03/19/14
02:39:57

CS 61B: Lecture 25
Wednesday, March 19, 2014

Today's reading: Coodrich & Tamassia, Sections 8.1-8.3.

PRI ORI TY QUEUES

A priority queue, like a dictionary, contains _entries_ that each consist of

a key and an associ ated value. However, whereas a dictionary is used when we
want to be able to ook up arbitrary keys, a priority queue is used to
prioritize entries. Define a total order on the keys (e.g. al phabetical

order). You may identify or rempbve the entry whose key is the | owest (but no
other entry). This limtation helps to make priority queues fast. However, an
entry with any key may be inserted at any tine.

For concreteness, let’s use Integer objects as our keys. The main operations:
- insert() adds an entry to the priority queue;

- mn() returns the entry with the mni num key; and

- removeM n() both renmoves and returns the entry with the mninimum key.

key
_________ | T e e o - -
| 4: wonp| v | 4: wonp|
| 7: gong|—|nsert(5 hoot) >| 7: gong|-remveM n() - >|7 gong| >min()
| | 5: hoot | | | 5: hoot | |
--------- | v v
val ue (4, wonp) (5, hoot)

Priority queues are nost commonly used as "event queues" in sinulations. Each
val ue on the queue is an event that is expected to take place, and each key

is the time the event takes place. A sinulation operates by renoving
successive events fromthe queue and sinulating them This is why nost
priority queues return the mninum rather than maxi mum key: we want to
sinul ate the events that occur first first.

public interface PriorityQueue {
public int size();
public bool ean i sEnpty();
Entry insert(Cbject key, Cbject value);
Entry mn();
Entry renmoveM n();

}

See page 340 of Goodrich & Tamassia for how they inplenent an "Entry".

Bi nary Heaps: An Inplenentation of Priority Queues

A _conplete_binary_tree_is a binary tree in which every rowis full, except
possibly the bottomrow, which is filled fromleft to right as in the
illustration below. Just the keys are shown; the associated val ues are
omtted.

2 index: 0 1 2 3 4 5 6 7 8 9 10
I\
/ L e R T
5 3 | | 2] 5] 3| 9] 6] 11| 4] 17| 10| 8 |
/\ /2 S R T
9 6 11 4 n
I\ |
17 10 8 \--- array index O intentionally left enpty.

25

A _binary_heap_ is a conplete binary tree whose entries satisfy the
_heap-order_property_: no child has a key less than its parent’s key.
hserve that every subtree of a binary heap is also a binary heap, because
every subtree is conplete and satisfies the heap-order property.

Because it is conplete, a binary heap can be stored conpactly as an array of
entries. W map tree nodes to array indices with _|level _nunbering_, which
pl aces the root at index 1 and orders the renmining nodes by a | evel -order
traversal of the tree.

Cbserve that if a node’s index is i, its children’s indices are 2i and 2i+1,
and its parent’s index is floor(i/2). Hence, no node needs to store explicit
references to its parent or children. (Array index 0 is left enpty to make the
indexing work out nicely. If we instead put the root at index O, node i’'s
children are at indices 2i+1 and 2i+2, and its parent is at floor([i-1]/2).)

We can use either an array-based or a node-and-reference-based tree data
structure, but the array representation tends to be faster (by a significant
constant factor) because there is no need to read and wite the references that
connect nodes to each other, cache performance is better, and finding the |ast
node in the level order is easier.

Just like in hash tables, either each tree node has two references (one for the
key, and one for the value), or each node references an "Entry" object (see
page 340 of Goodrich and Tamassi a).

Let’s | ook at how we inplenment priority queue operations with a binary heap.
[1] Entry mn();

The heap-order property ensures that the entry with the mninumkey is always
at the top of the heap. Hence, we sinply return the entry at the root node.
If the heap is enpty, return null or throw an exception.

[2] Entry insert(Object k, Object v);

Let x be the new entry (k, v), whose key is k and whose value is v. W place
the new entry x in the bottomlevel of the tree, at the first free spot from
the left. (If the bottomlevel is full, start a newlevel with x at the far
left.) In an array-based inplenentation, we place x in the first free location
in the array (excepting index 0).

O course, the new entry’s key may violate the heap-order property. W correct
this by having the entry bubble up the tree until the heap-order property is
satisfied. More precisely, we conpare x’s key with its parent’s key.

Wiile x’s key is less, we exchange x with its parent, then repeat the test with
x’s new parent. Continue until x’s key is greater than or equal to its parent,
or x reaches the root. For instance, if we insert an entry whose key is 2:

2 2 2 2
I\ /\ I\ /\
/ \ / \ / \ / \
5 3 5 3 5 3 2 3
/\ I\ => I\ I\ => /A I\ => I\ I\
9 6 11 4 9 6 11 4 9 211 4 9 511 4
I\ [N 1N AN [N
17 10 8 17 10 8 2 17 10 8 6 17 10 8 6
As this exanple illustrates, a heap can contain nultiple entries with the sane
key. (After all, in a typical simulation, we can’t very well outlaw multiple

events happening at the sane tine.)

03/19/14
02:39:57

Wien we finish, is the heap-order property satisfied? p X
Yes, if the heap-order property was satisfied before the I\ /\
insertion. Let’s look at a typical exchange of x with a S X => s p
parent p (right) during the insertion operation. Since I\ I\ I\ I\
the heap-order property was satisfied before the insertion, Ior I r
we know that p <= s (where s is x’'s sibling), p <=1, and

p<=r (where | and r are x’s children). W swap only if x < p, which inplies
that x <s; after the swap, x is the parent of s. After the swap, p is the
parent of | and r. Al other relationships in the subtree rooted at x are
unchanged, so after the swap, the tree rooted at x has the heap-order property.

For maxi mum speed, don't put x at the bottomof the tree and bubble it up.

I nstead, bubble a hole up the tree, then fill in x. This nodification saves
the tine that woul d be spent setting a sequence of references to x that are
goi ng to change anyway.

insert() returns an Entry object representing (k, v).
[3] Entry removeMn();

If the heap is enpty, return null or throw an exception. O herw se, begin by
renoving the entry at the root node and saving it for the return value. This
| eaves a gaping hole at the root. W fill the hole with the last entry in the
tree (which we call "x"), so that the tree is still conplete.

It is unlikely that x has the mninumkey. Fortunately, both subtrees rooted
at the root’s children are heaps, and thus the new m mi mum key is one of these
two children. W bubble x down the heap until the heap-order property is
satisfied, as follows. W conpare x’s key with both its children’s keys.
Wiile x has a child whose key is snaller, swap x with the child having the

m ni mum key, then repeat the test with x’s new children. Continue until x is
less than or equal to its children, or reaches a |eaf.

Consi der running rembveM n() on our original tree.

2 8 3 3
[\ I\ [\ I\
/ \ / \ / \ / \
5 3 5 3 5 8 5 4
I\ I\ => [\ [\ => I\ I\ => [\ [\
9 6 11 4 9 611 4 9 6 11 4 9 611 8
I\ / o\ I\ / o\
17 10 8 17 10 17 10 17 10
Above, the entry bubbled all the 1 4 2
way to a leaf. This is not I\ [\ I\
al ways the case, as the / \ / \ / \
exanpl e at right shows. 2 3 => 2 3 => 4 3
[\ [\ I\ / [\ /
9 611 4 9 6 11 9 6 11
For maxi mum speed, don't put x at the root and bubble it down. Instead, bubble
a hole down the tree, then fill in x.

25

Runni ng Ti mes
There are other, less efficient ways we could inplenment a priority queue than
using a heap. For instance, we could use a list or array, sorted or unsorted.

The following table shows running tines for all, with n entries in the queue.
Bi nary Heap Sorted List/Array Unsorted List/Array
m n() Thet a(1) Theta(1) Thet a(n)
insert()
wor st - case Theta(log n) * Thet a(n) Theta(1l) *
best - case Theta(1) * Theta(1) * Theta(1) *
removeM n()
wor st - case Thet a(l og n) Theta(1l) ** Thet a(n)
best - case Theta(1) Theta(1) ** Thet a(n)
* If you' re using an array-based data structure, these running tinmes assune

that you don’t run out of room If you do, it will take Theta(n) tine to
allocate a larger array and copy the entries into it. However, if you
doubl e the array size each tinme, the _average_ running time will still be
as indicated.

** Renpving the mininumfroma sorted array in constant tinme is nost easily
done by keeping the array always sorted fromlargest to smallest.

In a binary heap, min’s running time is clearly in Theta(1).

insert() puts an entry x at the bottomof the tree and bubbles it up. At each
level of the tree, it takes (1) time to conpare x with its parent and swap if
indicated. An n-node conplete binary tree has height floor(log2 n). In the
worst case, x will bubble all the way to the top, taking Theta(log n) tine.

Simlarly, removeMn() may cause an entry to bubble all the way down the heap,
taking Theta(l og n) worst-case tine.

Bottom Up Heap Construction

Suppose we are given a bunch of randomy ordered entries, and want to naeke a
heap out of them W could insert themone by one in Q(n log n) time, but
there’s a faster way. W define one nore heap operation.

[4] void bottonpHeap();

First, we make a conplete tree out of the entries, in any order. (If we're
using an array representation, we just throw all the entries into an array.)
Then we work backward fromthe |ast internal node (non-leaf node) to the root
node, in reverse order in the array or the level-order traversal. Wen we
visit a node this way, we bubble its entry down the heap as in renoveM n().

Bef ore we bubble an entry down, we know (inductively) that its two child
subtrees are heaps. Hence, by bubbling the entry down, we create a |arger heap
rooted at the node where that entry started.

+-+
9 9 9 | 2|
/\ /\ /\ /-\
/ \ / \ -+ +-/ \ / \
4 7 => 4 | 2] => | 2| 2 => 4 2
/\ /A /\ /-\ /-\ [\ /\ /\
2 8 2 6 2 87 6 4 87 6 9 87 6
The running tine of bottomUpHeap is tricky to derive. 1f each internal node

bubbl es all the way down, then the running tinme is proportional to the sum of
the heights of all the nodes in the tree. Page 371 of Goodrich and Tanassia
has a sinple and el egant argunment showing that this sumis less than n, where n
is the number of entries being coal esced into a heap. Hence, the running tinme
is in Theta(n), which beats inserting n entries into a heap individually.

03/19/14
02:39:57

Postscript: Oher Types of Heaps (not exam nable)

Bi nary heaps are not the only heaps in town. Several inportant variants are
cal l ed "mergeabl e heaps", because it is relatively fast to conbine two

ner geabl e heaps together into a single nergeable heap. We will not describe
these conplicated heaps in CS 61B, but it’'s worthwhile for you to know they
exi st in case you ever need one.

The best-known nergeabl e heaps are called "binom al heaps,"” "Fibonacci heaps,"
"skew heaps,"” and "pairing heaps." Fibonacci heaps have another remarkabl e
property: if you have a reference to an arbitrary node in a Fibonacci heap,
you can decrease its key in constant time. (Pairing heaps are suspected of
havi ng the same property, but nobody knows for sure.) This operation is used
frequently by Dijkstra s algorithm an inportant algorithmfor finding the
shortest path in a graph. The followi ng running tines are all worst-case.

Bi nary Bi nomi al Skew Pai ri ng Fi bonacci
insert() Q1 og n) Q1 og n) a1 Q(log n) * (o @]
removeM n() 'l og n) Q1 og n) 'l og n) Q1 og n) 'l og n)
mer ge() Qq(n) 1 og n) 1) Qlog n) * Q1)
decr easeKey() Q1 og n) Q1 og n) 'l og n) Q(log n) * (o @]

* Conj ectured to be (1), but nobody has proven or disproven it.

The time bounds given here for skew heaps, pairing heaps, and Fi bonacci heaps
are "anortized" bounds, not worst case bounds. This neans that, if you start
froman enpty heap, any sequence of operations will take no nore than the given
tinme bound on average, although individual operations nay occasionally take
longer. W' Il discuss anortized analysis near the end of the semester.

25

