03/12/14
04:03:34

CS 61B: Lecture 21
Wednesday, March 12, 2014

Today's reading: GCoodrich & Tamassia, Sections 9.1, 9.2, 9.5-9.5.1.

DI CTI ONARI ES

Suppose you have a set of two-letter words and their definitions. You want to
be able to | ook up the definition of any word, very quickly. The two-letter
word is the _key_ that addresses the definition.

Since there are 26 English letters, there are 26 * 26 = 676 possible two-letter
words. To inplenent a dictionary, we declare an array of 676 references, all
initially set to null. To insert a Definition into the dictionary, we define
a function hashCode() that nmaps each two-letter word (key) to a unique integer
between 0 and 675. W use this integer as an index into the array, and make
the correspondi ng bucket (array position) point to the Definition object.

public class Wrd {
public static final int LETTERS = 26, WORDS = LETTERS * LETTERS;
public String word;

public int hashCode() /1 Map a two-letter Word to O...675.
return LETTERS * (word.charAt(0) - "a') + (word.charAt(1) - 'a');
}
}

public class WrdDictionary {
private Definition[] defTable = new Definition[Wrd. WORDS] ;

public void insert(Wrd w, Definition d) {
def Tabl e[w. hashCode()] = d; /1 Insert (w, d) into Dictionary.
}

Definition find(Word w) {
return def Tabl e[w. hashCode()];
}

// Return the Definition of w
}

What if we want to store every English word, not just the two-letter words?
The table "def Tabl e" nust be | ong enough to accommmobdate

pneunonoul t ram croscopi csi | i covol canoconi osis, 45 letters long. Unfortunately,
declaring an array of length 26745 is out of the question. English has fewer
than one mllion words, so we should be able to do better.

Hash Tabl es (the nmpst common inplenmentation of dictionaries)

Suppose n is the nunber of keys (words) whose definitions we want to store, and
suppose we use a table of N buckets, where Nis perhaps a bit larger than n,
but much smaller than the number of _possible_ keys. A hash table naps a huge
set of possible keys into N buckets by applying a _conpression_function_ to
each hash code. The obvi ous conpression function is

h(hashCode) = hashCode nod N.

Hash codes are often negative, so remenber that nod is not the same as Java's
remai nder operator "% . |f you conpute hashCode % N, check if the result is
negative, and add Nif it is.

Wth this conpression function, no matter how |l ong and variegated the keys are,
we can nmap theminto a table whose size is not nuch greater than the actual
nunber of entries we want to store. However, we've created a new problem
several keys are hashed to the sane bucket in the table if h(hashCodel) =
h(hashCode2). This circunmstance is called a _collision_.

21

How do we handl e collisions without |losing entries? W use a sinple idea
called _chaining_. Instead of having each bucket in the table reference one
entry, we have it reference a linked list of entries, called a _chain_. |If
several keys are mapped to the same bucket, their definitions all reside in
that bucket’s linked Iist.

Chai ning creates a second problem how do we know whi ch definition corresponds
to which word? The answer is that we nmust store each key in the table with its
definition. The easiest way to do this is to have each |istnode store an
entry that has references to both a key (the word) and an associ ated val ue
(its definition).

def Table | . +-->| . |
R LR |- |- | ---eee |-----

| . +>pus | . +>evil | . +>0kt hxbye | . +>cool | . +>nud
| . +>goo | . +>C++ | . +>creep |.+>jrs |.+>wet dirt
|1 (!

. | X| | X| | X|
+- --- --- +- ---
| |
v v
- n -
|.+>sin < chains > | . +>t wer k
| . +>have fun |.+>M 1 ey burping
| X| | X| the wong way

Hash tabl es usually support at |east three operations. An Entry object
references a key and its associated val ue.

public Entry insert(key, value)
Conmput e the key’s hash code and conpress it to determine the entry’s bucket.
Insert the entry (key and value together) into that bucket’s list.

public Entry find(key)
Hash the key to determine its bucket. Search the list for an entry with the
given key. If found, return the entry; otherwise, return null.

public Entry renove(key)
Hash the key to determine its bucket. Search the list for an entry with the
given key. Renpve it fromthe list if found. Return the entry or null.

What if two entries with the sane key are inserted? There are two approaches.

(1) Follow ng Goodrich and Tanassia, we can insert both, and have find() or
renove() arbitrarily return/rempve one. Goodrich and Tanassia al so
propose a nmethod findAll () that returns all the entries with a given key.

(2) Replace the old value with the new one, so only one entry with a given key
exists in the table.

Whi ch approach is best? It depends on the application.

WARNI NG When an object is stored as a key in a hash table, an application
shoul d never change the object in a way that will change its hash code.
If you do so, the object will thenceforth be in the wong bucket.

The _load_factor_ of a hash table is n/N, where n is the nunber of keys in the
table and N is the nunber of buckets. |If the load factor stays bel ow one (or

a small constant), and the hash code and conpression function are "good," and
there are no duplicate keys, then the linked lists are all short, and each
operation takes (1) time. However, if the load factor grows too large

(n >> N), performance is dom nated by linked |ist operations and degenerates to
Q(n) time (albeit with a much smaller constant factor than if you replaced the
hash table with one singly-linked list). A proper analysis requires a little
probability theory, so we'll put it off until near the end of the senester.

03/12/14
04:03:34

Hash Codes and Conpression Functions

Hash codes and conpression functions are a bit of a black art. The ideal hash
code and conpression function would map each key to a uniformy distributed
random bucket fromzero to N- 1. By "randont, | don’t nean that the function
is different each time; a given key always hashes to the same bucket. | nean
that two different keys, however similar, will hash to independently chosen
integers, so the probability they' Il collide is 1/N. This ideal is tricky to
obt ai n.

In practice, it’'s easy to nmess up and create far nore collisions than
necessary. Let’s consider bad conpression functions first. Suppose the keys
are integers, and each integer’s hash code is itself, so hashCode(i) = i.

Suppose we use the conpression function h(hashCode) = hashCode nmod N, and the
nunber N of buckets is 10,000. Suppose for some reason that our application
only ever generates keys that are divisible by 4. A nunber divisible by 4 nod
10,000 is still a nunmber divisible by 4, so three quarters of the buckets are
never used! Thus the average bucket has about four tines as nany entries as it
ought to.

The same conpression function is nuch better if Nis prine. Wth N prinme, even
if the hash codes are always divisible by 4, nunbers larger than N often hash
to buckets not divisible by 4, so all the buckets can be used.

For reasons | won't explain (see Goodrich and Tanassia Section 9.2.4 if you're
interested),

h(hashCode) = ((a * hashCode + b) nod p) nmod N

is a yet better conpression function. Here, a, b, and p are positive integers,
pis alarge prime, and p >> N. Now, the nunber N of buckets doesn't need to
be prinme.

I recomrend al ways using a known good conpression function |ike the two above.
Unfortunately, it’s still possible to mess up by inventing a hash code that
creates lots of conflicts even before the conpression function is used. W'l
di scuss hash codes next |ecture.

21

