
CS170 Problem Set 2 Out: Jan 19, 2001
Due: Jan 26, 2001, 4 pm

1. Write simple programs to evaluate Sn below that run much faster than using recur-
sion or loops. You may use assignment statements, if-then-else, and the operations +,
−, ×, /, sqrt(), the power function pow(x, y) = xy, and mod. For example, a good
answer for the Fibonacci sequence would be a short program that involved computing
rplus = (1+sqrt(5))/2, rminus = (1-sqrt(5))/2, aplus = rplus/sqrt(5),
aminus = -rminus/sqrt(5), F = aplus×pow(rplus,n) + aminus×pow(rminus,n).
(a) Sn = 5Sn−1 − 6Sn−2, S2 = −1, S4 = −49 (Yes, S2 and S4. Your function should

work for n ≥ 2.)

(b) Sn = 6Sn−1 − 9Sn−2, S0 = 2, S1 = 9

(c) Sn = 2Sn−1 − 2Sn−2, S0 = 0, S1 = 1

(d) Sn = 64Sn−3, S0 = 1, S1 = −1, S2 = 0

2. The square of a directed graph G = (V,E) is the graph G2 = (V,E2) such that (u,w) ∈
E2 if and only if for some v ∈ V both (u, v) ∈ E and (v,w) ∈ E. In other words, there is
a path of length exactly 2 from u to w. Describe efficient algorithms for computing G2

from G for both the adjacency-list and adjacency-matrix representations of G. Analyze
the running times of your algorithms in terms of n = |V | and e = |E|. Here “efficient”
means something whose running time is a low-degree polynomial in n and e, the faster
the better.

Similarly, describe an efficient algorithm for computing Gk = (V,Ek), where (u,w) ∈ Ek

if and only if there is a path of length exactly k in E.

3. The incidence matrix of a directed graph G = (V,E) without self-loops (i.e. without
edges (v, v)) is a |V |-by-|E| matrix B = (bij) such that

bij =




−1 if edge j leaves vertex i
+1 if edge j enters vertex i
0 otherwise

Describe what the entries of the matrix product BBT represent, where BT is the trans-
pose of matrix B. BBT is called the Laplacian of the graph B.

4. Give linear time algorithms, based on DFS, for the following problems:

(a) Determining whether a given directed graph has a cycle.

(b) Determining whether a given undirected graph has a cycle. Your algorithm in this
case should run in time O(n), where n is the number of nodes in the graph, and
independent of the number of edges.

(c) Determining whether a graph is bipartite.

5. A clique is a set of vertices such that each pair is connected by an edge. Let G = (V,E)
be a connected undirected graph, with n = |V | vertices and e = |E| edges. Give a tight
upper bound on the size of the largest clique (in terms of n and e).

6. CLR Question 23.1-6.

7. You are given a tree T rooted at vertex r. Each vertex of the tree has an associated
non-negative integer label l(v). For any vertex v, we denote by p(v) the parent of v in T .
By convention p(r) = r. For k > 1 define the k-th ancestor pk(v) of v to be pk−1(p(v)),
and define p1(v) = p(v). Give a linear time algorithm to update the labels of all vertices
in T according to the following rule: lnew(v) = l(pl(v)(v)).

8. Perform a depth-first search on the directed graph below, starting at node 1. Classify
each edge as a tree-edge, forward edge, cross edge, or a back-edge. Assign to each vertex
its pre-order and post-order number. When considering edges out of a node, process
them in increasing order of the labels of the nodes to which they lead. List the strongly
connected components of the graph. Give the directed acyclic graph that results if we
shrink each strongly connected component to a single vertex.

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

1 2 3 4 5

6 7 8 9

9. CLR Problem 23-3.

10. (Hard) In class we described a divide-and-conquer algorithm for computing the minimum
and maximum of a list A[1..n] of n numbers that did only 3n/2 − 2 comparisons (at
least for n a power of two). Prove that at least �3n/2� − 2 comparisons are necessary
to compute the maximum and minimum. This means that our algorithm is optimal (at
least for n a power of 2). Hint: Consider two lists m and M , each one initially containing
all n numbers. List m is meant to contain all entries that might be the minimum, and
list M is meant to contain all the entries that might be the maximum. After every
comparison, you may be able to remove some elements from each list. For example, if
the first comparison shows that A[4] < A[10], then A[4] can’t be the max and A[10] can’t
be the min, and so A[4] can be removed from list M and A[10] can be removed from list
m. Other comparisons might result in removing just one item from either m or M , or
perhaps none. To determine how the min and max, 2n− 2 items must be removed from
m and M , leaving two, the min and max. So try to count the number of comparisons
needed at a minimum to remove 2n − 2 items from m and M . For example, since each
comparison can remove at most two items, n−1 comparisons can remove at most 2n−2
items, leaving 2. This (too simple) argument shows that at least n − 1 comparisons are
needed. A slightly fancier version of this argument will show that �3n/2�−2 comparisons
are needed.

