
CS170 Problem Set 3 Out: Jan 23, 2001

Due: Feb 2, 2001

1. Run the strongly connected components algorithm on the following graph. For each of

the two DFS's, label each edge as a tree, forward, back or cross edge. Label each vertex

with its strongly connected component number. Wherever there is an option to visit

more than one vertex, visit the lowest numbered vertex �rst. For ease of drawing, a pair
of edges (u; v) and (v; u) is shown as a single double-headed arrow connecting u and v.

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������

2 31

4
5

6 7

8
9

10

11 12 13

2. Suppose you add a new single edge to a directed graph. What is the largest change in

the number of strongly connected components that can result from this addition? Prove

your answer, and give an example.

3. Give an eÆcient algorithm that takes as input a DAG G(V, E), and two vertices s, t

and outputs the number of paths from s to t in G(V, E). Make your algorithm be as fast

as you can. Show that it is correct, and analyze its complexity. Is the number of paths

necessarily bounded by a polynomial function of the number of vertices and number of

edges? Give either a proof or a counterexample.

4. CLR 23-2.

Note: There is a bug in part b. It should read:

Let v be a nonroot vertex in G�. Prove that v is an articulation point of G

if and only if there is a child v0 of v, such that there is no backedge from a

descendant of v0 (including v0 itself) to a proper ancestor of v.

5. CLR 23.5-3.

6. CLR 23.5-7.

7. Devise an eÆcient algorithm to �nd the transitive closure of a directed graph G rep-

resented with adjacency lists. The transitive closure of a directed graph G is a graph

G� with the same vertices as G, in which vertices u and v are adjacent exactly when

there is a directed path from u to v in G. (The result of your algorithm should also be

represented with adjacency lists.) Make your algorithm be as fast as you can. Give a

running time analysis of your algorithm, along with a justi�cation of the estimate and
the algorithm's correctness.


