05/12/14

14:31:14 practice.sol
CS 61B: Selected Solutions (Practice for the Final Exam
[2] Extend each itemso that it has a "secondary key," which is the index of
the itemin the initial array/list. |If two itens have the same primary
[1] [a] insertion sort key, the tie is broken using the secondary key, so no two itens are ever
consi dered equal .
71808294
17808294 58758837 => 5/0 8/1 7/2 5/3 8/4 8/53/6 7/7
01788294
01278894 [3] [a] DFS: abdcegfhi
01247889 BFS: abcdegifh
[b] DFS: efihgcdba
[b] selection sort [c] gh, ac, hi, ab, cd, cg, fg, ce (cg may cone before cd instead)
71808294 [4] [a] [i] QAIV"2) [l AVl
01878294 [b] Visited in preorder. Finished in postorder.
01278894 [c] Wth BFS, it’s done exactly the same as with DFS.
01248897 (See Homework 9 for a description of howit's done with the latter.)
01247898 [d] for (each vertex v in the graph) {
01247889 if (v has not been visited) {
increment the count of connected conponents
[c] nergesort perform DFS on v, thereby marking all vertices inits
connected conponent as having been visited
71808294 }
17, 80, 8294 }
17, 08, 8294
17, 08, 28, 94 This algorithmrequires that you don't "unmark" the narked vertices
17, 08, 28, 49 between calls to DFS.
0178, 28, 49
0178, 2489 [5] [a] 3 12
01247889 /A /
1 12 3
[d] quicksort I\ / /\
0 211 1 11
71808294 / I\ /
21808794 => 5 => 0 25
21088794 !\ !\
210| 4| 8798 4 7 4 7
0] 12| 4| 8798 I\ I\
012| 4| 7898 6 9 6 9
012| 4| 7| 8| 98 /\ /\
01247889 8 10 8 10
[e] heapsort [b] 4.5
/ \
71808294 \ 3 5
81807294 I\ \
82807194 | bott onpHeap() 1 4 11
82897104 | /A /A
82897140 / 0o 2 7 12
08897241 [\
01897842 6 9
01298874 I\
01249887 8 10
01247898
01247898
01247889

[6]

05/12/14

14:31:14
[c] 3 10
[\ [\ [\
1 5 1 10 3 11
/\ /\ /\ /\ [\ \
0 24 11 0 25 11 1 5 12
!\ vV /\ /\
=> 10 12 = 4 9 12 => 0 24 9
/ / /
9 7 7
/ \ [\
7 6 8 6 8
!\
6 8
[d] 3 10
[\ [\ [\
1 5 1 5 5 11
/\ /\ /\ /\ / o\ \
0 24 11 0 24 10 3 7 12
= /\ = !\ => /NN
7 12 7 11 1 46 8
[\ [\ \ [\
6 10 8 12 0o 2
/
8
[a] If the find operations are done first, then the find operations take

Q(1) time each because every itemis the root of

itemhas a parent,
nunber of operations.

Uni on operations always take Q(1) tine.

operations with all

[b] This question requires anortized anal ysis.

expensi ve, but
of cheap union operations.

Uni on operations always take Q(1) tine,

actual cost of $1.

Hence,
the finds before the unions takes Q(n) tine.

its own tree. No

so finding the set an itemis in takes a fixed

a sequence of n

Fi nd operations can be
an expensive find operation is bal anced out

by lots

The accounting is as follows.

so let’s say they have an

Assign each uni on operation an anortized cost of

$2, so every union operation puts $1 in the bank.

Each union operation creates a new child.
a child of any other node before is a child now)

uni on operations are done,
or in other words,

Let’ s say that
ot her node,

(Sone node that was not

When all the

there is $1 in the bank for every child,

pointer the find operation traverses.

$(1 + d),

where d is the depth of u.

a find(u) operation costs $1 if u is a root.
the find operation costs an additional
So the actual

Assign each find operation an anortized cost

the case where u is a root
par ent
it.

Fortunately,

nodes we pay $1 to traverse,

root. All

these nodes again.

or a child of a root. For
pointer traversed, $1 is withdrawn fromthe bank to pay for

Ve will

path conpression changes the parent
so these nodes becone children of the
of the traversed nodes whose depths are 2 or greater
up, so their depths are now 1.

never

for every node with a depth of one or greater.

For any
$1 for each parent
cost is

of $2. This covers

each additional
pointers of all the

nove
have to pay to traverse

[7]

[8l

[10]

[12]

[13]

practice.sol

Say that a node is a grandchild if its depth is 2 or greater. Every
tine find(u) visits a grandchild, $1 is withdraw fromthe bank, but
the grandchild is no longer a grandchild. So the maxi num nunber of
dol lars that can ever be withdrawn fromthe bank is the nunber of
grandchildren. But we initially put $1 in the bank for every child,
and every grandchild is a child, so the bank bal ance will never drop
bel ow zero. Therefore, the anortization works out.

Union and find operations both have anortized costs of $2,
sequence of n operations where all

qan) tine.

insert 4, 2, 1, 3, and 6 in that order.
insert 4, 5, 6, 1, 3, and 2 in that order.

so any
the unions are done first takes

If you need inexact matches.

For exanpl e,

if you want to find the

itemless than or equal

to 5 that's closest to 5.

Hash tabl es can

only do exact matches.
hash tables are faster.)

(If exact matches are all

you need, however,

[b]

[c]
[d]

[e]
[a]

[b]

| f each single operation absolutely nust run in Q(log n) time. OR
If npbst operations are find()s, and the data access patterns are
uniformy random (2-3-4 trees are faster for these operations
because they don’t restructure the tree. But splay trees do better
if a small proportion of the itens are targets of nost of the finds.)
If menory use is the prinmary consideration (especially if a 2-3-4
tree holding all the itenms won't fit in nenory).

None. find() and renove() on a heap take worst-case Theta(n) tine,
and they're nore conplicated than in an unordered array. insert()
on a heap takes worst-case Theta(log n) tinme, versus Theta(l) for an
unordered array.

Wien you don’t need to find the m ni num key.

A
A E
c s R T
UDTUTR

A
A E
C S R R
UDTUTT

(Note that two nodes are different than in [a].)

DATASTRUCTURE
DACASTRUTTURE

DACA| E| TRUTTURS

DACA| E| RRUTTUTS

DACA| E| RR| S| TTUTU

DACA| E| R| R| S| TTUTU
N

Radi x sort takes b/log2 r
sort is

passes,

t = b(ln2)

To find the value of r that mnimzes t, set

so the overall

running time of radix

dt/dr to zero.

dt Inr - (n+r)/r

- =b (In2) -----meieeee -

dr (Inr)nr2
Therefore, Inr = (n +r)/r. Gven that n = 493, with a calcul ator and
sone trial-and-error you can determine that r = 128 is the optinal radix.

05/12/14
14:31:14

[14]

[a]

[b]

[c]

[d]

Z:

consi der the case where, half-way through the sort, the |ast key

inthe "sorted" list is changed to a very |ow nunber.
135709842610

zap! 1357 0/8426 10

Using an in-place insertion sort inplenmentation that searches

fromthe end of the sorted array, the renmining keys will never

get past the zero.

13570246810

Note that if a key in the "unsorted list" is zapped, no harmis
done at all.

If an itemin the "sorted list" is zapped, only that one item

is affected. If an itemin the "unsorted list" is zapped to
a value lower than the last itemin the sorted list, that item
will be out-of-place, but other itens are still sorted.

Consider nmerging two lists, where the first itemin one of the

lists gets zapped to a very high value. You' Il wind up with two
consecutive sorted portions. (After further nerge operations,
there will still be two consecutive sorted portions.)
/==100 357 9 11
merge \==2 4 6 8 10 12
Radi x sort uses no conparisons at all, so the zapped item

doesn’t affect how the others are ordered.

practice.sol

