03/12/14
03:37:00

CS 61B: Lecture 22
Wednesday, March 12, 2014

Today’s reading: GCoodrich & Tamassia, Chapter 5.

DI CTI ONARI ES (conti nued)

Since hash codes often need to be designed specially for each new object,
you're left to your own wits. Here is an exanple of a good hash code for
Strings.

private static int hashCode(String key) {
int hashval = 0;

for (int i =0; i < key.length(); i++) {

hashVal = (127 * hashVal + key.charAt(i)) % 16908799;
}
return hashval ;

}

By multiplying the hash code by 127 before adding in each new character, we
neke sure that each character has a different effect on the final result. The
"0 operator with a prime nunber tends to "m x up the bits" of the hash code.
The prime is chosen to be large, but not so large that 127 * hashval +
key.charAt(i) will ever exceed the maxi mum possible value of an int.

The best way to understand good hash codes is to understand why bad hash codes
are bad. Here are sone exanpl es of bad hash codes on Wrds.

[1] Sumup the ASCII values of the characters. Unfortunately, the sumwill
rarely exceed 500 or so, and nost of the entries will be bunched up in
a few hundred buckets. Moreover, anagrans |ike "pat," "tap," and "apt"
will collide.

[2] Use the first three letters of a word, in a table with 2673 buckets.
Unfortunately, words beginning with "pre" are much nore common than
words beginning with "xzq", and the fornmer will be bunched up in one
long list. This does not approach our unifornmly distributed ideal.

[3] Consider the "good" hashCode() function witten out above. Suppose the
prinme nmodulus is 127 instead of 16908799. Then the return value is just
the last character of the word, because (127 * hashVval) % 127 = 0.
That's why 127 and 16908799 were chosen to have no common factors.

Wiy is the hashCode() function presented above good? Because we can find no
obvious flaws, and it seems to work well in practice. (A black art indeed.)

Resi zi ng Hash Tabl es

Sonetinmes we can’t predict in advance how many entries we'll need to store. |If
the load factor n/N (entries per bucket) gets too |large, we are in danger of

I osing constant-time perfornmance.

One option is to enlarge the hash table when the |oad factor beconmes too |arge
(typically larger than 0.75). Allocate a new array (typically at |least twce
as long as the old), then walk through all the entries in the old array and
rehash theminto the new

Take note: you CANNOT just copy the linked lists to the same buckets in the
new array, because the conpression functions of the two arrays will certainly
be inconpatible. You have to rehash each entry individually.

You can al so shrink hash tables (e.g., when n/N < 0.25) to free nenory, if you
think the nenory will benefit sonething else. (In practice, it’'s only
sonetimes worth the effort.)

22

Obvi ously, an operation that causes a hash table to resize itself takes
nore than Q(1) time; nevertheless, the _average_ over the long run is still
Q(1) time per operation.

Transposition Tables: Using a Dictionary to Speed Gane Trees

An inefficiency of unadorned game tree search is that some grids can be reached
through many different sequences of nobves, and so the same grid mght be

eval uated many times. To reduce this expense, maintain a hash table that
records previously encountered grids. This dictionary is called a
_transposition_table_. Each tine you conpute a grid s score, insert into the
dictionary an entry whose key is the grid and whose value is the grid s score.
Each tine the mninmax algorithmconsiders a grid, it should first check whether
the grid is in the transposition table; if so, its score is returned

imedi ately. Oherwise, its score is evaluated recursively and stored in the
transposition table.

Transposition tables will only help you with your project if you can search to
a depth of at least three ply (within the five second tine limt). It takes
three ply to reach the same grid two different ways.

After each nove is taken, the transposition table should be enptied, because
you will want to search grids to a greater depth than you did during the
previ ous nove.

A _stack_is a crippled list. You nay manipulate only the itemat the top of
the stack. The nmin operations: you may "push" a new itemonto the top of the
stack; you may "pop" the top itemoff the stack; you may examine the "top" item
of the stack. A stack can grow arbitrarily large.

|| [1 | | -size()-> 2 |dl -top()->d
| bl -pop()->] | -push(c)-> |c|

|1
| cl | | -top()--
| al | lal la| -push(d)-->Jal --pop() x 3-->1] | |
b nul |

public interface Stack {
public int size();
publ i c bool ean i sEnpty();
public void push(Object iten);
public Object pop();
public Cbject top();

}

In any reasonabl e i npl enentation, all these nethods run in Q(1) tine.
A stack is easily inplenented as a singly-linked list, using just the front(),
insertFront(), and renoveFront() methods.

Wiy tal k about Stacks when we already have Lists? Minly so you can carry on
di scussions with other conputer programmers. |f sonebody tells you that

an al gorithmuses a stack, the limtations of a stack give you a hint how
the al gorithm works.

Sanpl e application: Verifying matched parentheses in a String like
“{TOA{I1}10O}". Scan through the String, character by character.
o Wien you encounter a lefty--"{", "[', or "('--push it onto the stack.
o Wien you encounter a righty, pop its counterpart fromatop the stack, and
check that they match.
If there’s a mismatch or null returned, or if the stack is not enpty when you
reach the end of the string, the parentheses are not properly matched.

03/12/14
03:37:00

A _queue_ is also a crippled list. You nay read or renpve only the itemat the
front of the queue, and you nay add an itemonly to the back of the queue. The
nmein operations: you may "enqueue" an itemat the back of the queue; you nmay
"dequeue" the itemat the front; you may examine the "front" item Don’'t be
fooled by the diagram a queue can grow arbitrarily Iong.

=== === === === -front()-> b

ab. -dequeue()-> b.. -enqueue(c)-> bc. -enqueue(d)-> bcd

=== | === === === -dequeue() x 3--> ===
\ e
a null <front()-- ===

Sanpl e Application: Printer queues. Wen you subnit a job to be printed at
a selected printer, your job goes into a queue. Wen the printer finishes
printing a job, it dequeues the next job and prints it.

public interface Queue {
public int size();
publ i c bool ean i sEnpty();
public void enqueue(Cbject item;
public Cbject dequeue();
public Object front();
}

In any reasonabl e inplenentation, all these nethods run in (1) tine. A queue
is easily inplemented as a singly-linked list with a tail pointer.

A _deque_ (pronounced "deck") is a Doubl e-Ended QUEue. You can insert and
renmove itenms at both ends. You can easily build a fast deque using a
doubly-linked list. You just have to add renpveFront() and renpveBack()

net hods, and deny applications direct access to |istnodes. Obviously, deques
are less powerful than lists whose |istnodes are accessible.

22

Postscript: A Faster Hash Code (not exami nabl e)

Here' s another hash code for Strings, attributed to one P. J. Winberger, which

has been thoroughly tested and perforns well in practice. It is faster than
the one above, because it relies on bit operations (which are very fast) rather
than the % operator (which is slow by conparison). You will learn about bit

operations in CS 61C. Please don't ask nme to explain themto you.

static int hashCode(String key) {
int code = 0;

for (int i =0; i < key.length(); i++) {

code = (code << 4) + key.charAt(i);

code = (code & OxOfffffff) ~ ((code & Oxf0000000) >> 24);
}
return code;

