04/16/14
01:53:34

CS61B: Lecture 34
Wednesday, April 16, 2014

Today’s reading: Coodrich & Tamassia, Sections 11.3.1 & 11.5.

SELECTI ON
Suppose that we want to find the kth snallest key in alist. 1In other words,
we want to know which itemhas index j if the list is sorted (where j =k - 1).

We could sinply sort the list, then look up the itemat index j. But if we
don’t actually need to sort the list, is there a faster way? This problemis
call ed _selection_.

One exanple is finding the nedian of a set of keys. In an array of n itens,
we are | ooking for the itemwhose index is j = floor(n/ 2) in the sorted |ist.

Qui cksel ect

We can nodi fy quicksort to performselection for us. Observe that when we
choose a pivot v and use it to partition the list into three lists I1, Iv, and
12, we know which of the three lists contains index j, because we know the
lengths of 11 and 12. Therefore, we only need to search one of the three
lists.

Here's the quickselect algorithmfor finding the itemat index j - that is,
having the (j + 1)th smallest key.

Start with an unsorted list | of n input itemns.
Choose a pivot itemv froml.

Partition | into three unsorted lists 11, v, and I2.
- 11 contains all items whose keys are smaller than v's key.
- 12 contains all itens whose keys are larger than v’s.

- lv contains the pivot v.
- Items with the same key as v can go into any of the three lists.
(In list-based quickselect, they go into lv; in array-based quicksel ect,
they go into I1 and 12, just like in array-based quicksort.)
if (g <111 {
Recursively find the itemwith index j in 11, returnit.
}elseif (j < |11 + |lv]) {
Return the pivot v.

} else { I) >= 111 + |lv].
Recursively find the itemwth index j - |I1] - |lv] in12; returnit.
}
The advantage of quicksel ect over quicksort is that we only have to nake one
recursive call, instead of two. Since we make at nost _one_ recursive call at

every level of the recursion tree, quickselect is nuch faster than quicksort.
I won’t anal yze quicksel ect here, but it runs in Theta(n) average tinme if we
sel ect pivots randomy.

We can easily nodify the code for quicksort on arrays, presented in Lecture 31,
to do selection. The partitioning step is done exactly according to the
Lecture 31 pseudocode for array quicksort. Recall that when the partitioning
stage finishes, the pivot is stored at index "i" (see the variable "i" in the
array qui cksort pseudocode). In the quicksel ect pseudocode above, just replace
[11] withi and [Iv] with 1.

34

A LONER BOUND ON COMPARI SON- BASED SORTI NG

Suppose we have a scranbled array of n nunmbers, with each nunber from1l...n
occurring once. How nany possible orders can the nunbers be in?

The answer is n!, wheren! =1* 2* 3* . * (n-2) * (n-1) * n. Here's why:
the first nunber in the array can be anything from1...n, yielding n
possibilities. Once the first nunber is chosen, the second nunber can be any
one of the remaining n-1 nunbers, so there are n * (n-1) possible choices of
the first two nunbers. The third nunber can be any one of the renaining n-2
nunbers, yielding n * (n-1) * (n-2) possibilities for the first three nunbers.
Continue this reasoning to its |ogical conclusion.

Each different order is called a _pernutation_ of the nunbers, and there are n!
possi bl e pernutations. (For Homework 9, you are asked to create a random
permutation of naze walls.)

Cbserve that if n > 0,

n
nl =1=*2* *(n-1) *n<=n*n*n* ... *n*n*n-=n
and (supposing n is even)
n n n/ 2
nt =1*2* _ .. *(n1) *n>-*(-+1)* ... * (n-1) * n>= (n/2)
2 2

so n! is between (n/2)”~(n/2) and n*n. Let’s look at the logarithms of both
these numbers: log((n/2)~(n/2)) = (n/2) log (n/2), which is in Theta(n log n),
and log(n*n) = nlog n. Hence, log(n!) is also in Theta(n log n).

A _conparison-based_sort_ is one in which all decisions are based on conparing
keys (generally done by "if" statements). All actions taken by the sorting

al gorithm are based on the results of a sequence of true/false questions. Al
of the sorting algorithms we have studied are conparison-based.

Suppose that two conmputers run the _same_ sorting algorithmat the same tinme on
two _different_ inputs. Suppose that every tine one conputer executes an "if"
statement and finds it true, the other conputer executes the sane "if"
statement and also finds it true; |ikew se, when one conputer executes an "if"
and finds it false, so does the other. Then both conputers performexactly the
sane data novenents (e.g. swapping the nunbers at indices i and j) in exactly
the sane order, so they both pernute their inputs in _exactly_ the sane way.

A correct sorting algorithmnust generate a _different_ sequence of true/false
answers for each different pernutation of 1...n, because it takes a different
sequence of data novenents to sort each pernmutation. There are n!l different
permutations, thus n! different sequences of true/fal se answers.

If a sorting algorithmasks d true/false questions, it generates <= 2"d
different sequences of true/false answers. |f it correctly sorts every
permutation of 1...n, then n! <= 27d, so log_2 (n!) <=d, and d is in
Orega(n log n). The algorithmspends Onega(d) time asking these d questions.
Hence,

EVERY conpari son-based sorting al gorithmtakes Orega(n | og n) worst-case tine.

This is an ammzing claim because it doesn't just analyze one algorithm It
says that of the thousands of conparison-based sorting algorithms that haven’'t
even been invented yet, not one of them has any hope of beating Q(n log n) tinme
for all inputs of length n.

04/16/14
01:53:34

LI NEAR- TI ME SORTI NG

However, there are faster sorting algorithms that can make g-way deci sions for
large values of ¢, instead of true/false (2-way) decisions. Sorme of these
algorithns run in linear tine.

Bucket Sort

_Bucket _sort_ works well when keys are distributed in a small range, e.g. from
0toq- 1, and the nunber of itens n is larger than, or nearly as large as, q.
I'n other words, when g is in Q(n).

W allocate an array of q queues (or singly-linked lists with tail references,
whi ch are basically the same thing, but we only need the queue operations),
nunbered fromO to q - 1. The queues are called _buckets_. W walk through
the list of input items, and enqueue each itemin the appropriate queue:

an itemwi th key i goes into queue i.

Each itemillustrated here has a nunerical key and an associated val ue.

Input | 6:a | 7:b | 3:c | 0:d | 3:e | 1:f | 5:g | O:h | 3:i | 7:j |
0 1 2 3 4 5 6 7
Queue fronts | | [[| | |
I REEtr REREESETEPEEREE REREESETEPEEREE RERERE RERERE |-
v v v v v v
| O0:d | | 1:f | | 3:c | | 5:g | | 6:a| | 7:b |
| [| | | [A |
D RESIERETELE e RA TP L PRI R R -ee] .-
\ n \ n n \
------- | | I
| 0:h | | | 3:e | | | | 7:j |
[| [| | [
------- | --e]--- | EEEEEEEE
N | v | | N
	e				
		30			
	I				
	e				
	n				
D EERTPRE ERTECIEERSRTPRE R TECIEERSRLPLE RETERES RETERES |----

Queue tails | . |

Wien we’re done, we concatenate all the queues together in order.

Concat enat ed out put:

This data structure is _exactly_ like a hash table (plus tail references), but
the hash code just nmaps the key i to bucket i, and there is no conpression
function because there is no need for conpression.

Bucket sort takes Theta(q + n) time--in the best case and in the worst case.
It takes Theta(q) time to initialize the buckets in the beginning and to
concatenate themtogether in the end. It takes Theta(n) time to put all the
items in their buckets.

34

If gisin Qn)--that is, the nunber of possible keys isn't nmuch |arger than
the nunber of itens we're sorting--then bucket sort takes Theta(n) time. How
did we get around the Orega(n log n) |ower bound on conparison-based sorting?
Bucket sort is not conparison-based. W are making a g-way decision every tinme
we deci de which queue to put an iteminto, instead of the true/fal se decisions
provi ded by conparisons and "if" statenents.

Bucket sort (as |’ve described it here) is said to be _stable_. A sort is
stable if items with equal keys conme out in the sane order they went in. For
exanpl e, observe that 3:c, 3:e, and 3:i appear in the same order in the output
above as they appeared in the input. Bucket sort is not the only stable sort
we have seen; insertion sort, selection sort, and nergesort can all be

i mpl emented so that they are stable. The linked |ist version of quicksort we
have seen can be stable, but the array version is decidedly not. Heapsort is
never stable. (Actually, we can _make_ heapsort stable using a sinple trick
called a _secondary_key_, which | mght describe later in the senmester.)

Take note that bucket sort is ONLY appropriate when keys are distributed in
a small range; i.e. gisin Qn). On Mnday we'll study a sorting algorithm
called _radix_sort_ that will fix that limtation. The stability of bucket
sort will be inportant for radix sort.

