocal(

SL Transf the transf, =� the transformation matrix �=
SL Point �world ptr, =� the point in the world coordinate system �=
SL Point �local ptr =� the point in the local coordinate system �=

)

SL TransfGetLocal() coverts a point given in the world coordinate system (�world ptr) to one in the local
coordinate system (�local ptr), represented by the given transformation matrix.

void SL TransfConvert(

SL Transf source transf, =� the transformation to convert from �=
SL Transf target transf, =� the transformation to convert to �=
SL Point �source ptr, =� pointer to the point to convert �=
SL Point �target ptr =� pointer to the converted point �=

)

SL TransfConvert() converts the coordinates of a point (�source ptr) given in one coordinate system
(source transf) to coordinates in a second coordinate system (target transf).

90

void SL TransfInvert(

SL Transf the transf, =� the transformation to invert �=
SL Transf the transf inv =� the inverted transformation �=

)

SL TrasfInvert() inverts a given transformation matrix (the transf). The inverted matrix is stored in
the transf inv. Any point that is transformed �rst by the transf and then by the transf inv will not
change.

8.18 Modeling Functions

The functions described in this section are modeling transformation functions. These functions use the
homogeneous matrix transformation functions described in Section 8.17 to maintain a single matrix, the
current transformation matrix (CTM), that encodes a transformed model coordinate system. The CTM
may be thought of as a moving and rotating xy-coordinate system. Each new transformation should always
be speci�ed with respect to this moving coordinate system. Further, the drawing functions of Section 8.13
assume that the primitives to be drawn are speci�ed in the CTM coordinate system. When these modeling
functions are not used in a program, the CTM is by default the identity matrix.

The functions SL ModelPush() and SL ModelPop() allow for the maintenance of a modeling transforma-
tion stack (MTS), which is simply a sequence of CTMs. This is useful for manipulating geometric structures
that are naturally hierarchical. See Section 5 for an example of how these functions are used in a program.

void SL ModelIdentity(void)

SL ModelIdentity() sets the CTM to the identity matrix.

void SL ModelTranslate(

double x, =� the amount to translate in the x direction �=
double y =� the amount to translate in the y direction �=

)

SL ModelTranslate() postmultiplies the CTM by a homogeneous transformation matrix representing a
translation in the xy-plane.

void SL ModelRotate(

double angle =� the radian angle by which to rotate �=
)

SL ModelRotate() postmultiplies the CTM by a homogeneous transformation matrix representing a rotation
in the xy-plane through a certain angle given in radians.

void SL ModelRotateSinCos(

double the sin, =� the sine of the angle by which to rotate �=
double the cos =� the cosine of the angle by which to rotate �=

)

SL ModelRotateSinCos() postmultiplies the CTM by a homogeneous transformation matrix representing a
rotation in the xy-plane through a certain angle, the sine and cosine of which are given.

void SL ModelScale(

double scale =� the scaling factor �=
)

91

SL ModelScale() postmultiplies the CTM by a homogeneous transformation matrix representing a scaling
of the coordinate system by a certain factor.

void SL ModelPush(void)

SL ModelPush() pushes the CTM on the top of the MTS. The CTM remains unchanged.

void SL ModelPop(void)

SL ModePop() removes the top of the MTS and stores in the CTM.

void SL ModelGet(

SL Transf the transf =� place to store the CTM �=
)

SL ModelGet() retrieves the CTM and stores it in the transf.

void SL ModelSet(

SL Transf the transf =� the matrix to which the CTM should be set �=
)

SL ModelSet() replaces the CTM with a given transformation matrix.

void SL ModelPostMultiply(

SL Transf the transf =� the matrix by which to postmultiply the CTM �=
)

SL ModelPostMultiply() postmultiplies the CTM by a given transformation matrix. The result of the
multiplication is stored as the new CTM.

void SL ModelGetTranslation(

SL Vector �transl ptr =� pointer to place to store translation vector �=
)

SL ModelGetTransation() retrieves the translation vector encoded in the CTM (i.e, the origin of the trans-
formed coordinate system) and stores it in �transl ptr.

double SL ModelGetRotation(void)

SL ModelGetRotation() retrieves the rotation angle encoded in the CTM. The radian measurement is
returned as the function's value.

void SL ModelGetRotationSinCos(

double �sin ptr, =� pointer to place to store sine of rot. angle �=
double �cos ptr =� pointer to place to store cosine of rot. angle �=

)

SL ModelGetRotateSinCos() retrieves the sine and cosine of the rotation angle encoded in the CTM.

double SL ModelGetScale(void)

SL ModeGetScale() retrieves the scaling factor encoded in the CTM.
The following functions �nd the word-coordinate representations of library primitives that are given in

CTM coordinates.

92

void SL ModelGetWorldPoint(

SL Point �local ptr, =� pointer to point in CTM coordinates �=
SL Point �world ptr =� pointer to place to store world-coord. point �=

)

SL ModelGetWorldPoint() may also be used to �nd the world coordinates of an SL Vector given in CTM
coordinates.

void SL ModelGetWorldSegment(

SL Segment �local ptr, =� pointer to segment in CTM coordinates �=
SL Segment �world ptr =� pointer to place to store world-coord. segment �=

)

void SL ModelGetWorldPolygon(

SL Polygon �local ptr, =� pointer to polygon in CTM coordinates �=
SL Polygon �world ptr =� pointer to place to store world-coord. polyon �=

)

SL ModelGetWorldPolygon() may also be used to �nd the world coordinates of an SL Polyline given
in CTM coordinates.

void SL ModelGetWorldArc(

SL Arc �local ptr, =� pointer to arc in CTM coordinates �=
SL Arc �world ptr =� pointer to place to store world-coord. arc �=

)

void SL ModelGetWorldCircle(

SL Circle �local ptr, =� pointer to circle in CTM coordinates �=
SL Circle �world ptr =� pointer to place to store world-coord. circle �=

)

void SL ModelGetWorldShape(

SL Shape �local ptr, =� pointer to shape in CTM coordinates �=
SL Shape �world ptr =� pointer to place to store world-coord. shape �=

)

The following functions �nd the CTM-coordinate-system representation of library primitives given in
world coordinates.

void SL ModelGetLocalPoint(

SL Point �world ptr, =� pointer to point in world coordinates �=
SL Point �local ptr =� pointer to place to store CTM-coord. point �=

)

SL ModelGetLocalPoint() may also be used to �nd the CTM coordinate system representation of an
SL Vector.

void SL ModelGetLocalSegment(

SL Segment �world ptr, =� pointer to segment in world coordinates �=
SL Segment �local ptr =� pointer to place to store CTM-coord. segment �=

)

93

void SL ModelGetLocalPolygon(

SL Polygon �world ptr, =� pointer to polygon in world coordinates �=
SL Polygon �local ptr =� pointer to place to store CTM-coord. polygon �=

)

SL ModelGetLocalPolygon() may also be used to �nd the CTM coordinate system representation of an
SL Polyline.

void SL ModelGetLocalArc(

SL Arc �world ptr, =� pointer to arc in world coordinates �=
SL Arc �local ptr =� pointer to place to store CTM-coord. arc �=

)

void SL ModelGetLocalCircle(

SL Circle �world ptr, =� pointer to circle in world coordinates �=
SL Circle �local ptr =� pointer to place to store CTM-coord. circle �=

)

void SL ModelGetLocalShape(

SL Shape �world ptr, =� pointer to shape in world coordinates �=
SL Shape �local ptr =� pointer to place to store CTM-coord. shape �=

)

8.19 SL Frame Functions

The functions described in this section allow the programmer to create geometric structures in a hierarchical
manner through the use of frames. A frame is a coordinate system that has a number of geometric primitives
(its �xtures) associated with it. Each frame is assumed to be the location of a joint in the structure. This
joint may be either �xed (implying no articulation), prismatic, or revolute. Frames may be created in a
hierarchical manner, with each frame (except a root frame) having an associated parent and any number of
child frames. The coordinate transformation for each frame is de�ned relative to its parent frame. Drawing
or manipulation of a parent frame automatically causes its children to be drawn or appropriately changed
to re
ect the parent's movement. See Section 6 for an example program that uses these functions.

SL Frame SL FrameCreate(

SL Frame the parent, =� parent frame associated with new frame �=
SL FrameJoint j type, =� type of joint located at frame's origin �=
int draw axes =� 1/0 if frame axes are/are not to be drawn �=

)

SL FrameCreate() creates a new SL Frame and returns it as its value. The frame is placed in the hierarchy
as a child of the parent. If this frame is to be the root of the hierarchy, the parent should be NULL. The
type of joint located at the origin of this frame is speci�ed by the parameter j type (Section 7). If the frame
axes are to be drawn with each call to SL DrawFrame(), draw axes should be 1; otherwise, it should be 0.
After this function is called, the frame created is considered to be \open" and is ready to be repositioned
and have �xtures attached to it.

void SL FrameClose(void)

SL FrameClose() closes the most recently created frame, which means that no more changes (either trans-
formations or additions of �xtures) are to be made to this frame. Each call to SL FrameCreate() must be
paired with a call to SL FrameClose(). In between these two calls are the calls that transform the frame
and add �xtures to it.

94

void SL FrameIdentity(void)

SL FrameIdentity() sets the currently open frame's modeling transformation matrix to the identity.

void SL FrameTranslate(

double x, =� the amount to translate in the x direction �=
double y =� the amount to translate in the y direction �=

)

SL FrameTranslate() translates the currently open frame by a given amount in the xy-plane.

void SL FrameRotate(

double rad angle =� the radian angle by which to rotate �=
)

SL FrameRotate() rotates the currently open frame by a certain angle, given in radians.

void SL FrameRotateSinCos(

double the sin, =� sine of angle by which to rotate �=
double the cos =� cosine of angle by which to rotate �=

)

SL FrameRotateSinCos() rotates the currently open frame by a certain angle, the sine and cosine of which
are given.

void SL FrameScale(

double scale =� the scaling factor �=
)

SL FrameScale() scales the currently open frame by a given scaling factor.

void SL FrameSet(

SL Transf the transf =� the new modeling transformation matrix �=
)

SL FrameSet() sets the currently open frame's modeling transformation matrix to a given transformation
matrix (the transf).

void SL FramePostMultiply(

SL Transf the transf =� the transformation matrix by which to multiply �=
)

SL FramePostMultiply() postmultiplies the currently open frame's modeling transformation matrix by a
given transformation matrix (the transf).

void SL FrameAddCircle(

SL Circle �circ ptr, =� pointer to the circle to add to frame �=
int check collision, =� indicates if circle should be checked for

collisions with obstacles �=
char �draw color, =� name of color with which to draw circle �=
int draw solid =� indicates if circle should be filled or not �=

)

void SL FrameAddPolygon(

SL Polygon �poly ptr, =� pointer to polygon to add to frame �=
int check collision, =� indicates if polygon should be checked for

collisions with obstacles �=
char �draw color, =� name of color with which to draw polygon �=
int draw solid =� indicates if polygon should be filled or not �=

)

95

void SL FrameAddShape(

SL Shape �shape ptr, =� pointer to shape to add to frame �=
int check collision, =� indicates if shape should be checked for

collisions with obstacles �=
char �draw color, =� name of color with which to draw shape �=
int draw solid =� indicates if shape should be filled or not �=

)

The above three functions are used to add �xtures to the frame. The �xture is a library primitive
speci�ed in the current frame's coordinate system. If the value of check collision is 1, the �xture will
be tested for collision with obstacles in the environment when SL CollideFrameObst() is called or for
the given shape when SL CollideFrameShape() is called; otherwise it will not be checked for collisions.
When SL FrameDraw() is called for the �xture's frame hierarchy, the primitive will be drawn in the color
draw color. If draw solid is 1 (and the primitive is either an arc, circle, or polygon), it will be �lled; if it
is 0, the primitive will be drawn as an outline only.

void SL FrameGet(

SL Frame the frame, =� the frame in question �=
SL Transf the transf =� frame's transformation relative to its parent �=

)

SL FrameGet() retrieves a given frame's transformation matrix relative to its parent and places it in
the transf.

void SL FrameGetTranslation(

SL Frame the frame, =� the frame in question �=
SL Vector �transl ptr =� the translation vector �=

)

SL FrameGetTranslation() retrieves the translation vector of a given frame relative to its parent frame.
The vector is returned in �transl ptr.

double SL FrameGetRotation(

SL Frame the frame =� the frame in question �=
)

SL FrameGetRotation() retrieves the rotation angle of a given frame relative to its parent frame. This
radian angle measurement is returned as the function's value.

void SL FrameGetRotationSinCos(

SL Frame the frame, =� the frame in question �=
double �sin ptr, =� the sine of the frame's rotation angle �=
double �cos ptr =� the cosine of the frame's rotation angle �=

)

SL FrameGetRotationSinCos() retrieves the sine and cosine of a given frame's rotation angle.

void SL FrameGetWorld(

SL Frame the frame, =� the frame in question �=
SL Transf the transf =� the transformation from the world origin

to the frame origin �=
)

SL FrameGetWorld() retrieves the transformation matrix of a given frame relative to the world origin.

void SL FrameGetWorldTranslation(

SL Frame the frame, =� the frame in question �=
SL Vector �transl ptr =� pointer to the translation vector �=

)

96

SL FrameGetWorldTranslation() retrieves the translation vector of a given frame relative to the world
origin. The vector is return in �transl ptr.

double SL FrameGetWorldRotation(

SL Frame the frame =� the frame in question �=
)

SL FrameGetWorldRotation() retrieves the rotation angle of a given frame relative to the world origin. This
radian angle measurement is returned as the function's value.

void SL FrameGetWorldRotationSinCos(

SL Frame the frame, =� the frame in question �=
double �sin ptr, =� the sine of the frame's rotation angle �=
double �cos ptr =� the cosine of the frame's rotation angle �=

)

SL FrameGetWorldRotationSinCos() retrieves the sine and cosine of a given frame's rotation angle.

void SL FrameGetWorldPoint(

SL Frame the frame, =� the frame in which �local ptr is defined �=
SL Point �local ptr, =� pointer to a point defined in the frame's

coordinate system �=
SL Point �world ptr =� pointer to place to store point in

world coordinates �=
)

SL FrameGetWorldPoint() returns the world coordinates of a point that is speci�ed in a given frame's
coordinate system.

void SL FrameGetLocalPoint(

SL Frame the frame, =� the frame in question �=
SL Point �world ptr, =� pointer to point defined in world coordinates �=
SL Point �local ptr =� pointer to place to store point in

frame coordinates �=
)

SL FrameGetLocalPoint() returns the coordinates of a point speci�ed in world coordinates converted to
coordinates in a given frame's coordinate system.

void SL FrameConvertPoint(

SL Frame source frame, =� the frame to convert from �=
SL Frame target frame, =� the frame to convert to �=
SL Point �source ptr, =� pointer to the point to convert �=
SL Point �target ptr =� pointer to the converted point �=

)

SL FrameConvertPoint() converts the coordinates of a point (�source ptr) given in one frame's coordinate
system (source frame) to coordinates in a second frame's coordinate system (target frame).

double SL FrameGetJoint(

SL Frame the frame =� the joint's frame �=
)

SL FrameGetJoint() returns as its value the joint value of the joint associated with a given frame.

void SL FrameSetJoint(

SL Frame the frame, =� the joint's frame �=
double j value =� the value to which to set the joint �=

)

97

SL FrameSetJoint() sets the joint value of given frame's joint to a speci�ed quantity.

void SL FrameJointDelta(

SL Frame the frame, =� the joint's frame �=
double j delta =� the amount by which to change the joint value �=

)

SL FrameJointDelta() changes the joint value of a given frame by a speci�ed amount (j delta).

void SL FrameDraw(

SL Frame the frame =� the frame to draw �=
)

SL FrameDraw() draws the hierarchy of shapes attached to a given frame. All �xtures attached to the current
frame are drawn as well as the �xtures attached to any descendant frames (children, grandchildren, etc.).

int SL CollideFrameShape(

SL Frame the frame, =� the frame to check for collisions �=
SL Shape �shape ptr =� pointer to shape with which to check collisions �=

)

int SL CollideFrameObst(

SL Frame the frame =� the frame to check for collisions �=
)

SL CollideFrameShape() (SL CollideFrameObst()) checks if any of the �xtures attached to a given frame
or its descendants that were marked as ones for which to check collisions (See the SL FrameAdd*() routines.)
collides with the given shape (any of the obstacles in the obstacle database). Two shapes are said to collide
if they intersect or one is contained within the other. Note that the frame must be a root frame (i.e, its
parent must be NULL).

8.20 SL List Functions

Described here are the functions for manipulating variables of type SL List. Variables of this type are useful
for storing collections of data elements that grow and shrink as the program runs or for which it is di�cult
to determine an upper bound on the number of elements. The functions that are available for this ADT
allow elements to be added and deleted from lists at any position. Entire lists may be copied, concatenated,
or destroyed, and their lengths may be queried. Single elements of a list may be copied with or without
removing them from the list. A function is also provided that traverses an entire list and deletes all elements
that satisfy a given predicate function. Functions are provided for traversing an entire list (either forward or
backward) and applying a given function to each element of the list. For general traversal of a list, functions
are available for indexing a list so it may be treated much like an array.

SL List SL ListInit(

int data size =� the size (in bytes) of the each list

element's data field �=
)

SL ListInit() initializes a linked list that can hold elements of size data size. The initialized list is
provided as the function's return value. A call to this function must be made before calling any of the other
functions described in this section. After this function is called, the list is empty.

SL List SL ListDup(

SL List source list =� the list that is to be duplicated �=
)

98

SL ListDup() makes a copy of a given list. The duplicate list is given as the function's return value.

SL List SL ListReverse(

SL List source list =� the list that is to be reversed �=
)

SL ListReverse() makes a copy of a given list such that the elements in the new copy of the list are in the
reverse order of the original. The duplicate list is given as the function's return value.

SL List SL ListConcat(

SL List list1, =� the list after which list2 will be catenated �=
SL List list2 =� the list to concatenate after list1 �=

)

SL ListConcat() creates a new list with elements that are copies of those in list1 and list2. In the new
list, which is the function's return value, the elements of list1 appear �rst in the same order as in list1.
The elements of list2 follow the list1 elements and appear in the same order as the elements of list2.
The e�ect is to concatenate the elements of list1 and list2.

int SL ListEmpty(

SL List the list =� the list in question �=
)

SL ListEmpty() determines if a given list is empty. If the list contains no elements, the function returns
1; otherwise it returns 0.

int SL ListLength(

SL List the list =� the list whose length is being determined �=
)

SL ListLength() determines the number of elements in a given list. The length of the list is returned as
the function's value.

int SL ListFirst(

SL List the list =� list from which first element is being copied �=
char �data ptr =� pointer to where the list's first element

should be copied �=
)

int SL ListLast(

SL List the list =� list from which last element is being copied �=
char �data ptr =� pointer to where the list's last element

should be copied �=
)

int SL ListNth(

SL List the list, =� list from which nth element is being copied �=
int the n, =� number of element to be copied from the list

(1 corresponds to the first element) �=
char �data ptr =� pointer to where the list's element

should be copied �=
)

The above three functions copy the �rst, last, or nth element, respectively, of a given list into a given location
(�data ptr). If the list is empty (or contains fewer than n elements for SL ListNth()), the function returns
0, leaving �data ptr unchanged. Otherwise, the function returns 1. The given list is unchanged by these
functions.

99

char �SL ListInsertNth(

SL List the list, =� the list into which to insert an element �=
int the n, =� the list index for the new element �=
char �data ptr =� a pointer to the element to be inserted �=

)

SL ListInsertNth() inserts a new element (�data ptr) as the nth in the list. The value of the n must be
between 1 and the number of elements in the list. If the n is not in this range, the function returns NULL.
Otherwise, the function returns a pointer to the new list element created.

int SL ListDeleteNth(

SL List the list, =� the list from which to delete an element �=
int the n, =� the list index of the element to be deleted �=
char �data ptr =� pointer to place to store deleted element �=

)

SL ListDeleteNth() deletes the nth element from the list and copies the data from the deleted element
into a given location (�data ptr). If the list contains fewer than the n elements, the function returns 0,
leaving �data ptr unchanged. Otherwise, the function returns 1.

char �SL ListPush(

SL List the list, =� list to which a new element is to be added �=
char �data ptr =� pointer to the element to be added �=

)

SL ListPush() adds a new element to the beginning of a given list (i.e, it pushes an element onto the list).
The function returns a pointer to the new list element created that contains �data ptr.

int SL ListPop(

SL List the list, =� list from which to remove an element �=
char �data ptr =� pointer to place to store the removed element �=

)

SL ListPop() deletes the �rst element from a given list and copies the data from the deleted element into
�data ptr (i.e., it pops an element o� the list). If the list is empty, the function returns 0, leaving �data ptr

unchanged. Otherwise, the function returns 1.

char �SL ListAppend(

SL List the list, =� list to which a new element is to be added �=
char �data ptr =� pointer to the element to be added �=

)

SL ListAppend() adds a new element to the end of a given list. The function returns a pointer to the new
list element created that contains �data ptr.

int SL ListUnappend(

SL List the list, =� list from which an element is to be deleted �=
char �data ptr =� pointer to place to store deleted element �=

)

SL ListUnappend() deletes the last element from a given list and copies the data from the deleted element
into �data ptr. If the list is empty, the function returns 0, leaving �data ptr unchanged. Otherwise, the
function returns 1.

void SL ListDispose(

SL List the list =� list that is to be destroyed �=
)

100

SL ListDispose() disposes of (i.e., frees the memory occupied by) all the elements in the list. After a
call to this function the list is empty. It need not be reinitialized.

int SL ListDeletePred(

SL List the list, =� the list from which elements should be removed �=
int (�pred fn)(char �data ptr, char �handle),

=� predicate function that indicates if an

element satisfies the deletion condition �=
char �handle =� pointer to some data that is to be passed

to each call of pred fn �=
)

SL ListDeletePred() deletes all the elements from a given list (the list) that satisfy a given predicate.
This predicate is supplied in the form of a function (pred fn()) that takes two arguments and returns 1 or
0 depending on whether the given element satis�es the deletion condition. The two arguments to pred fn()

are a pointer to the data element in question and a pointer to another data element necessary to determine if
the list element should be deleted. This second argument will be the same for every call to pred fn() while
processing the list and must be supplied as the third argument to SL ListDeletePred(). If no such data
element is needed to determine the return value of pred fn(), the third argument of SL ListDeletePred()

may be NULL. Note, however, that pred fn() must still accept two arguments.

int SL ListApply(

SL List the list, =� the list that is being traversed �=
int (�apply fn)(char �data ptr, char �handle),

=� function to call for each element of list �=
char �handle =� pointer to some data item that is passed

to each call of apply fn �=
)

int SL ListApplyBwd(

SL List the list, =� the list that is being traversed �=
int (�apply fn)(char �data ptr, char �handle),

=� function to call for each element of list �=
char �handle =� pointer to some data item that is passed

to each call of apply fn �=
)

SL ListApply() (SL ListApplyBwd()) traverses through the elements of the list from �rst to last (last to
�rst), applying the function apply fn() to each element. This function takes two arguments and returns 1 or
0 to indicate if the traversal of the list elements should continue or stop. The two arguments to apply fn()

are a pointer to a list element and a pointer to another data element that is necessary to process the list
element. The second argument will be the same for every call to apply fn() while processing the list and
must be supplied as the third argument to SL ListApply(). If no such data element is needed for processing
the list elements, the third argument of SL ListApply() may be NULL. Note, however, that apply fn()

must still accept two arguments.

char �SL ListFind(

SL List the list, =� the list that is being indexed �=
int (�pred fn)(char �data ptr, char �handle),

=� function indicating when an element is found �=
char �handle =� pointer to data element passed to each call

of pred fn �=
)

101

SL ListFind() traverses through the elements of the list to �nd the �rst element that satis�es a given
predicate. The predicate is applied to the elements of the list from �rst to last until it �nds an element
for which the function pred fn() returns 1. The predicate function takes two arguments and returns an
integer. The two arguments to pred fn() are a pointer to a list element and a pointer to another data
element that is necessary to determine the predicate value. The second argument will be the same for every
call to pred fn() while processing the list and must be supplied as the third argument to SL ListFind().
If no such data element is needed, the third argument of SL ListFidn() may be NULL. Note, however,
that pred fn() must still accept two arguments. The return value of SL ListFind is a pointer to the �rst
element that satis�es the given predicate function. If no elements satisfy the predicate, the function returns
NULL.

The following set of functions are used to traverse through a list's elements by using an index, much as
one would traverse through the elements of an array using an index. The index value is set by the function
SL ListSetI() and may then be changed with SL ListIncI(), SL ListDecI() and SL ListFindI(). The
index value is 1-based, which means that the �rst element of the list corresponds to index value 1. The
element corresponding to the current index value of a list may be retrieved or deleted using SL ListGetI()

or SL ListDelI(), respectively. The function SL ListInsI() may be used to insert a new element into a
list at the position corresponding to the current index value.

void SL ListSetI(

SL List the list, =� the list that is being indexed �=
int the I =� the 1-based index number for the list �=

)

SL ListSetI() sets the index value of the list to the I.

int SL ListIncI(

SL List the list =� the list that is being indexed �=
)

SL ListIncI() increases the index value of the list by 1.

int SL ListDecI(

SL List the list =� the list that is being indexed �=
)

SL ListDecI() decreases the index value of the list by 1.

char �SL ListFindI(

SL List the list, =� the list that is being indexed �=
int (�pred fn)(char �data ptr, char �handle),

=� function indicating when an element is found �=
char �handle =� pointer to data element passed to each call

of pred fn �=
)

SL ListFindI() �nds and returns a pointer to the �rst element of a given list that satis�es a certain
predicate. The predicate is supplied in the form of a function (pred fn()) that takes two arguments and
returns 1 or 0 depending on whether the given element satis�es a certain condition. The two arguments to
pred fn() are a pointer to the data element in question and a pointer to another data element necessary to
determine if the list element should be deleted. This second argument to pred fn() must be supplied as the
third argument to SL ListDeletePred(). If no such data element is needed to determine the return value
of pred fn(), the third argument of SL ListFindI() may be NULL. Note, however, that pred fn() must
still accept two arguments. After a call to this function, the index value of the list will be the index value
of the �rst element that satis�es the given predicate. If there is no list element for which pred fn() returns
1, SL ListFindI() will return NULL and the index value of the list will be one more than the number of
elements in the list.

102

char �SL ListGetI(

SL List the list =� the list that is being indexed �=
)

SL ListGetI() returns a pointer to the data element corresponding to the current index value.

void SL ListDelI(

SL List the list =� the list that is being indexed �=
)

SL ListDelI() deletes the list element corresponding to the current index value.

char �SL ListInsI(

SL List the list, =� the list that is being indexed �=
char �data ptr =� pointer to data element to be inserted at

the list's index position �=
)

SL ListInsI() inserts a new element into the list at the position corresponding to the current index value.
The function returns a pointer to the new list element where �data ptr was stored.

References

[1] V. Lumelsky and A. Stepanov, Path planning strategies for a point mobile automaton moving amongst
unknown obstacles of arbitrary shape, Algorithmica, 3(4): 403-440, 1987.

[2] V. Lumelsky and T. Skewis, Incorporating range sensing in the robot navigation funciton, IEEE Trans-

actions on Systems, Man, and Cybernetics, 20(5): 1058-1069, October 1990.

103

A car.c code

In the directory /usr/local/SL/2/Examples, this program is split into two �les car.c and park.c with a
header �le car.h. Here we present the program as if it appeared in a single �le.

#include <stdio.h>

#include <math.h>

#include <string.h>

#include <malloc.h>

#include "SL.h"

typedef struct {

SL_Point front_axle;

double axle_sin, axle_cos;

double wheel_sin, wheel_cos;

double velocity;

} CarConf;

struct _Car

{

CarConf conf;

char *body_color;

double length, lenght_inv;

SL_Polygon body;

int collisions, time_steps;

double path_length;

};

typedef struct _Car *Car;

static Car MyCar;

static ModelAtFrontAxle(Car the_car)

{

SL_ModelIdentity();

SL_ModelTranslate(the_car->conf.front_axle.x, the_car->conf.front_axle.y);

SL_ModelRotateSinCos(-1.0, 0.0);

SL_ModelRotateSinCos(the_car->conf.axle_sin, the_car->conf.axle_cos);

}

static void DrawHeadLights(void)

{

static SL_Polygon LeftHL = {4, {{0,0},{-.2,0},{-.2,.05},{0,.1}}};

static SL_Polygon RightHL = {4, {{0,0},{.2,0},{.2,.05},{0,.1}}};

SL_ModelPush();

SL_ModelTranslate(-0.1, 0.2);

SL_DrawPolygon(&LeftHL, 0);

SL_ModelTranslate(0.2, 0.0);

SL_DrawPolygon(&RightHL, 0);

SL_ModelPop();

}

static void DrawWheel(double wheel_sin, double wheel_cos)

{

static SL_Polygon wheel_poly = {4, {{.05,-.2}, {.05,.2},

{-.05,.2}, {-.05,-.2}}};

104

SL_ModelPush();

SL_ModelRotateSinCos(wheel_sin, wheel_cos);

SL_DrawPolygon(&wheel_poly, 1);

SL_ModelPop();

}

static void DrawAxle(double wheel_sin, double wheel_cos)

{

static SL_Segment axle_segm = {{-.4,0},{.4,0}};

SL_DrawSegment(&axle_segm);

SL_ModelPush();

SL_ModelTranslate(-.4, 0.0);

DrawWheel(wheel_sin, wheel_cos);

SL_ModelTranslate(.8, 0.0);

DrawWheel(wheel_sin, wheel_cos);

SL_ModelPop();

}

static void ComputeCarBody(Car the_car)

{

static SL_Polygon BodyPoly = { 8, {{.4,.3},{0,.4},{-.4,.3},

{-.4,-1.3},{-.1,-1.3},{0,-1.2},

{.1,-1.3},{.4,-1.3}} };

SL_ModelPush();

ModelAtFrontAxle(the_car);

SL_ModelScale(the_car->length);

SL_ModelGetWorldPolygon(&BodyPoly, &(the_car->body));

SL_ModelPop();

}

/* Non-holonomic kinematics */

static void CarRoll(Car the_car)

{

CarConf loc_conf;

loc_conf = the_car->conf;

the_car->conf.front_axle.x += /* v cos [theta + phi] */

loc_conf.velocity*(loc_conf.axle_cos*loc_conf.wheel_cos-

loc_conf.axle_sin*loc_conf.wheel_sin);

the_car->conf.front_axle.y += /* v sin [theta + phi] */

loc_conf.velocity*(loc_conf.axle_sin*loc_conf.wheel_cos+

loc_conf.axle_cos*loc_conf.wheel_sin);

{

double factor = loc_conf.velocity*loc_conf.wheel_sin/the_car->length;

double norm = sqrt(1+factor*factor);

the_car->conf.axle_sin += factor*loc_conf.axle_cos;

the_car->conf.axle_sin /= norm;

the_car->conf.axle_cos -= factor*loc_conf.axle_sin;

the_car->conf.axle_cos /= norm;

}

}

static int CarGuardedRoll(Car the_car)

{

CarConf save_conf;

SL_Polygon save_body;

105

the_car->time_steps++;

save_conf = the_car->conf;

save_body = the_car->body;

CarRoll(the_car);

ComputeCarBody(the_car);

if (CarCollision(the_car))

{

the_car->conf = save_conf;

the_car->body = save_body;

the_car->conf.velocity *= -0.25;

the_car->collisions++;

return(0);

}

else

{

the_car->path_length += fabs(the_car->conf.velocity);

return(1);

}

}

void CarSetWheel(Car the_car, double wheel_deg_angle)

{

double wheel_rad_angle = SL_DegreesToRadians(wheel_deg_angle);

the_car->conf.wheel_cos = cos(wheel_rad_angle);

the_car->conf.wheel_sin = sin(wheel_rad_angle);

}

double CarGetWheel(Car the_car)

{

return(SL_RadiansToDegrees(atan2(the_car->conf.wheel_sin,

the_car->conf.wheel_cos)));

}

void CarReset(Car the_car, double deg_orient, double pos_x, double pos_y)

{

double ori_rad = SL_DegreesToRadians(deg_orient);

the_car->collisions = the_car->time_steps = 0;

the_car->path_length = 0.0;

the_car->conf.front_axle.x = pos_x;

the_car->conf.front_axle.y = pos_y;

the_car->conf.axle_cos = cos(ori_rad);

the_car->conf.axle_sin = sin(ori_rad);

the_car->conf.velocity = 0.0;

ComputeCarBody(the_car);

CarSetWheel(the_car, 0.0);

}

Car CarCreate(double base_length, char *body_color)

{

Car the_car = (Car)malloc(sizeof(struct _Car));

the_car->body_color = body_color;

the_car->length = base_length;

CarReset(the_car, 0.0, 0.0, 0.0);

return(the_car);

}

106

int CarGetTimeSteps(Car the_car)

{

return(the_car->time_steps);

}

double CarGetPathLength(Car the_car)

{

return(the_car->path_length);

}

void CarDraw(Car the_car)

{

static SL_Segment CenterAxle = {{0,0},{0,1.0}};

SL_SetDrawColor(the_car->body_color);

SL_DrawPolygon(&(the_car->body), 1);

SL_SetDrawColor("black");

SL_DrawPolygon(&(the_car->body), 0);

SL_ModelPush();

ModelAtFrontAxle(the_car);

SL_ModelScale(the_car->length);

DrawHeadLights();

DrawAxle(the_car->conf.wheel_sin, the_car->conf.wheel_cos);

SL_ModelTranslate(0.0, -1.0);

DrawAxle(0.0, 1.0);

SL_DrawSegment(&CenterAxle);

SL_ModelPop();

}

int CarGetCollisions(Car the_car)

{

return(the_car->collisions);

}

int CarCollision(Car the_car)

{

return(SL_InterPolygonObstCheck(&(the_car->body))||

SL_InterPolygonCanvasPolygonCheck(&(the_car->body)));

}

int CarStep(Car the_car, double step_size)

{

the_car->conf.velocity = step_size;

return(CarGuardedRoll(the_car));

}

static void SimuInit(void)

{

SL_MakeColor("obstacles", 0.35, 0.1, 0.1);

SL_ObstLoadFile("spot1");

MyCar = CarCreate(75.0, "green");

}

static void SimuReset(void)

{

CarReset(MyCar, 0.0, 300.0, 300.0);

}

107

static void SimuRedraw(void)

{

static SL_Point DrawPos = {25,25};

char buf[64];

sprintf(buf, "Steps: %-3d, Hits: %-2d",

CarGetTimeSteps(MyCar), CarGetCollisions(MyCar));

CarDraw(MyCar);

SL_DrawText(&DrawPos, buf);

}

static void WheelPos(void)

{

double new_wheel = CarGetWheel(MyCar)+WHEEL_STEP;

if (new_wheel <= WHEEL_MAX)

{

CarSetWheel(MyCar, new_wheel);

SL_Redraw();

}

}

static void WheelNeg(void)

{

double new_wheel = CarGetWheel(MyCar)-WHEEL_STEP;

if (new_wheel >= -WHEEL_MAX)

{

CarSetWheel(MyCar, new_wheel);

SL_Redraw();

}

}

static void WheelZero(void)

{

CarSetWheel(MyCar, 0.0);

SL_Redraw();

}

static void MoveFwd(void)

{

if (!CarStep(MyCar, STEP_SIZE))

fprintf(stderr, "\a");

SL_Redraw();

}

static void MoveBwd(void)

{

if (!CarStep(MyCar, -STEP_SIZE))

fprintf(stderr, "\a");

SL_Redraw();

}

int main()

{

SL_Init(CVS_SIDE, CVS_SIDE, 1, SimuInit, SimuReset, SimuRedraw,

NULL, NULL, NULL, NULL, NULL);

SL_AddLabel("Controls:");

108

SL_AddButton("W+", 1, WheelPos);

SL_AddButton("W0", 0, WheelZero);

SL_AddButton("W-", 1, WheelNeg);

SL_AddButton("Fwd", 1, MoveFwd);

SL_AddButton("Bwd", 1, MoveBwd);

SL_Loop();

return(0);

}

Index

active mode 11
bottom row 24
Bug2 36, 85
callback routine 12
canvas polygon functions 60
canvas polygon 19, 60
containment functions 61
current transformation matrix (CTM) 40, 90
dialog box 25
dialog button 25
dialog window 25
distance functions 30, 68
drawing canvas 9, 75
drawing color 10, 11
event 12
event-loop 75
�xture 42, 93
frame 42, 93
Go button 11
graphics functions 10, 11, 31, 75
initialization callback 9, 12
intersection functions 12, 64
keyboard callback 17
label 24
menu button 24
modeling functions 40, 90
modeling transformation stack (MTS) 40, 90
mouse click callback 17
mouse editing functions 29, 77
mouse motion callback 19
obstacle functions 31, 83
obstacle database (ODB) 31, 83
Obstacle menu 31
point functions 51
polygon functions 57
polyline functions 57
push button 24
redraw callback 10, 12
register 12
reset callback 11, 12
segment functions 55
shapes �le 59
Simulation menu 10

Quit 11, 13
Redraw 10
Reset 11

simulation state variable 11
simulation steps 11
SL AddButton() 24, 74

SL AddDialog() 25, 74
SL AddLabel() 24, 73
SL AddMenu() 24, 74
SL AddToggle() 25, 74
SL Arc 48
SL Bug ADT 36, 85
SL Bug2Init() 36, 83
SL BugDrawPath() 37, 86
SL BugGetPos() 37, 86
SL BugReset() 37, 85
SL BugSetLocDir() 37, 86
SL BugSetPos() 37, 86
SL BugSetStepSize() 37, 86
SL BugSetVisionRadius() 37, 86
SL BugStep() 37, 86
SL Button 47
SL Circle 48
SL ClearCanvas() 77
SL CollideFrameObst() 43, 97
SL CollideFrameShape() 43, 97
SL CollideShapeObst() 35, 84
SL CollideShapeShape() 60
SL Collinear() 55
SL DegreesToRadians() 49
SL DistCircleCircle() 71
SL DistPointCircle() 69
SL DistPointPoint() 68
SL DistPointPointNull() 68
SL DistPointPointSQR() 68
SL DistPointPolygon() 69
SL DistPointPolyline() 69
SL DistPointSegment() 68
SL DistPolygonCircle() 70
SL DistPolygonPolygon() 70
SL DistPolylineCircle() 70
SL DistPolylinePolygon() 70
SL DistPolylinePolyline() 70
SL DistSegmentCircle() 69
SL DistSegmentPolygon() 69
SL DistSegmentPolyline() 69
SL DistSegmentSegment() 69
SL DistShapeShape() 71
SL DrawArc() 76
SL DrawAxes() 77
SL DrawCircle() 76
SL DrawPoint() 76
SL DrawPolygon() 76
SL DrawPolyline() 76
SL DrawSegment() 76

109

110

SL DrawShape() 76
SL DrawText() 31, 77
SL Frame ADT 42, 93
SL FrameAddCircle() 42, 94
SL FrameAddPolygon() 42, 95
SL FrameAddShape() 42, 95
SL FrameClose() 42, 93
SL FrameConvertPoint() 96
SL FrameCreate() 42, 93
SL FrameDraw() 43, 97
SL FrameGet() 95
SL FrameGetJoint() 96
SL FrameGetLocalPoint() 96
SL FrameGetRotation() 95
SL FrameGetRotationSinCos() 95
SL FrameGetTranslation() 95
SL FrameGetWorld() 95
SL FrameGetWorldPoint() 96
SL FrameGetWorldRotation() 96
SL FrameGetWorldRotationSinCos() 96
SL FrameGetWorldTranslation() 96
SL FrameIdentity() 94
SL FrameJoint 47
SL FrameJointDelta() 43, 97
SL FramePostMultiply() 94
SL FrameRotate() 94
SL FrameRotateSinCos() 94
SL FrameScale() 94
SL FrameSet() 94
SL FrameSetJoint() 43, 97
SL FrameTranslate() 94
SL GetCanvasPolygon() 60
SL GetColor() 75
SL Init() 9, 11, 17, 19, 31, 72
SL InsideArcCircle() 63
SL InsideArcPolygon() 62
SL InsideCircleCircle() 63
SL InsideCirclePolygon() 63
SL InsidePointCanvasPolygon() 60
SL InsidePointCircle() 18, 62
SL InsidePointObst() 84
SL InsidePointPolygon() 62
SL InsidePointShape() 62
SL InsidePolygonCircle() 62
SL InsidePolygonPolygon() 62
SL InsidePolylineCircle() 62
SL InsidePolylinePolygon() 62
SL InsideSegmentCircle() 62
SL InsideSegmentPolygon() 62
SL InsideShapeShape() 63
SL InterArcArc() 67

SL InterArcArcCheck() 65
SL InterArcCanvasPolygon() 61
SL InterArcCanvasPolygonCheck() 60
SL InterArcCircle() 67
SL InterArcCircleCheck() 65
SL InterArcObstCheck() 84
SL InterCircleCanvasPolygon() 61
SL InterCircleCanvasPolygonCheck() 19, 60
SL InterCircleCircle() 68
SL InterCircleCircleCheck() 65
SL InterCircleObstCheck() 35, 84
SL InterPolygonArc() 67
SL InterPolygonArcCheck() 65
SL InterPolygonCanvasPolygon() 61
SL InterPolygonCanvasPolygonCheck() 60
SL InterPolygonCircle() 67
SL InterPolygonCircleCheck() 12, 65
SL InterPolygonObstCheck() 84
SL InterPolygonPolygon() 67
SL InterPolygonPolygonCheck() 65
SL InterPolylineArc() 67
SL InterPolylineArcCheck() 65
SL InterPolylineCanvasPolygon() 61
SL InterPolylineCanvasPolygonCheck() 60
SL InterPolylineCircle() 67
SL InterPolylineCircleCheck() 65
SL InterPolylineObstCheck() 84
SL InterPolylinePolygon() 67
SL InterPolylinePolygonCheck() 65
SL InterPolylinePolyline() 66
SL InterPolylinePolylineCheck() 65
SL InterSegmentArc() 66
SL InterSegmentArcCheck() 64
SL InterSegmentCanvasPolygon() 61
SL InterSegmentCanvasPolygonCheck() 60
SL InterSegmentCircle() 66
SL InterSegmentCircleCheck() 64
SL InterSegmentObstCheck() 35, 84
SL InterSegmentPolygon() 66
SL InterSegmentPolygonCheck() 64
SL InterSegmentPolyline() 66
SL InterSegmentPolylineCheck() 64
SL InterSegmentSegment() 66
SL InterSegmentSegmentCheck() 64
SL InterShapeCanvasPolygon() 61
SL InterShapeCanvasPolygonCheck() 60
SL InterShapeObstCheck() 84
SL InterShapeShape() 68
SL InterShapeShapeCheck() 65
SL LeftTurn() 54
SL List ADT 97

111

SL ListAppend() 99
SL ListApply() 100
SL ListApplyBwd() 100
SL ListConcat() 98
SL ListDecI() 101
SL ListDeleteNth() 99
SL ListDeletePred() 100
SL ListDelI() 102
SL ListDispose() 100
SL ListDup() 98
SL ListEmpty() 98
SL ListFind() 101
SL ListFindI() 101
SL ListFirst() 98
SL ListGetI() 102
SL ListIncI() 101
SL ListInit() 97
SL ListInsertNth() 99
SL ListInsI() 102
SL ListLast() 98
SL ListLength() 98
SL ListNth() 98
SL ListPop() 99
SL ListPush() 99
SL ListReverse() 98
SL ListSetI() 101
SL ListUnappend() 99
SL LoadShapesFile() 59
SL Loop() 9, 12, 74
SL MakeColor() 10, 17, 75
SL MatrixDeterminant2x2() 50
SL MatrixDeterminant3x3() 50
SL MatrixInvert2x2() 50
SL MatrixInvert3x3() 50
SL MatrixProduct2x2() 50
SL MatrixProduct3x3() 50
SL MatrixSolve2x2() 51
SL MatrixSolve3x3() 51
SL MatrixTimesVector2x2() 50
SL MatrixTimesVector3x3() 50
SL MatrixTranspose2x2() 49
SL MatrixTranspose3x3() 50
SL ModelGet() 91
SL ModelGetLocalArc() 93
SL ModelGetLocalCircle() 93
SL ModelGetLocalPoint() 92
SL ModelGetLocalPolygon() 93
SL ModelGetLocalSegment() 92
SL ModelGetLocalShape() 93
SL ModelGetRotation() 91
SL ModelGetRotationSinCos() 91

SL ModelGetScale() 91
SL ModelGetTranslation() 91
SL ModelGetWorldArc() 92
SL ModelGetWorldCircle() 92
SL ModelGetWorldPoint() 92
SL ModelGetWorldPolygon() 92
SL ModelGetWorldSegment() 92
SL ModelGetWorldShape() 92
SL ModelIdentity() 90
SL ModelPop() 40, 91
SL ModelPostMultiply() 91
SL ModelPush() 40, 91
SL ModelRotate() 42, 90
SL ModelRotateSinCos() 42, 90
SL ModelScale() 42, 91
SL ModelSet() 91
SL ModelTranslate() 41, 90
SL Modulo() 49
SL MouseGetArc() 79
SL MouseGetCircle() 29, 79
SL MouseGetPoint() 30, 78
SL MouseGetPolygon() 29, 78
SL MouseGetPolyline() 78
SL MouseGetPosition() 77
SL MouseGetRectangle() 78
SL MouseGetSegment() 78
SL MouseGetShape() 79
SL MouseMoveArc() 80
SL MouseMoveCircle() 29, 80
SL MouseMovePolygon() 29, 80
SL MouseMovePolygonVertex() 81
SL MouseMovePolyline() 80
SL MouseMovePolylineVertex() 81
SL MouseMoveSegment() 79
SL MouseMoveSegmentEndpoint() 80
SL MouseMoveShape() 80
SL MouseRotateArc() 81
SL MouseRotatePolygon() 81
SL MouseRotatePolyline() 81
SL MouseRotateShape() 82
SL MouseScaleArc() 82
SL MouseScaleCircle() 82
SL MouseScalePolygon() 82
SL MouseScalePolyline() 82
SL MouseScaleShape() 83
SL MoveTowardsPoint() 30, 54
SL ObstDeleteAll() 35, 83
SL ObstLoadFile() 35, 83
SL ObstLoadShapes() 36, 83
SL ObstMergeFile() 35, 83
SL ObstRayHit() 84

112

SL ObstRetrieveShapes() 36, 83
SL ObstSaveFile() 35, 83
SL Point 48
SL PointInRightSemiPlane() 54
SL PointInterpolate() 54
SL PointOnSegment() 64
SL Polygon 48
SL PolygonAverageRadius() 58
SL PolygonCentroid() 57
SL PolygonClosestVertex() 59
SL PolygonConvexHull() 57
SL PolygonInCCWOrder() 57
SL PolygonMove() 58
SL PolygonPointRotate() 58
SL PolygonPointRotateSinCos() 58
SL PolygonRotate() 58
SL PolygonRotateSinCos() 58
SL PolygonScale() 58
SL PolygonSelfInter() 59
SL Polyline 48
SL PolylineSelfInter() 59
SL PrintToStatusBar() 17, 77
SL QuadraticRoots() 49
SL RadiansToDegrees() 49
SL RandomNumber() 49
SL Redraw() 17, 18, 77
SL RightTurn() 54
SL SaveShapesFile() 59
SL Segment 48
SL SegmentDotProduct() 55
SL SegmentLength() 55
SL SegmentLengthSQR() 55
SL SegmentMidpoint() 31, 57
SL SegmentMove() 56
SL SegmentNull() 55
SL SegmentPolarAngle() 55
SL SegmentPolarAttributes() 56
SL SegmentProjection() 57
SL SegmentRotate() 56
SL SegmentRotateSinCos() 56
SL SegmentScale() 56
SL SegmentToSegmentAngle() 56
SL SetDrawColor() 11, 76
SL SetDrawThickness() 76
SL SetUp3DCanvas() 73
SL Shape 48
SL Shape functions 59
SL ShapeType 47
SL SteppingOn() 18, 75
SL TangentCircleCircle() 71
SL TangentPointCircle() 71

SL TangentPointPolygon() 71
SL Transf ADT 87
SL TransfConvert() 89
SL TransfCopy() 87
SL TransfGetLocal() 89
SL TransfGetRotation() 89
SL TransfGetRotationSinCos() 89
SL TransfGetScale() 89
SL TransfGetTranslation() 88
SL TransfGetWorld() 89
SL TransfInvert() 90
SL TransfLoadIdentity() 87
SL TransfLoadRotation() 87
SL TransfLoadRotationSinCos() 87
SL TransfLoadScale() 87
SL TransfLoadTranslation() 87
SL TransfPostMultiply() 88
SL TransfPostMultiplyD() 88
SL TransfRotate() 88
SL TransfRotateSinCos() 88
SL TransfScale() 88
SL TransfTimesPoint() 89
SL TransfTranslate() 88
SL TranslateArc() 63
SL TranslateCircle() 63
SL TranslatePolygon() 63
SL TranslateSegment() 63
SL TranslateShape() 63
SL TranslateVector() 63
SL Vector 48
SL VectorAdd() 53
SL VectorCrossProduct() 51
SL VectorDotProduct() 51
SL VectorLength() 51
SL VectorLengthSQR() 51
SL VectorMidpoint() 53
SL VectorNormal() 53
SL VectorNormalize() 52
SL VectorNull() 52
SL VectorPolarAngle() 52
SL VectorPolarAttributes() 52
SL VectorProjection() 53
SL VectorRotate() 52
SL VectorRotateSinCos() 53
SL VectorScale() 53
SL VectorSubtract() 54
SL VectorToVectorAngle() 52
SL Visbug21Init() 36, 85
static mode 11
status bar 17, 77
step callback 12

113

tangent functions 71
toggle button 25
top row 10
translation functions 63
user interface functions 9, 24, 72
user interface loop (ui-loop) 12
utility functions 49
vector functions 51
Visbug21 36, 85

