
05/12/14
14:31:14 1practice.sol

 CS 61B: Selected Solutions (Practice for the Final Exam)

[1] [a] insertion sort

 71808294
 17808294
 01788294
 01278894
 01247889

 [b] selection sort

 71808294
 01878294
 01278894
 01248897
 01247898
 01247889

 [c] mergesort

 71808294
 17,80,8294
 17,08,8294
 17,08,28,94
 17,08,28,49
 0178,28,49
 0178,2489
 01247889

 [d] quicksort

 71808294
 21808794
 21088794
 210|4|8798
 0|12|4|8798
 012|4|7898
 012|4|7|8|98
 01247889

 [e] heapsort

 71808294 \
 81807294 |
 82807194 | bottomUpHeap()
 82897104 |
 82897140 /
 08897241
 01897842
 01298874
 01249887
 01247898
 01247898
 01247889

[2] Extend each item so that it has a "secondary key," which is the index of
 the item in the initial array/list. If two items have the same primary
 key, the tie is broken using the secondary key, so no two items are ever
 considered equal.

 5 8 7 5 8 8 3 7 => 5/0 8/1 7/2 5/3 8/4 8/5 3/6 7/7

[3] [a] DFS: abdcegfhi
 BFS: abcdegifh
 [b] DFS: efihgcdba
 [c] gh, ac, hi, ab, cd, cg, fg, ce (cg may come before cd instead)

[4] [a] [i] O(|V|^2) [ii] O(|V|)
 [b] Visited in preorder. Finished in postorder.
 [c] With BFS, it’s done exactly the same as with DFS.
 (See Homework 9 for a description of how it’s done with the latter.)
 [d] for (each vertex v in the graph) {
 if (v has not been visited) {
 increment the count of connected components
 perform DFS on v, thereby marking all vertices in its
 connected component as having been visited
 }
 }

 This algorithm requires that you don’t "unmark" the marked vertices
 between calls to DFS.

[5] [a] 3 12
 / \ /
 1 12 3
 /\ / / \
 0 2 11 1 11
 / /\ /
 => 5 => 0 2 5
 / \ / \
 4 7 4 7
 / \ / \
 6 9 6 9
 / \ / \
 8 10 8 10

 [b] 4.5
 / \
 3 5
 / \ \
 1 4 11
 / \ / \
 0 2 7 12
 / \
 6 9
 / \
 8 10

05/12/14
14:31:14 2practice.sol

 [c] 3 3 10
 / \ / \ / \
 1 5 1 10 3 11
 /\ /\ /\ /\ / \ \
 0 2 4 11 0 2 5 11 1 5 12
 / \ / \ \ /\ /\
 => 10 12 => 4 9 12 => 0 2 4 9
 / / /
 9 7 7
 / / \ / \
 7 6 8 6 8
 / \
 6 8

 [d] 3 3 10
 / \ / \ / \
 1 5 1 5 5 11
 /\ /\ /\ /\ / \ \
 0 2 4 11 0 2 4 10 3 7 12
 => / \ => / \ => / \ / \
 7 12 7 11 1 4 6 8
 / \ / \ \ / \
 6 10 6 8 12 0 2
 /
 8

[6] [a] If the find operations are done first, then the find operations take
 O(1) time each because every item is the root of its own tree. No
 item has a parent, so finding the set an item is in takes a fixed
 number of operations.

 Union operations always take O(1) time. Hence, a sequence of n
 operations with all the finds before the unions takes O(n) time.

 [b] This question requires amortized analysis. Find operations can be
 expensive, but an expensive find operation is balanced out by lots
 of cheap union operations. The accounting is as follows.

 Union operations always take O(1) time, so let’s say they have an
 actual cost of $1. Assign each union operation an amortized cost of
 $2, so every union operation puts $1 in the bank.

 Each union operation creates a new child. (Some node that was not
 a child of any other node before is a child now.) When all the
 union operations are done, there is $1 in the bank for every child,
 or in other words, for every node with a depth of one or greater.

 Let’s say that a find(u) operation costs $1 if u is a root. For any
 other node, the find operation costs an additional $1 for each parent
 pointer the find operation traverses. So the actual cost is
 $(1 + d), where d is the depth of u.

 Assign each find operation an amortized cost of $2. This covers
 the case where u is a root or a child of a root. For each additional
 parent pointer traversed, $1 is withdrawn from the bank to pay for
 it.

 Fortunately, path compression changes the parent pointers of all the
 nodes we pay $1 to traverse, so these nodes become children of the
 root. All of the traversed nodes whose depths are 2 or greater move
 up, so their depths are now 1. We will never have to pay to traverse
 these nodes again.

 Say that a node is a grandchild if its depth is 2 or greater. Every
 time find(u) visits a grandchild, $1 is withdrawn from the bank, but
 the grandchild is no longer a grandchild. So the maximum number of
 dollars that can ever be withdrawn from the bank is the number of
 grandchildren. But we initially put $1 in the bank for every child,
 and every grandchild is a child, so the bank balance will never drop
 below zero. Therefore, the amortization works out.

 Union and find operations both have amortized costs of $2, so any
 sequence of n operations where all the unions are done first takes
 O(n) time.

[7] [a] insert 4, 2, 1, 3, and 6 in that order.
 [b] insert 4, 5, 6, 1, 3, and 2 in that order.

[8] [a] If you need inexact matches. For example, if you want to find the
 item less than or equal to 5 that’s closest to 5. Hash tables can
 only do exact matches. (If exact matches are all you need, however,
 hash tables are faster.)
 [b] If each single operation absolutely must run in O(log n) time. OR
 If most operations are find()s, and the data access patterns are
 uniformly random. (2-3-4 trees are faster for these operations
 because they don’t restructure the tree. But splay trees do better
 if a small proportion of the items are targets of most of the finds.)
 [c] If memory use is the primary consideration (especially if a 2-3-4
 tree holding all the items won’t fit in memory).
 [d] None. find() and remove() on a heap take worst-case Theta(n) time,
 and they’re more complicated than in an unordered array. insert()
 on a heap takes worst-case Theta(log n) time, versus Theta(1) for an
 unordered array.
 [e] When you don’t need to find the minimum key.

[10] [a] A
 A E
 C S R T
 U D T U T R

 [b] A
 A E
 C S R R (Note that two nodes are different than in [a].)
 U D T U T T

[12] DATASTRUCTURE
 DACASTRUTTURE
 DACA|E|TRUTTURS
 DACA|E|RRUTTUTS
 DACA|E|RR|S|TTUTU
 DACA|E|R|R|S|TTUTU
 ^

[13] Radix sort takes b/log2 r passes, so the overall running time of radix
 sort is
 n + r
 t = b (ln 2) -----
 ln r

 To find the value of r that minimizes t, set dt/dr to zero.

 dt ln r - (n + r)/r
 -- = b (ln 2) ---------------- = 0
 dr (ln r)^2

 Therefore, ln r = (n + r)/r. Given that n = 493, with a calculator and
 some trial-and-error you can determine that r = 128 is the optimal radix.

05/12/14
14:31:14 3practice.sol

[14] [a] z: consider the case where, half-way through the sort, the last key
 in the "sorted" list is changed to a very low number.

 1 3 5 7 9|8 4 2 6 10
 zap! 1 3 5 7 0|8 4 2 6 10

 Using an in-place insertion sort implementation that searches
 from the end of the sorted array, the remaining keys will never
 get past the zero.

 1 3 5 7 0 2 4 6 8 10

 Note that if a key in the "unsorted list" is zapped, no harm is
 done at all.

 [b] y: If an item in the "sorted list" is zapped, only that one item
 is affected. If an item in the "unsorted list" is zapped to
 a value lower than the last item in the sorted list, that item
 will be out-of-place, but other items are still sorted.

 [c] z: Consider merging two lists, where the first item in one of the
 lists gets zapped to a very high value. You’ll wind up with two
 consecutive sorted portions. (After further merge operations,
 there will still be two consecutive sorted portions.)

 /== 100 3 5 7 9 11
 merge \== 2 4 6 8 10 12

 [d] y: Radix sort uses no comparisons at all, so the zapped item
 doesn’t affect how the others are ordered.

