CS 274
Computational Geometry (Spring 2019)
Homework 3

Homework 3 is due at the start of class (2:10 pm) on Wednesday, March 20, 2019.

You may use algorithms learned in class as subroutines without re-explaining them. For any problem that
requests an algorithm that runs in O(f(n)) time for some function f(n), expected O(f(n)) time will do.

[1] Levels in arrangements (2 points). Is it possible for an arrangement of lines, no two parallel, to have a
vertex of level 2 but no vertex of level 1? Explain.

[2] Stabbing vertical segments (4 points). Let S be a set of n vertical line segments in the plane. Describe
an algorithm that determines whether there exists a line that intersects every segment in S, and identifies
such a line if one exists. For full points, your algorithm should run in linear time.

[3] Axis-aligned ray-shooting queries (3 points). Let S be a set of n line segments in the plane, which
can intersect only at their endpoints. Explain how to preprocess S in O(n logn) time so that queries of the
following form can be answered in O(logn) time: given a point p, give the first segment struck by each of
four rays shot from p directly up, down, to the left, and to the right. The query should report four segments,
in that order. If a ray hits an endpoint of multiple segments, report any one of those segments. If a ray goes
on forever without hitting a segment, report that. If p lies on a segment in |5, report that segment for all four
rays.

[4] Point in star-shaped polygon (8 points). A simple polygon P is called star-shaped if there exists a
point p € P such that for every point ¢ € P, the line segment pq lies in P. Hence, p can “see” any point in
P by aline of sight entirely in P. You are given a simple star-shaped polygon P, described as an array of n
vertices in counterclockwise order about P.

(i) Suppose you know a point p that can see all of P. Describe an algorithm that determines whether a
point ¢ is in P in O(log n) time (with no preprocessing).

(i) Suppose you don’t know a point p that can see all of P. Describe an optimal algorithm for finding
one, and give its asymptotic running time. (Hint: this is a one-liner.)

(iii) Explain why no algorithm can find one faster, even if you know in advance that P is star-shaped.
(Hint: this is not a reduction from sorting. Show that the algorithm must examine the entire input or at
least some constant fraction of it. A few examples where small differences between two star-shaped
polygons lead to completely different answers will help your explanation.)

(iv) Can your algorithm from part (ii) also determine whether a simple polygon P is star-shaped? Can it
extend to three-dimensional polyhedra, and if so, what is the asymptotic running time of the extended
algorithm? Briefly justify your answers to both these questions.

[5] Packing disks (5 points). Let D be a set of disks of radius r in the plane, which represent atoms. (A disk
is a set of points consisting of the points on a circle and all the points inside it.) The disks in D may partly
overlap each other (due to molecular bonds). Let R be an axis-aligned rectangle.

We wish to determine whether it is possible to place another disk d of radius s (representing a catalyst)
such that d lies inside R and does not overlap any disk in D. (It is okay if the boundary of d intersects disks
in D, or the boundary of R, but the interior of d may not.)

Give an O(nlogn)-time algorithm that answers this question, where n is the number of disks in D.
(Hint: what geometric structure makes this computation straightforward?)

[6G] Worst-case time for linear programming (2 points). If you have bad luck with the random numbers,
the worst-case running time for Seidel’s randomized linear programming algorithm in the plane is ©(n?).
Suppose you are given a fixed set of n distinct halfplanes and a linear objective function, such that the linear
program is not unbounded. Is there always a way to order these halfplanes so that the algorithm requires
Q(n?) time? If so, explain how to construct an ordering (given any fixed set of n halfplanes). If not, give an
example (that extends to arbitrarily large n) in which all orderings lead to an o(n?) run time.

[7G] Linear programs with multiple optima (6 points). A linear program can have an infinite number of
solutions. In general, the set of solutions is a k-face of the feasible region with 0 < k& < d, where d is the
dimensionality of the space.

You are given a bounded linear program in which the number of variables d is small enough to use
Seidel’s algorithm. The algorithm finds the lexicographically maximum solution in expected O(n) time,
where n is the number of constraints (halfspaces). Suppose you want to find all the solutions. Pretend that
numerical robustness (roundoff error) is not an issue.

(1) Give a linear-time algorithm that determines whether there is more than one solution, and if so, iden-
tifies two vertices of the solution k-face. (Hint: I know several answers to this question, one of which
fits in one sentence.)

(i1) Generalize your solution to part (i) so that, if you know ¢ < k affinely independent vertices of the
solution k-face, you can find another one in O(n) time.

(iii) Once you’ve found k£ + 1 affinely independent optima, you’ll notice that they all have some ac-
tive constraints in common. Use this observation to describe how to compute the solution k-face in
O(nl¥/2] 4 nlogn) time.

[8G] Dividing points (5 points). Let R and G be two finite sets of points in the plane, called the red and
green points, respectively. Let n = |R| + |G| be the total number of red and green points.

(i) Describe an algorithm that preprocesses R and G in (’)(n2) time (or better) so that we can answer
the following query in O(n) time: given a query point p, return a line that passes through p and has
the same number of red points on one side of it as the number of green points on the other side of
it; or report that no such line exists. For this problem, you are restricted to the decision-tree model
of computation. (One could answer the query with radix sort and no preprocessing—except that the
slope of a line through two points, being a rational number, isn’t really amenable to exact radix sort.)

(ii) Describe an algorithm that preprocesses R and G in O(n?logn) time so that we can answer the
following query in O(logn) time: given a query line ¢, determine whether ¢ has the same number
of red points on one side of it as the number of green points on the other side of it. (You’ll get a
bonus point if you can explain how to do it with just O(n?) preprocessing time, and prove that your
preprocessing is that fast.)

