05/06/14
02:00:55

CS61B: Lecture 38
Monday, April 29, 2013

RANDOM ZED ANALYSI S

_Randomi zed_al gorithnms_ are algorithns that make deci sions based on rolls of
the dice. The random nunbers actually help to keep the running tine |ow
Exanpl es are qui cksort, quickselect, and hash tables w th random hash codes.

Randoni zed analysis, |ike anortized analysis, is a mathematically rigorous way
of saying, "The average running tine of this operation is fast, even though the
worst-case running time is slow" Unlike anortized analysis, the "average" is

taken over an infinite nunber of runs of the program A randonized al gorithm
will sometines run nore slowy than the average, but the probability that it
will run _asynptotically_ slower is extrenely |ow.

Randomni zed analysis requires a little bit of probability theory.

Expectati on
Suppose a nethod x() flips a coin. |f the coin cones up heads, x() takes one
second to execute. If it comes up tails, x() takes three seconds.

Let X be the exact running time of one call to x(). Wth probability 0.5,
Xis 1, and with probability 0.5, Xis 3. For obvious reasons, Xis called a
random vari abl e.

The _expected_ value of X is the average value X assunmes in an infinite
sequence of coin flips,

E[X] =0.5* 1+ 0.5* 3 =2 seconds expected tine.

Suppose we run the code sequence

x(); /1 takes tine X
x(); /1l takes tinme Y
and let Y be the running tine of the _second_ call. The total running time is

T=X+Y. (Yand T are also randomvariables.) Wat is the expected total
running time E[T]?

The nmain idea fromprobability we need is called _linearity_of_expectation_,
whi ch says that expected running tines sumlinearly.
E[X + Y] = E[X +EY]
=2+ 2

4 seconds expected tine.

The interesting thing is that linearity of expectation holds true whether or
not X and Y are _independent_. Independence neans that the first coin flip has
no effect on the outcome of the second. |f X and Y are independent, the code
will take four seconds on average. But what if they' re not? Suppose the
second coin flip always matches the first--we always get two heads, or two

tails. Then the code still takes four seconds on average. If the second coin
flip is always the opposite of the first--we always get one head and one tail--
the code still takes four seconds on average.

So if we determine the expected running time of each individual operation, we
can determ ne the expected running time of a whole program by adding up the
expected costs of all the operations.

38

Hash Tabl es

The inplenentations of hash tables we have studied don't use random nunbers,
but we can nodel the effects of collisions on running time by pretending we
have a random hash code.

A _random hash_code_ maps each possible key to a nunber that’s chosen randomy.
This does _not_ nean we roll dice every tinme we hash a key. A hash table can
only work if a key maps to the same bucket every time. Each key hashes to a
random y chosen bucket in the table, but a key’s random hash code never
changes.

Unfortunately, it’s hard to choose a hash code randomy fromall possible hash
codes, because you need to remenber a random nunber for each key, and that

woul d seemto require another hash table. However, random hash codes are

a good _nodel _ for how a good hash code will perform The nodel isn't perfect,
and it doesn’t apply to bad hash codes, but for a hash code that proves
effective in experiments, it’s a good rough guess. Moreover, there is a sneaky
nunber-theoretical trick called _universal _hashing_ that generates random hash
codes. These random hash codes are chosen froma relatively snall set of
possibilities, yet they performjust as well as if they were chosen fromthe
set of all possible hash codes. (If you're interested, you can read about it
in the textbook "Algorithns" by Cornmen, Leiserson, Rivest, and Stein.)

Assune our hash tabl e uses chaining and does not allow duplicate keys.
If an entry is inserted whose key matches an existing entry, the old entry is
repl aced.

Suppose we performthe operation find(k), and the key k hashes to a bucket b.
Bucket b contains at npst one entry with key k, so the cost of the search is
one dollar, plus an additional dollar for every entry stored in bucket b whose
key is not k. (Recall fromlast |lecture that a _dollar_is a unit of tine
chosen | arge enough to make this statement true.)

Suppose there are n keys in the table besides k. Let V1, V2, ..., Vn be random
vari abl es such that for each key ki, the variable Vi = 1 if key ki hashes to
bucket b, and Vi is zero otherwise. Then the cost of find(k) is

T=1+V1l+V2+ ... + Vn.
The expected cost of find(k) is (by linearity of expectation)
E[T] =1+ E[V1] + E[V2] + ... + E[Vn].

What is E[VIi]? Since there are N buckets, and the hash code is random each
key has a 1/ N probability of hashing to bucket b. So E[Vi] = 1/N, and

E[T] =1+ n/N

which is one plus the load factor! If we keep the load factor n/N bel ow sone
constant ¢ as n grows, find operations cost expected O(1) tine.

The sane anal ysis applies to insert and renove operations. Al three hash
tabl e operations take Q(1) expected anortized tine. (The word "anortized"
accounts for table resizing, as discussed last |ecture.)

bserve that the running times of hash table operations are _not_ independent.
If key k1 and key k2 both hash to the same bucket, it increases the running
time of both find(kl) and find(k2). Linearity of expectation is inportant
because it inplies that we can add the expected costs of individual operations,
and obtain the expected total cost of all the operations an algorithm perforns.

05/06/14
02:00:55

Qui cksort

Recal | that mergesort sorts n items in Q(n log n) time because the recursion
tree has 1 + ceiling(log_2 n) levels, and each | evel involves Q(n) time spent
nerging lists. Quicksort also spends linear time at each level (partitioning
the lists), but it is trickier to analyze because the recursion tree is not
perfectly bal anced, and sone keys survive to deeper |evels than others.

To anal yze qui cksort, let’s analyze the expected depth one input key k wll
reach in the tree. (In effect, we’'re neasuring a vertical slice of the
recursion tree instead of a horizontal slice.) Assume no two keys are equal,
since that is the slowest case.

Qui cksort chooses a random pivot. The pivot is equally likely to be the

smal | est key, the second smallest, the third smallest, ..., or the largest.

For each case, the probability is 1/n. Since we want a roughly bal anced
partition, let’'s say that the least floor(n/4) keys and the greatest floor(n/4)
keys are "bad" pivots, and the other keys are "good" pivots. Since there are
at nost n/2 bad pivots, the probability of choosing a bad pivot is <= 0.5.

If we choose a good pivot, we’'ll have a 1/4-3/4 split or better, and our chosen
key k will go into a subset containing at nbst three quarters of the keys,
which is sorted recursively. |If we choose a bad pivot, k mght go into a

subset with nearly all the other keys.

Let D(n) be a random variable equal to the deepest depth at which key k appears
when we sort n keys. D(n) varies fromrun to run, but we can reason about its
expected value. Since we choose a bad key no nore than half the tine,

E[D(n)] <=1+ 0.5 E[D(n)] + 0.5 E[D(3n / 4)].
Ml tiplying by two and subtracting E[D(n)] from both sides gives
E[D(n)] <=2 + E[D(3n/ 4)].

This inequality is called a _recurrence_, and you'll learn howto solve themin
CS 170. (No, recurrences won't be on the CS 61B final exam) The base cases
for this recurrence are D(0) = 0 and D(1) = 0. It’s easy to check by
substitution that a solution is

E[D(n)] <= 2 log n.
4/ 3

So any arbitrary key k appears in expected O(log n) levels of the recursion
tree, and causes Q(log n) partitioning work. By linearity of expectation, we
can sumthe expected O(log n) work for each of the n keys, and we find that
qui cksort runs in expected Q(n log n) tine.

Qui cksel ect

For qui cksel ect, we can analyze the expected running time nore directly.
Suppose we run qui cksel ect on n keys. Let P(n) be a random variable equal to
the total nunber of keys partitioned, summed over all the partitioning steps.
Then the running time is in Theta(P(n)).

Qui cksel ect is like quicksort, but when we choose a good pivot, at |east one
quarter of the keys are discarded. W choose a good pivot at |east half the
tinme, so

E[P(n)] <= n + 0.5 E[P(n)] + 0.5 E[P(3n / 4)],

which is solved by E[P(n)] <= 8n. Therefore, the expected running time of
qui cksel ect on n keys is in Q(n).

38

Anortized Tine vs. Expected Tine
There’s a subtle but inportant difference between anortized running tine and
expected running tinme.

Qui cksort with random pivots takes Q(n log n) expected running time, but its
wor st-case running tine is in Theta(n®2). This neans that there is a snall
possibility that quicksort will cost Orega(n”2) dollars, but the probability
of that happeni ng approaches zero as n approaches infinity.

A splay tree operation takes O(log n) anortized time, but the worst-case
running time for a splay tree operation is in Theta(n). Splay trees are not
random zed, and the "probability" of an Orega(n)-time splay tree operation is
not a neani ngful concept. |If you take an enpty splay tree, insert the itens
1...n in order, then run find(1l), the find operation _will_ cost n dollars.

But a sequence of n splay tree operations, starting froman enpty tree, _never_
costs nore than Q(n log n) actual running time. Ever.

Hash tables are an interesting case, because they use both anortization and
random zation. Resizing takes Theta(n) tine. Wth a random hash code, there
is atiny probability that every itemw || hash to the same bucket, so the
wor st-case running tine of an operation is Theta(n)--even w thout resizing.

To account for resizing, we use anortized analysis. To account for collisions,
we use randoni zed analysis. So when we say that hash table operations run in
Q(1) time, we nmean they run in (1) _expected_, _anortized_ tine.

Splay trees Q(log n) anortized time / operation *

Di sjoint sets (tree-based) QO al pha(f + u, u)) anortized time / find op **
Qui cksort Q(n log n) expected time ***
Qui cksel ect Theta(n) expected tine ****
Hash tabl es Theta(1l) expected anortized time / op *****
If you take CS 170, you will learn an anortized analysis of disjoint sets

there. Unfortunately, the analyses of both disjoint sets and splay trees are
conplicated. Goodrich & Tanassia give the anortized anal ysis of splay trees,
but you're not required to read or understand it for this class.

* Worst-case tinme is in Theta(n), worst-case anortized time is in
Theta(log n), best-case tinme is in Theta(l).
*x For find operations, worst-case tinme is in Theta(log u), worst-case

anortized time is in Theta(al pha(f + u, u)), best-case tine is in
Theta(1). Al union operations take Theta(1l) tinme.

*xx Wrst-case time is in Theta(n"2)--if we get worst-case input AND
wor st -case random nunbers. "Worst-case expected" time is in
Theta(n log n)--nmeaning when the _input_ is worst-case, but we take the
average over all possible sequences of random nunbers. Recall that
qui cksort can be inplenmented so that keys equal to the pivot go into a
separate list, in which case the best-case tine is in Theta(n), because
the best-case input is one where all the keys are equal. |If quicksort
is inplenented so that keys equal to the pivot are divided between lists
11 and 12, as is the normfor array-based quicksort, then the best-case
time is in Theta(n log n).

i Worst-case time is in Theta(n"2)--if we get worst-case input AND wor st -
case random nunbers. Worst-case expected tinme, best-case tinme, and
best-case expected tinme are in Theta(n).

x%% \Wprst-case time is in Theta(n), expected worst-case tinme is in Theta(n)
(worst case is when table is resized), anortized worst-case time is in
Theta(n) (worst case is when every itemis in one bucket), worst-case
expected anortized tinme is in Theta(l), best-case tinme is in Theta(1l).
Conf used yet?

