05/06/14
18:19:17

Pl ease try to answer these questions.
days before the exam

CS 61B: Practice for the Final Exam

W' Il release solutions two or three
Starred problens are particularly difficult--nuch nore

difficult than any exam question woul d be.

Wr ni ng:

[1

[2]

[3l

[4]

[5]

Mdterm 1 topics are absent here, but they can reappear on the Final.
G ven an array containing the digits 71808294, show how the order of the
di gits changes during each step of [a] insertion sort, [b] selection sort,
[c] mergesort, [d] quicksort (using the array-based quicksort of Lecture
31, and always choosing the |ast el ement of any subarray to be the pivot),
and [e] heapsort (using the backward m n-heap version discussed in Lecture

30). Show the array after each swap, except in insertion sort. For
insertion sort, show the array after each insertion.
Sone sorting nethods, |ike heapsort and array-based quicksort, are not

naturally stable. Suggest a way to make _any_ sorting algorithm stable by
extending the keys (nmeking them|longer and adding extra information).

Consi der the graph at right. e f

|17 |15

[a] In what order are the vertices visited using DFS | |
starting fromvertex a? Were a choice exists, use 31 9] 1
al phabetical order. What if you use BFS? a---c---g---h

[b] A vertex x is "finished" when the recursive call | | |/
DFS(x) terminates. |In what order are the vertices |7 9] 11] /5
finished? (This is different fromthe order in | | |/
whi ch they are visited, when DFS(x) is called.) b---d---i

[c] In what order are edges added to the m ni num 12 14
spanning tree by Kruskal’s algorithn? List the edges
by giving their endpoints.

[a] How long does it take to determine if an undirected graph contains
a vertex that is connected to no other vertex [i] if you use an
adj acency matrix; [ii] if you use an adjacency list.

[b] Suppose we use DFS on a binary search tree, starting fromthe root.
The edge to a left child is always traversed before an edge to the
right child. |In what order are the nodes visited? Finished?

[c] An undirected graph contains a "cycle" (i.e., loop) if there are two
different sinple paths by which we can get fromone vertex to
another. Using breadth-first search (not DFS), how can we tell if
an undi rected graph contains a cycle?

[d] Recall that an undirected graph is "connected" if there is a path
fromany vertex to any other vertex. If an undirected graph is not
connected, it has multiple connected conponents. A "connected
conponent" consists of all the vertices reachable froma given
vertex, and the edges incident on those vertices. Suggest an
al gorithm based on DFS (possibly nultiple invocations of DFS) that
counts the nunber of connected conponents in a graph.

What does the splay tree at right |ook like after: 3

I\
[a] max() [the operation that finds the maxi numiteni 1 5
/\ /\
[b] insert(4.5) \ 0 24 11
| Start fromthe _original_ tree, I\

[c] find(10) | not the tree resulting fromthe 7 12

| previous operation. !\

[d] renove(9) / 6 9

practice

[6]

[7]

[8l

[10]

Consi der the quick-union algorithmfor disjoint sets. W know that a
sequence of n operations (unions and finds) can take asynptotically
slightly nore than linear time in the worst case.

[a] Explain why if all the finds are done before all the unions, a
sequence of n operations is guaranteed to take Q(n) tine.

[b] Explain why if all the unions are done before all the finds, a

* sequence of n operations is guaranteed to take Q(n) tine.
Hint: you can tell the nunber of dollars in the bank just by | ooking
at the forest.

[a] Suggest a sequence of insertion operations 4 |3 5]
that would create the binary tree at right. [T T

[b] Suggest a sequence of operations that woul d 2 6 /] 0\
create the 2-3-4 tree at right. You are [
all owed to use renoval as well as insertion. 1 3 11 2] |4] |6]

Suppose an application uses only three operations: insert(), find(), and

remove() .

[a] Under what circunstances woul d you use a splay tree instead of a hash
tabl e?

[b] Under what circunmstances would you use a 2-3-4 tree instead of
a splay tree?

[c] Under what circunstances woul d you use an unordered array instead of
a 2-3-4 tree?

[d] Under what circunstances woul d you use a binary heap instead of
an unordered array?

[e] Under what circunmstances would you use a hash tabel instead of

a binary heap?
[a] Suppose we are inplenenting a binary heap, based on reference-based
binary trees (_not_ arrays). W want to inplement a del eteRef()
operation which, given a _reference_ to a node in the tree, can
del ete that node (and the itemit contains) fromthe heap while
mai nt ai ni ng the heap-order property--even if the node isn’t the root
and its itemisn't the mininum deleteRef() should run in O(log n)
time. How do we do it?
Buil ding on your answer to the previous question, explain howto
conbine a mn-heap and max-heap (both using reference-based binary
trees) to yield a data structure that inplenents insert(),
deleteM n(), and deleteMax() in Q(log n) time. Hnt: You will need
inter-heap pointers. Think of how you del eted edges in Project 3,
for exanple.
How can we acconplish the same thing if we use array-based heaps?
Hnt: Add an extra field to the itens stored in each array.

[b]

[c]

Suppose we wi sh to create a binary heap containing the keys
DATASTRUCTURE (Al conparisons use al phabetical order.)
[a] Show the resulting min-heap if we build it using successive insert()
operations (starting fromD).

[b] Show the resulting min-heap if we build it using bottonpHeap().

05/06/14
18:19:17

[11]

[12]

[13]

[14]

[a] In Lecture 26, we told you how to inplenment a nethod
smal | est KeyNot Snal | er (k) that returns the smallest key not |ess than
k in a binary search tree. |f the search tree contains an entry
with key k, then an entry with key k is returned.

Descri be how to inplenent a nethod snal |l est KeyG eat er (k) that
returns the smallest key strictly greater than k in a binary search
tree. Hint: wite a slightly nodified version of find() that acts
as if it were searching for k + epsilon, where epsilon > 0 is an
infinitesimally small nunber. Therefore, it is never an exact match
with any key in the tree. (This "hint" is actually a very useful
gener al - purpose techni que worth renenbering.)

in Java.

For extra practice, code it Use the BinaryTree data

structure from Lecture 26.

[b] You are given a binary search tree that is NOT a splay tree and does
* not rebal ance itself. However, every node of the tree stores a
field that specifies the nunber of itenms/nodes in the subtree rooted

at that node (as described at the end of Lecture 40).
G ven two search keys x and y, describe an algorithmthat conputes
the nunmber of keys in the range [x, y] (inclusive) in Qh) tine,

where h is the height of the binary search tree.

For extra practice, code it in Java. Assune that every

Bi naryTreeNode has an extra int field naned "size" that stores the
size of the subtree rooted at that node.

Suppose we nodify the array-based quicksort() inplenmentation in the
Lecture 31 notes to yield an array-based quickselect() algorithm as
described in Lecture 34. Show the steps it would use to find the nedian
letter inDATASTRUCTURE (The nmedian in this case is the 7th
letter, which would appear at array index 6 if we sorted the letters.)

As in Question [1], choose the |ast el ement of any subarray to be the
pivot, and show the array after each swap.

Suppose our radi x-sort
where n is the nunber of keys to sort,

al gorithm takes exactly n+r mcroseconds per pass,
and r is the radix (nunber of

queues). To sort 493 keys, what radix r will give us the best running
time? Wth this radix, how many passes will it take to sort 420-bit
keys? To answer this question, you |l need to use calculus (and a

calculator), and you' Il need to renenber that log2 r = (Inr) / (In 2).
Suppose that while your conputer is sorting an array of objects, its
nmenory is struck by a cosmic ray that changes exactly one of the keys

to sonething conpletely different. For each of the follow ng sorting

al gorithms, what is the _worst-case_ possibility? For each, answer
[x] the final array won't even be close to sorted, [y] the final array
wi |l have just one or two keys out of place, or [z] the final array wll

consi st of two separate sorted subsets,
perhaps one or two additional keys out

one follow ng the other,
of place.

pl us

[a] Insertion sort
[b] Selection sort
[c] Mergesort

[d] Radix sort

practice

[15]

[Note: this is included for those who want some progranmm ng practice.
You are not responsible on the Final Exam for know ng anything about the
video Sorting Qut Sorting.]

I npl ement tree sort (as described in the sorting video) in Java. Assunme
your treeSort() nethod's only input paraneters are the nunber of itens
and a conplete (perfectly balanced) BinaryTree of depth d in which each
leaf has an item hence, there are 2°d itens to sort. All internal nodes
begin with their itemfield set to null. Use the data structures bel ow
(in which each node knows its left and right child), not a general tree.

Your al gorithm shoul d never change a node reference; only the itenms nove.
The centerpiece of your algorithmwill be a nethod that fills an enpty
node by (i) recursively filling its left and right children if they're
enmpty, and (ii) choosing the smaller of its children’s items, which is
noved up into the enpty node. treeSort() will repeatedly: (i) apply
this nethod to the root node to find the smallest itemremaining in the
tree, (ii) pluck that itemout of the root node, |eaving the root enpty
again, and (iii) put the iteminto an array of type Conparable[]. Your
treeSort() should allocate and return that array.

public class BinaryTreeNode {
Conparabl e item

| public class BinaryTree {
|

Bi nar yNode | eft Chil d; |
|

Bi naryTr eeNode r oot ;
int size;
Bi nar yNode ri ght Child; }

}

