
CS170 Problem Set 12 Out: Apr 15, 2001 Due: Apr 20, 2001

1. This question will make sure that you understand complex numbers and complex arith-
metic, and that they are very similar to real numbers and real arithmetic in the properties
they satisfy.

In particular, it is a fact that the set of real numbers satisfies the following familiar set
of rules, also called the axioms defining a field:

(a) Commutativity of addition: a+ b = b+ a for all a and b.

(b) Commutativity of multiplication: a ∗ b = b ∗ a for all a and b.

(c) Associativity of addition: a+ (b+ c) = (a+ b) + c for all a, b, c.

(d) Associativity of multiplication: a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c.

(e) Distributivity: a ∗ (b+ c) = (a ∗ b) + (a ∗ c) for all a, b, c.

(f) Zero exists: there is a special number called 0 satisfying a+ 0 = a for all a.

(g) Negative numbers exist: for each a there is a number called −a satifying a+(−a) =
0.

(h) One exists: there is a special number called 1 satisfying a ∗ 1 = a for all a.

(i) Reciprocals exist: for each a 6= 0 there is a number called 1
a satisfying a∗ (1/a) = 1.

It turns out that the complex numbers, written a+ i ∗ b with a and b real, and i =
√
−1,

with addition and multiplication defined by

• (a+ i ∗ b) + (c+ i ∗ d) = (a+ c) + i ∗ (b+ d).

• (a+ i ∗ b) ∗ (c+ i ∗ d) = (a ∗ c− b ∗ d) + i ∗ (a ∗ d+ b ∗ c).

also form a field, i.e. they satisfy the above axioms.

Your assignment is to prove that one of the above properties holds for complex numbers,
assuming they hold for real numbers. In particular, you should prove property (i). Make
sure that you explicitly show what 1/(x+ i ∗ y) is, where a = x+ i · y.

2. This question explores another way to write complex numbers that you will need to know
besides the usual one (z = a + i · b, i =

√
−1, a and b real). This way is called polar

form. One can write the nonzero complex number z = a+ i ∗ b as

a+ i ∗ b = ρ ∗ (
a

ρ
+ i ∗ b

ρ
) where ρ =

√
a2 + b2 .

ρ is also called the magnitude or absolute value of the complex number, and also written
ρ = |z|. Let c = a

ρ and s = b
ρ . Since c2 + s2 = 1, we can think of c and s as the cosine

and sine of some angle θ = arccos(c) = arcsin(s), i.e. c = cos θ and s = sin θ. This lets
us write z = ρ(cos θ + i ∗ sin θ). θ is called the argument of z.

Show that cos θ+ i∗sin θ = eiθ, by considering the Taylor series expansions of both sides.
You may use the known forms of the Taylor expansions of ex, sinx and cosx. z = ρeiθ

is called the polar form of z.

3. The complex conjugate of z = a+ i · b is z̄ = a− i · b. Let z = ρeiθ be the polar form of
z. Then the following are facts about the complex conjugate:

(a) z̄ = ρe−iθ
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(b) zz̄ = ρ2

(c) 1/z = z̄/|z|2.

(d) z = z1 ± z2 implies z̄ = z̄1 ± z̄2

(e) z = z1 · z2 implies z̄ = z̄1 · z̄2

(f) z = z1/z2 implies z̄ = z̄1/z̄2

Prove only parts a), b), and c).

4. The Complex Plane.

(a) Draw a picture with the vectors for the complex numbers z1 = i, z2 = 1 + i, z̄2,
z3 = (1 + i)/

√
2, z1 + z2, z2 ∗ z3.

(b) If z1 and z2 are any complex numbers, show that the complex number z = z1 + z2

is represented by the vector gotten by adding the vectors for z1 and z2, i.e. putting
the tail of the vector for z2 at the head of the vector for z1, and taking its head.

(c) If z1 and z2 are any complex numbers, show that the complex number z = z1 ∗ z2 is
represented by the following vector: its length is the product of the lengths of the
vectors for z1 and z2, and its argument is the sum of the arguments of z1 and z2.

5. (From the Spring 98 midterm.) In class we derived the FFT for vectors of length n a
power of two. In this question we will derive the FFT for n = 3s, a power of three.
(More generally, it is possible to compute the FFT efficiently whenever n is a product of
many small primes, n = 2j3k5l..., but we will not pursue this generality here.)

(a) Let p(z) =
∑n−1
j=0 pj · zj be a polynomial of degree at most n − 1, where n = 3s.

Show that p(z) can be written as the sum

p(z) = p0(z3) + z · p1(z3) + z2 · p2(z3) (1)

where p0(z′), p1(z′) and p2(z′) are each polynomials of degree at most (n/3) − 1.
Be sure to explicitly exhibit the coefficients of each polynomial.

(b) Let ω = e2πi/n, i =
√
−1, be a primitive n-th root of unity. Using equation (1),

show that you can evaluate p(z) at the n points ω0, ω1, ω2, ... ,ωn−1, given the
values of the 3 polynomials p0(z′), p1(z′) and p2(z′) at the n/3 points ω0, ω3, ω6,
ω9, ... , ωn−3. You should write down a loop that evaluates p′j = p(ωj), for j = 0
to n− 1, in terms of the values of p0(z′), p1(z′) and p2(z′).

(c) Write a recursive subroutine for evaluating p(z) at ωj , j = 0, ..., n − 1. Use your
answer from the previous part in your answer.

(d) What is the complexity of your recursive subroutine? You should write down a
recurrence for the complexity T (n), justify it, and quote a theorem from class to
solve it.

6. CLR 32-4. For part d you may assume that n is a power of 2. (There is a typo in the
book: Qij(x) should be defined as Qij(x) = A(x) mod Pij(x).)
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