04/30/14
04:04:05

CS61B: Lecture 39
Wednesday, April 30, 2014

Today’s reading: GCoodrich & Tamassia, Sections 14.1.2-14.1.3.

GARBAGE COLLECTI ON

Obj ects take up space in nmenory. |If your programcreates |ots of objects,
throws them away, and creates nore, you mght eventually run out of menory.
To reduce the chance that this will happen, Java has garbage collection.

While the Java Virtual Machine (JVM runs your program it also spends little
bits of time searching for objects that you' re no |longer using, so it can
reclaimtheir nenory for use by other objects.

You don’t have to know anythi ng about garbage collection to be an effective
Java programrer. But garbage collection is interesting because the JVM uses
a lot of hidden data structures to manage nenory. These data structures are
hi dden from your Java program-after all, the JVM just |ike any other
encapsul ated nodul e, should hide the details of howit is inplenented. Here’'s
a peak at what’'s going on under the hood.

Roots and Reachability

Garbage collection’s prime directive is to never sweep up an object your
program mi ght possibly use or inspect again. These objects are said to be
live. The opposite of "live" is _garbage_--objects that your program cannot
reference again. Java' s design makes it possible for the JVMto determ ne
whet her an obj ect can ever be used again by your program or not.

Garbage collection begins at the roots. A _root_ is any object reference your
program can access directly, w thout going through another object. There are
two kinds (that we know about). First, every local variable (including
paranmeters) in every stack frame on the programstack is a root if it is

a reference. (Primtive types like ints are not roots; only references are.)
Second, every class variable (aka "static" field) that is a reference is a
root.

An object is live, and should not be garbage collected, if

- it is referenced by a root (obviously), or

- it is referenced by a field in another |ive object.

Note that this definition is recursive. Another way to say it is that an
object is liveif it is _reachable_ fromthe roots. |[If you run depth-first
search starting at all the roots, you will visit all the live objects and
none of the garbage. And that's exactly what garbage collectors do: run
depth-first search fromthe roots.

Each object has a small tag that allows the garbage collector to mark whether
the object has been visited or not. The tag is invisible to your Java program
but it takes a few bits of the object’s menory. (This is not the only "hidden"
nenory Java associates with an object--for exanple, every object has a hidden

| abel that tells Java what class it’s in.)

39

Menory Addresses

I'n any nodern conputer, nmenory is one huge array of bytes with addresses.

However, nodern conputers prefer to read or wite four bytes at a tinme, and
they do this much faster if the four bytes start at an address divisible by
four, so that’'s how things like ints and floats are stored.

Every tinme you declare a local variable, you are naming a nmenory |ocation.
(You pick the name, Java picks the address.) An assignnment statement wites
sonmething into a menory | ocation.

............................. int bob;

————————————————————————————— bob = 3;
208 212 216 220 224 228

Conputers can store nmenory addresses in nmenory. To reduce the nunmber of

syl lables, menory addresses are called _pointers_ for short. Sone |anguages
like C allow you to declare variables that are pointers. A pointer field is
a menory | ocation that points to another nmenory | ocation.

bob ptr
[131 [216] |
____________________ S
208 212 216 220 | 228
N I
| |
R /

Java uses pointers too, but it considers them confidential infornmation, and
won’'t let you print themor ook at the nunbers directly. Java references are
alittle bit like pointers, but as we'll learn soon, they ' re actually nore
conplicated than pointers.

The inportant point is that your conputer’s menory is just one giant array that
has no structure except the structure you inpose on it. Java saves you a huge
amount of time and effort by structuring menmory for you. Java does this by

usi ng hi dden pointer-based data structures that you can’'t access froma Java
program

04/30/14
04:04:05

Mark and Sweep Garbage Col | ection

A nmar k- and- sweep garbage collector runs in two separate phases. The _mark_
phase does a DFS fromevery root, and nmarks all the live objects. The _sweep_
phase does a pass over all the objects in nenory. Each object that was not
marked as being live is garbage, and its nmenory is reclai ned.

How does the sweep phase do a pass over all the objects in nmenory? The JVM has
an el aborate internal data structure for managi ng the heap. This hidden data
structure keeps track of free menory and all ocated nenory so that new objects
can be allocated wi thout overwiting |ive ones. Tine prevents ny describing
Java’s heap data structure here, but it allows the garbage collector to do

a pass over every object, even the ones that are not live. [It’s roughly like
an invisible linked list that |links _everything_.

Simlarly, the stack frames on the stack are data structures that nmake it
possi bl e for the garbage collector to determine which data on the stack are
references, and which are not.

When a mar k- and- sweep col | ector runs, your program stops running for an instant
whil e the garbage coll ector does a mark pass and a sweep pass. The garbage
collector is typically started when the JVMtries to create a new object but
doesn’t have enough nenory for it.

Conpacti on

Typi cal progranms allocate and forget a good many objects. One problemthat
arises is _fragnentation_, the tendency of the free nenory to get broken up
into lots of small pieces. Fragnentation can render Java unable to allocate a
| arge object despite having lots of free nmenory avail able.

(Fragnmentation al so neans that the nmenory caches and virtual nenory don't
performas well. |If you don’'t know why, wait until CS 61C or CS 152.)

To solve this problem a conpacting garbage coll ector actually picks up the

obj ects and noves themto different |locations in menory, thereby renoving the
space between the objects. This is easily done during the sweep phase.

39

Ref er ences
There’'s a problemhere: if we pick up an object and nove it, what about all
the references to that object? Aren't those references wong now?

Interestingly, in the Oacle JVM a reference isn't a pointer. A reference is
a handle. A _handle_is a pointer to a pointer.

Wien an obj ect noves, Java corrects the second pointer so it points to the

obj ect’s new address. That way, even if there are a million references to the

object, they're all corrected in one fell swoop. The "second pointers" are

kept in a special table, since they don't take as nuch nenory as objects.
reference reference reference reference reference reference

| v |
\-emm - S====<----- -/
| ==>
| ====
v
obj ect obj ect
"Over here" "No, wait, over here"

The special table of "second pointers" does not suffer fromfragnentation
because all pointers have exactly the same size. bjects suffer from
fragnentati on because when a smal| object is garbage collected, the space it

| eaves behind m ght not be |arge enough to accommpdate a | arger object. But

a garbage-col |l ected object’s "second pointer" can sinply be reused by any newy
constructed object that cones along, because all "second pointers" have the
sane si ze.

Copyi ng Garbage Col | ection

Copyi ng garbage collection is an alternative to mark and sweep. It does
conpaction, but it is faster than mark and sweep with conpaction because there
is only one phase, rather than a mark phase and a sweep phase.

Mernory is divided into two distinct spaces, called the old space and the new
space. A copying garbage collector finds the live objects by DFS as usual, but
when it encounters an object in the old space, it _imediately_ noves it to the
new space. The object is noved to the first available nenory location in the
new space, so conpaction is part of the deal. After all the objects are noved
to the new space, the garbage objects that remain in the old space are sinply
forgotten. There is no need for a sweep phase.

Next tine the garbage collector runs, the new space is relabeled the "old
space" and the old space is rel abeled the "new space". Long-lived objects nmay
be copied back and forth between the two spaces many tines.

Whil e your programis running (between garbage collections), all your objects
are in one space, while the other space sits enpty.

The advantage of copying garbage collection is that it's fast. The
di sadvantage is that you effectively cut in half the amount of heap nmenory
avail abl e to your program

