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CS61B: Lecture 40
Wednesday, April 30, 2014

Cener ational Garbage Col | ection

Studi es of menory allocation have shown that nost objects allocated by nost
prograns have short lifetimes, while a few go on to survive through many
garbage collections. This observation has inspired generational garbage
coll ectors, which separate old from new objects.

A generational collector has two or nore generations, which are like the
separate spaces used by copying collectors, except that the generations can be
of different sizes, and can change size during a programs lifetinme.

Sun’s 1.3 JVMdivides objects into an ol d generation and a young generati on.
Because ol d objects tend to |last |longer, the old generation doesn't need to be
garbage collected nearly as often. Hence, the old generation uses a conpacting
mar k- and- sweep col | ector, because speed is not critical, but nenmory efficiency
m ght be. Because old objects are long-lived, and because mark and sweep only
uses one nmenory space, the old generation tends to remain conpact.

The young generation is itself divided into three areas. The largest area is
called "Eden", and it is the space where all objects are born, and nost die.
Eden is | arge enough that nost objects in it will becone garbage |ong before it
gets full. Wen Eden fills up, it is garbage collected and the surviving
objects are copied into one of two _survivor_spaces_. The survivor spaces are
just the two spaces of a copying garbage collector.

I'f an unexpectedly |arge nunber of objects survive Eden, the survivor spaces
can expand if necessary to nmake room for additional objects.

Obj ects nove back and forth between the two survivor spaces until they age

enough to be _tenured_ - noved to the old generation. Young objects benefit
fromthe speed of the copying collector while they’'re still wild and prone to
di e young.

Thus, the Sun JVM takes advantage of the best features of both the
mar k- and- sweep and copyi ng gar bage col | ecti on net hods.

There are two types of garbage collection: minor collections, which happen
frequently but only affect the young generation - thereby saving lots of time -
and maj or col |l ections, which happen nmuch | ess often but cover all the objects
in menory.

This introduces a problem Suppose a young object is live only because an old
obj ect references it. How does the mnor collection find this out, if it
doesn’t search the old generation?

Ref erences fromold objects to young objects tend to be rare, because old
objects are set in their ways and don’t change rmuch. Since references fromold
objects to young are so rare, the JVM keeps a special table of them which it
updat es whenever such a reference is created. The table of references is added
to the roots of the young generation’s copying collector.

40

I - I
| [----\ [----1 \/\/\ /---1 \ |
| ! \ -\ / \__ -1 \ |
| / \__ N __--1 | |
[ / I
(. Eden \ |
[\ (.
I \ n / I
| -\ /\ /--\ I\ /\ [ \--\ /--\ I\ / |
| --1/ \_/ \ IoNIN_ N \/\/ .- \_/ |



05/14/14
18:31:57

AUGMVENTI NG DATA STRUCTURES

Once you know how to design one of the data structures taught in this class,
it’s sonetimes easy to augnent it to have "extra" abilities.

You’ ve al ready augnmented data structures in Project 3. For exanple, the set E
of edges is stored as both a hash table and an adjacency list. The hash table
allows you to test set menmbership in Q(1) tine, unlike the adjacency list. The
adj acency list tells you the edges adjoining a vertex in ((degree) tinme, unlike
the hash table.

2-3-4 Trees with Fast Neighbors

Suppose you have a 2-3-4 tree with no duplicate keys. G ven a key k, you want
to be able to deternmine whether k is in the tree, and what the next smaller and
larger keys are, in (1) time. You are allowed to change the insert() and
renove() operations, but they still nust take O(log n) time. Can you do it?

It’s easy if you conbine the 2-3-4 tree with a hash table. The hash table maps
each key to a record that stores the next smaller and next |arger keys in the
tree.

The trick is that when you insert a key into the tree, you can deternine by
tree search in (log n) time what the next smaller and | arger keys are. Then,
you update all three keys’' records in the hash table in (1) tine.

When you renpve a key fromthe tree, you can learn its two nei ghboring keys
fromthe hash table, then update the neighbor records for those two keys so
they list each other instead of the renpved key. You also renpve the key's
record fromthe hash table. The hash table updates take (1) time, and it
takes (log n) tine to renmove the key fromthe 2-3-4 tree itself.
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Splay Trees with Node Infornation
Sonmetimes it’'s useful for a binary search tree to record extra information in
each node, like the size and hei ght of each subtree at each node.

In splay trees, this is easy to maintain. Splaying is just a sequence of tree
rotations. Each rotation changes the sizes of only two subtrees, and we can
easily conpute their new sizes after the rotation. Let size(Y) be the nunber
of nodes in the subtree rooted at node Y. After a right rotation (for

i nstance) you can reconpute the infornation as foll ows:

size(Y) =1 + size(B) + size(O Y X
size(X) = 1 + size(A) + size(Y) I\ [\

X n Ny
height (Y) = 1 + max{height(B), height(Q)} I\ rQa ITA [\
hei ght (X) = 1 + max{hei ght (A), height(Y)} A > AN
(Note: to make this work, we nust say / A/ B\ rotate right /B\/C

that the height of an enpty tree is -1.)

Be forwarned that a rotation does not just change the heights of X and Y--it
al so can change the heights of all their ancestors. But X gets splayed all the
way to the root, so all the ancestors’ heights get fixed on the way up.

Li kewi se, inserting or renmpving an item changes the subtree sizes of all the
ancestors of the affected item and possibly their heights as well. But a
newy inserted itemgets splayed to the top; and a renpved node’s parent is
splayed to the top. So again, all the sizes and heights will get fixed during
the rotations. Let’s watch the size fields as we insert a new node X into a
splay tree. (The follow ng nunbers are sizes, _not_ keys.)

Note that the very first rotation is at the grandparent of node X (zig-zig).
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How can we use this information? W can answer the query "How 3 find(4)
many keys are there between x and y?" in Q(log n) anortized I\
time if the splay tree has no duplicate keys and we |abel every 2 5
subtree with its size. Qur strategy is to set ¢ = n, then / \
deduct fromc the nunmber of keys outside the range [x, y]. 1 8
[\
find(x); [// After the splaying, the keys in the root’s left 6 9
/'l subtree are all less than x, so subtract their nunber fromc.
c =c - size(root’s left subtree); 6 find(7)
if (root key < x) // Only possible if x is not in the tree-- I\
c--; /1 otherwi se x was splayed to the root. 3 8
[\ \
find(y); // After the splaying, the keys in the root’s 2 5 9
/1 right subtree all exceed vy. /
c =c - size(root’s right subtree); 1

if (root key >vy) c--;
Keys in [4, 7] =
Now, ¢ is the number of keys in [x, y]. 7-2-1-2=2.




