CS 274
Computational Geometry (Spring 2019)
Homework 2

All the homework rules from Homework 1 remain in effect. Please reread the first page of Homework 1 if
you don’t remember the policies. All homeworks in this class should be treated like take-home exams.

Homework 2 is due at the start of class (2:10 pm) on Wednesday, March 6.

[1] Voronoi overlays (3 points). Let V and W be two point sets in the plane, together having n points.
Consider the overlay of their Voronoi diagrams Vor(V) and Vor(W).

(i) Give an example showing how to choose sets V and W so the overlay has @(n?) faces. (Make sure it
is clear how to generalize your example as n — ©0.)

(i1) Prove that, for any point sets V and W, the overlay of their Voronoi diagrams has only O(n) unbounded
faces.

[2G] Security camera (9 points). Let X be a PSLG with n segments, which represent the walls of a gallery.
Some of the walls separate a bounded “inside” region from an unbounded “outside” region where there are
no walls. Inside the gallery, there may be walls (non-crossing segments) anywhere, some of which are just
there to hang paintings on. Stated more rigorously, there is a simple polygon P, not necessarily convex, such
that every edge of P is a segment in X, and for every segment s € X, s C P.

A fixed, rotating security camera is attached to the ceiling at a point ¢ in the gallery’s interior (i.e.
q € interior P). The visibility between two points g and p is occluded if there is a segment s € X such that
s intersects the line segment gp and the points p and ¢ lie on opposite sides of 5. (If g or p is collinear with
s, then s does not occlude the visibility between them. If the camera is placed on a wall, it can see on both
sides of the wall.) A point p is visible from g if no segment in X occludes the visibility between them.

(i) The subset of P visible from ¢ is a simple polygon Q (not necessarily convex); see the figure on the
next page. Give (in English) an efficient algorithm that outputs Q’s edges in counterclockwise order,
and analyze your algorithm’s running time. You do not need to prove your algorithm’s correctness
(though it does need to be correct). Algorithms slower than O(n log n) time will only receive partial
credit. Hint: there are ways to sweep the plane that don’t involve moving linearly.

(i1) The gallery is displaying eight masterpieces by the renowned artist Florent de Microscopie, famed
for his paintings the size of points. Each of the eight paintings is hung at a different point inside the
gallery. Give an efficient algorithm to determine whether there is a single point g € P from which a
fixed rotating security camera can monitor all eight paintings, and to output one such point if at least
one exists. Analyze its worst-case running time in term of n. (Don’t try to give an output-sensitive
bound; the output size is one.) Unduly slow algorithms (or fast algorithms with slow analyses) will
only receive partial credit, but you should not expect to achieve O(nlogn) time. (Note: even if you
didn’t solve part (i), you can still answer this question by assuming you know a solution to part (i).)

[3] Edge flips (3 points). Prove that it is possible to transform a triangulation of a convex polygon (with no
three vertices collinear) to any other triangulation of the same polygon by a sequence of edge flips.

[4] Cocircularities (3 points). When a vertex set V has four or more vertices that lie on a common circle,
there may be multiple Delaunay triangulations of V, in which case each Delaunay triangulation omits one
or more Delaunay edges. Prove that for every Delaunay edge e with endpoints in V, at least one Delaunay
triangulation of V contains e.



the subdivision  after point insertion

[5G] A randomized incremental algorithm (8 points). Given a set P of n points in the plane, where no two
points have the same x- or y-coordinate, define a planar subdivision as follows. Imagine all the points are
sorted lexicographically. For each point in this order, shoot one bullet up, one bullet down, and one bullet to
the right until they hit existing segments, then add these three bullet-path segments/rays to the subdivision.
Let’s investigate an algorithm for building this structure in expected O(nlog n) time.

(i) Give tight upper bounds (numerical, not asymptotic) on the number of vertices, edges, and faces of
the subdivision as a function of n. Vertices include points in P, segment intersections, and one ““vertex
at infinity.” Faces include unbounded faces. Assume n > 1. No explanation is required.

(i) Describe an efficient algorithm to add a new point to the subdivision and restore the proper subdivision
structure. The new point may have an arbitrary x-coordinate (as long as it’s different from the other
points), but the subdivision must be updated as if the points had been processed in lexicographic order.
(See the figure.) Assume the data structure is a DCEL, and you know which face contains the point.
(We’ll handle point location in part (iv).)

(iii) Prove that if a set of points are inserted in random order (starting from scratch), the expected number
of structural changes to the subdivision is O(1) per insertion. Give the smallest upper bounds you can
(that do not depend on n) on the expected number of new vertices created, the expected number of old
vertices eliminated, the expected number of new faces created, and the expected number of old faces
eliminated during a vertex insertion.

(iv) Again suppose the points are inserted in random order. Explain how to locate each point in expected
O(log n) time so it may be inserted. (You will need to augment the DCEL with additional data struc-
tures.) Prove that your method is that fast.

[6G] Constrained Delaunay triangulations (4 points). Sometimes you want to construct a structure like
a Delaunay triangulation, but you need to enforce the presence of certain edges in the triangulation—for
instance, the boundaries of an object or domain you’re triangulating.

Let X be a PSLG. Define the visibility between two points as in problem [2]. A triangle ¢ is constrained
Delaunay if ¢’s vertices are vertices in X, the interior of ¢ intersects no segment in X, and the circumcircle of
t encloses no vertex of X that is visible from any point in the interior of z.

Let ¢ be a triangle that satisfies the first two of those three conditions. Let ¢ be a point in the interior
of t. Prove that if no vertex of X inside #’s circumcircle is visible from ¢, then no vertex of X inside #’s
circumcircle is visible from any point in the interior of 7 (so ¢ is constrained Delaunay).

Hint: Most people forget to consider the possibility that a segment s; blocks the visibility (from ¢) of an
endpoint (inside #’s circumcircle) of a segment s,, which blocks the visibility of an endpoint of a segment
53, which blocks the visibility of an endpoint of s; but one of these endpoints is visible from some point in
the interior of ¢. Make sure your proof (directly or indirectly) rules out this possibility.



