02/12/14
11:03:53

CS 61B: Lecture 11
Wednesday, February 12, 2014

Today's reading: Sierra & Bates, pp. 95-109, 662.

equal s()

Every class has an equal s() nmethod. |If you don’t define one explictly, you
inherit Object.equals(), for which "rl.equals(r2)" returns the same bool ean
value as "rl == r2", where rl and r2 are references. However, nmany cl asses

override equal s() to conpare the _content_ of two objects.

Integer (in the java.lang library) is such a class; it stores one private int.
Two distinct |Integer objects are equals() if they contain the sane int.

In the followi ng exanple, "il == i2" is false, but "il.equals(i2)" is true.
"i2 == 13" and "i2.equal s(i3)" are both true.
il].+--> 7 | i2|.+--> 7 |<---+]1i3

| MPORTANT: rl.equal s(r2) throws a run-tine exception if rlis null.

There are at least four different degrees of equality.

(1) Reference equality, ==. (The default inherited fromthe Object class.)
(2) shallow structural equality: two objects are "equals" if all their fields
are ==. For exanple, two SLists whose "size" fields are equal and whose

"head" fields point to the same SLi st Node.

(3) Deep structural equality: two objects are "equals" if all their fields
are "equals". For exanple, two SLists that represent the same sequence of
items (though the SListNodes may be different).

(4) Logical equality. Two exanples:

(a) Two "Set" objects are "equals" if they contain the same el ements,
even if the underlying lists store the elements in different orders.

(b) The Fractions 1/3 and 2/6 are "equal s", even though their nunerators
and denoninators are all different.

The equal s() nmethod for a particular class may test any of these four levels of
equal ity, depending on what seens appropriate. Let’'s wite an equals() nethod
for SLists that tests for deep structural equality. The follow ng nethod
returns true only if the two lists represent identical sequences of itens.

public class SList {
publ i c bool ean equal s(bj ect other) {
if (!(other instanceof SList)) { /1 Reject non-SLists.
return fal se;

}

SList o = (SList) other;

if (size = o.size) {
return fal se;

}

SLi st Node nl1 = head;
SLi st Node n2 = o. head;
while (nl1 !'= null) {
if (Inl.itemequals(n2.item) {
return fal se;

/1 Deep equality of the itens.

}
nl = nl.next;
n2 = n2.next;
}
return true;

11

Note that this inplenmentation may fail if the SList invariants have been
corrupted. (A wong "size" field or a loop in an SList can make it fail.)

| MPORTANT: Overriding DOESN' T WORK i f we change the signature of the original

net hod, even just to change a paranmeter to a subclass. In the Object class,
the signature is equal s(Cbject), so in the code above, we nust declare "other"
to be an Object too. |f we declare "other" to be an SList, the equal s() method

will conpile but it will NOT override. That neans the code

Obj ect s = new SList();

s. equal s(s);
will call Object.equals(), not SList.equals(). Dynanmic nmethod |ookup won’t
care that s is an SList, because the equal s() nethod above is not eligible to
override oject.equal s().

Therefore, if you want to override a nmethod, make sure the signature is EXACTLY
the sane.

"for each" LOOPS

Java has a "for each" loop for iterating through the elements of an array.

int[] array = {7, 12, 3, 8, 4, 9};

for (int i : array) {
Systemout.print(i +" ");
}
Note that i is _not_ iterating fromO to 5; it's taking on the value of each

array elenent in turn. You can iterate over arrays of any type this way.

String concat = "";

for (String s : stringArray) {
concat = concat + s;

}

For sone reason, the type declaration _nmust_ be in the "for" statenent. The
conpiler barfs if you try

int i;
for (i : array) { ... }

02/12/14
11:03:53

TESTI NG
Conpl ex software, like Project 1, is easier to debug if you wite lots of test
code. W' Il consider three types of testing:

(1) Modular testing: testing each nmethod and each cl ass separately.

(2) Integration testing: testing a set of nethods/classes together.

(3) Result verification: testing results for correctness, and testing data
structures to ensure they still satisfy their invariants.

(1) Modul ar Testing

When you wite a programand it fails, it can be quite difficult to determ ne
whi ch part of the code is responsible. Even experienced programers often
guess wong. It’s wise to test every nmethod you wite individually.

There are two types of test code for nodul ar testing: test drivers and stubs.

(a) Test drivers are nmethods that call the code being tested, then check the
results. In Lab 3 and Honmework 3, you’ve seen test drivers in the SList class
that check that your code is doing the right thing.

Both public and private nethods should be tested. Hence, a test driver usually
needs to be inside the class it tests. |In a class intended for use by other

cl asses, the obvious place to put a test driver is in the nain() nethod, as we
did in Lab 3 and Homework 3. However, if a class is the entry point for the
program you can't put your test driver in main(). Instead, put it in a nmethod
with a name like testDriver(), and then wite _another_ class whose main()
nethod calls your test driver.

(b) Stubs are small bits of code that are _called_ by the code being tested.
They are often quite short. They serve three purposes.

(i) If you wite a nethod that calls other nethods that haven't yet been
inpl emented, you can wite sinple stubs that fake the mi ssing nethods.

(ii) Suppose you are having difficulty determ ning whether a bug lies in
a calling method, or a method it calls. You can tenporarily replace the
callee with a stub that returns controlled results to the caller, so you
can see if the caller is responsible for the problem

(iii)Stubs allow you to create repeatable test cases that mght not arise often
in practice. For instance, suppose a subroutine fetches and returns input
froman airline database, and your code calls this subroutine. You m ght
want to test whether your code operates correctly when ten airplanes
depart at the same tine. Such an event might be rare in practice, but you
can replace the database access subroutine with a stub that feeds fake
data to your code. There are two advantages:

- Stubs can produce test data that the real code rarely or never produces.
- Stubs produce _repeatable_ test data, so that bugs can be reproduced.

(2) Integration Testing

Integration testing is testing all the conponents together (preferably _after_
you have tested themin isolation). Sonetines bugs arise during integration
because your test cases weren't thorough enough. Oher tinmes, they arise
because of mi sunderstandi ngs about how the conponents are supposed to interact
with each other. Integration testing is harder than nodul ar testing, because
it’s harder to deternmine where a bug is, or to identify your mistaken
assunptions about how the conponents interact.

The nost inportant task in avoiding these bugs is to define your interfaces
wel | and unanbi guously. There should be no anmbiguity in the descriptions of
the behavior of your nethods, especially in unusual cases. W’'IIl talk a |ot
nore about this in later lectures.

11

The best advice | can give on integration testing: learn to use a debugger.

(3) Result Verification
Aresult verifier is a nethod that checks the results of other nmethods. There
are at |least two types of result verifiers you can wite.

(a) Data structure integrity checkers. A nethod can inspect a data structure
(like a list) and verify that all the invariants are satisfied. For
Project 1, we are asking you to wite a sinple checker named "check()"
that verifies the integrity of your run-length encodings.

(b) Algorithmresult checkers. A nethod can inspect the output of another
nmet hod for correctness. For exanple, if a nethod is supposed to sort an
array of numbers, a result checker can wal k through the output and check
that each itemreally is less than or equal to its successor.

An _assertion_ is a piece of code that tests an invariant or a result.

Java offers an "assert" keyword that tests whether an assertion evaluates to
"true". If the assertion comes up "false", Java term nates the programw th an
"AssertionError" error nessage, a stack trace, and an optional nessage of your
own choosi ng.

assert x == 3;
assert list.size == list.countLength() : "wong SList size:

+ |ist.size;

At the end of each method that changes a data structure, add assertions
(possibly a call to an integrity checker). At the end of each nethod that
conputes a result, add an assertion that calls a result checker.

Assertions are conveni ent because you can turn themon or off. To turn themon
when you're testing your code, run your code with "java -ea" (for "enable
assertions"). To turn themoff for greater speed, run with "java -da" (for

"di sabl e assertions"). The default (if you specify no switch) is -da.

WARNI NG when assertions are turned off, the nethod "list.countlLength()" above
is never called. Good for speed, but countlLength() nust not performa task
that is necessary for your progranis correctness.

Regr essi on Testing

A _regression_test_ is a test suite can be re-run whenever changes are nade to
the code. Nearly every software conpany has reans of regression tests for each
product. They run them again every tinme they fix a bug or add a feature.

Sone principles of regression testing:

(a) All-paths testing: your test cases should try to test every path through
the code. Test every nethod. For every "if" statenent, you should try to
wite a test case for each of the two paths.

(b) "Boundary cases" should be tested, as well as non-boundary cases. For
instance, if you wite a binary search nethod, test it on arrays of
I engths zero and one, as well as longer lengths. Test the cases where the
itemsought is the first element, the last elenment, in the mddle, not
present. For every loop in the code, try to test the cases where it
iterates zero or one tines, as well as the case where it iterates several
times. Test the branch "if (x >= 1)" for x equal to 0, 1, and 2.

(c) Generally, methods can be divided into two types: extenders, which
construct or change an object; and observers, which return information
about an object. (Sorme nethods do both, but you should always think hard
about whether that’s good design.) Ideally, your test cases should test
every conbination of extender and observer.

In real-world software devel opnent, the size of the test code is often |arger
than the size of the code being tested.

