Backwards Analysis of Randomized Geometric
Algorithms

Raimund Seidel*
Computer Science Division
University of California Berkeley
Berkeley CA 94720
USA

August 20, 1992

Abstract

The theme of this paper is a rather simple method that has proved very potent in
the analysis of the expected performance of various randomized algorithms and data
structures in computational geometry. The method can be described as “analyze a ran-
domized algorithm as if it were running backwards in time, from output to input.” We
apply this type of analysis to a variety of algorithms, old and new, and obtain solu-
tions with optimal or near optimal expected performance for a plethora of problems
in computational geometry, such as computing Delaunay triangulations of convex poly-
gons, computing convex hulls of point sets in the plane or in higher dimensions, sorting,
intersecting line segments, linear programming with a fixed number of variables, and
others.

1 Introduction

The curious phenomenon that randomness can be used profitably in the solution of computa-
tional tasks has attracted a lot of attention from researchers in recent years. The approach has
proved useful in such diverse areas as number theory, distributed computing, combinatorial
algorithms, complexity theory, and others. For surveys see [34, 47, 55]. It is interesting that in
Rabin’s seminal 1976 paper [46] which initiated the study of algorithmic uses of randomness
one of the two example problems considered was a computational geometry problem, namely

*Supported by NSF Presidential Young Investigator Award CCR-9058440. Email address: sei-
del@cs.berkeley.edu

the Euclidean closest pair problem. Of course computational geometry as a field came about
a number of years later. Shamos’s thesis [52] appeared in 1978. Talking about possible future
research directions in the epilogue Shamos mentions “probabilistic algorithms” and writes
“This approach seems to be able to yield geometric algorithms of startling efficiency.” How-
ever, it was to take almost another decade until randomized or probabilistic methods were
investigated in computational geometry in more detail.

In the mid 80’s Ken Clarkson started to create and apply his random sampling technique,
which in the mean time has developed into a surprising general framework with numerous
applications [15, 16, 17, 18]. Around the same time Haussler and Welzl published their impor-
tant paper [32] that introduced e-nets and the VC-dimension, which have become very useful
and versatile tools in the design and analysis of randomized algorithms. In a series of papers
[42, 43, 44] Mulmuley introduced and studied a number of probabilistic games that allow a
rather tight analysis of the expected behaviour of a number of geometric algorithms. At the
same time a steady stream of papers of a more specialized nature started to appear, dealing
with randomized solutions for a wide range of particular problems ([7, 8, 9, 30, 1, 50, 12] is a
non-exhaustive, random(?) list of references).

The purpose of this paper is to popularize a rather simple trick for analyzing the expected
performance of certain randomized algorithms:

Analyze an algorithm as if it was running backwards in time, from output to input.

This is based on the observation that often the cost of the “last” step of an algorithm can be
expressed as a function of the complexity of the “final product” output by the algorithm.

In this paper we apply this “backwards analysis” to a number of problems and algorithms.
We start with demonstrating the idea of backwards analysis on a simple algorithm due to Paul
Chew [14] for constructing the Delaunay triangulation of the vertices of a convex polygon and
show that it has linear expected running time. As far as we know Chew was the first to apply
this type of analysis to a computational geometry algorithm.

Next we apply backwards analysis to an algorithm due to Mulmuley for determining all
intersection pairs among a set of line segments in the plane [42, 43]. Mulmuley’s original
analysis of the algorithm was based on probabilistic games and was rather involved. The
“backwards” view leads to a considerable simplification, and also applies equally well to a
more general version of the problem, where the segments need not be straight and can intersect
each other more than once.

Some claim — tongue in cheek — that any method of value in computational geometry
must be also applicable to the planar convex hull problem. Thus we present a planar convex
hull algorithm along with the analysis of its O(nlogn) expected running time. The algorithm
is somewhat reminiscent of QUICKSORT. Thus we apply the principle of backwards analysis
to QUICKSORT and with little effort we derive the exact value for the expected number
of comparisons made by QUICKSORT. Moreover, backwards analysis turns out to provide a
particularly easy approach for bounding the probability that the running time of QUICKSORT

2

significantly exceeds its expectation.

Next we give a negative example. We consider a triangulation problem along with an al-
gorithm that is a straightforward generalization of QUICKSORT. Interestingly enough, back-
wards analysis can apparently not be applied to this algorithm.

Following this we turn our attention to linear programming when the dimension is small.
We present a very simple algorithm for solving linear programs with m constraints in d vari-
ables that has expected running time O(d!m). Again the analysis via the backwards view is
very straightforward. We then describe an adaption of this method due to Welzl [56] for the
problem of findingthe smallest enclosing balls for a finite set of points in IR?.

Finally we turn our attention to the problem of constructing the convex hull of n points in
IR?. We consider a randomized incremental algorithm and show that for d > 3 there is a simple
variant that via backwards analysis can easily be shown to have optimal O(nl%/2!) expected
running time. Then we consider the “conflict graph” based algorithm due to Clarkson and
Shor [18] and present a new backwards analysis due to Clarkson [21] that shows that this
algorithm has “optimal” expected running time for all dimensions d.

2 Delaunay Triangulations of Convex Polygons

Let S be a set of n points in the plane. The Delaunay triangulation of S, for short DT'(S) is
a plane graph whose vertices are the points in S and that connects two points p,q € S by a
straight edge iff there is an open disk that has p and ¢ on its boundary but that contains no
points of . When S is non-degenerate in the sense that no four points of S are co-circular
and not all of S lies on one straight line, DT'(S) is always a triangulation. The bounded faces
of DT(S) are then exactly those triangles of points in S for which the smallest circumscribed
disk contains no point of S in its interior.

Delaunay triangulations along with their dual structures, which are known as Voronoi dia-
grams, have been studied intensively in computational geometry. Their efficient construction
and the recognition of their multifarious useful properties by Shamos and Hoey [53] were in-
strumental in getting the field of computational geometry started. By now these structures
along with numerous generalizations are standard fare in the field (see [45, 25, 3, 36]).

Shamos’s and Hoey’s big feat was an O(nlogn) algorithm for the construction of Delaunay
triangulations. It was also very soon realized that the O(nlogn) bound was asymptotically
worst case optimal for reasonable models of computation. However, for a long time the
question remained whether DT'(S) could be computed in o(nlogn) time when the point set
S has some special structure. In particular one was interested in the question whether an
O(n) time bound was possible when S consists of the vertices of a convex polygon, given in
order around the polygon. An affirmative answer was eventually given in 1986 by Aggarwal,
Guibas, Saxe, and Shor [2] using an ingenious but rather involved algorithm.

In the mean time, almost unnoticed, Paul Chew had discovered a very simple randomized
algorithm for this problem with linear expected running time [14]. Chew employed backwards

3

anlysis, and as far as we know this was the first time that this trick was used in computational
geometry. His algorithm and analysis shall serve as a first example for the concept of backwards
analysis.

So let S be the n vertices of a convex polygon P given in order around P. Assume that
no four points in S are co-circular, a condition that could easily be simulated using standard
perturbation techniques [25, pp. 185]. Chew’s algorithm proceeds as follows:

If S consists of only three points, then the triangle spanned by them forms DT'(S).

If S contains more than three points, then choose a random point g € S, let p and
r be its two neighboring vertices around P, and let S’ = S\ {q}.

Recursively compute DT'(S"), attach the triangle p, ¢, to this triangulation, and
then update this triangulation D of S as follows to obtain DT'(S):

First identify all “bad” triangles of D, namely p,q,r and all triangles of DT(.S")
whose circumscribed disk contains q. This is done by performing a depth-first
search in the dual graph GG of D whose nodes are the triangles of D and that has
two triangles adjacent iff they share a common edge of D. This depth-first search
is to start at the triangle p, ¢, r. Since the set of bad triangles is known to form a
connected subgraph of G (a fact not proven here) and since GG has maximum degree
3, all bad triangles can thus be identified in time proportional to their number.

Finally remove from D all edges that have bad triangles on both sides, and retri-
angulate the resulting face by introducing all diagonals that have ¢ as an endpoint.
(See Figure 1 for an illustration.)

What is the expected running time of this algorithm? The question really is, what is the
expected running time of this procedure with the recursive call excluded. It is not hard to see
that this cost is proportional to the number of bad triangles. So what is the expected number
of bad triangles?

This question seems difficult to answer, especially if we fix our attention on one particular
point ¢g. The trick now is to express this cost not in terms of DT'(S’) and ¢, but in terms of
the resulting structure DT(S). It is not hard to see that the number of bad triangles is exactly
one more than the number of diagonals with endpoint ¢ that are introduced in the last step
of the algorithm. Or in other words, the number of bad triangles is proportional to the degree
of ¢ in DT(S). But of course, if ¢ is chosen from S uniformly at random, then the expected
degree of ¢ in DT'(S) is the sum of the degrees of all vertices in S divided by n, which is twice
the number of edges of DT'(.S) divided by n, which, since DT'(S) is an outer-planar graph, is
2% (2n—3)/n=4—6/n.

Thus the expected time necessary to perform the body of the procedure outlined above
without the recursive call is constant. From this it follows immediately that the overall
expected time necessary is O(n).

=

DT(S\ {q}) "bad” triangles shaded DT (S)

Figure 1

Let us point out once more that the decisive part in the analysis of the algorithm is to
express the cost of the “last step” (which we abstracted out as the body of a head-recursive
procedure) as a function of the produced output. If we were to run the algorithm backwards
starting with DT'(S) and repeatedly deleting random points of S at cost proportional to their
degree, the expected cost of a deletion could be expressed as a function of the “input” (namely
the average degree of the current triangulation) and it would be clear that this is constant.

3 Intersecting Line Segments

Let S be a set of n straight line segments in the plane. We are interested in finding all
intersecting pairs of segments in S.

The first non-trivial algorithm for solving this problem was given by Bentley and Ottmann
in 1979 [5]. It was based on the sweep paradigm and achieved a worst case running time
of O((K + n)logn), where K is the output size, namely the number of intersecting pairs of
segments in S. Since it is possible that all segments of S intersect each other, this algorithm can

have an O(n?logn) Tunning time, which is inferior to the O(n?*) time of the trivial method of
checking every pair in S. Thus the question arose, whether a bound of the form O(K +nlogn)
was possible. Since it is easy to show by reduction from element uniqueness that (nlogn)
is a lower bound to the segment intersection problem, and since Q(K) is also a lower bound
as at least this much time has to be spent on output, one could not hope for anything better
than O(K + nlogn).

In 1983 Chazelle [10] came close to this goal with a rather complicated algorithm whose
worst case running time was O(K 4 nlog?n/loglogn). Finally, five years later he and Edels-
brunner [11] designed an even more complicated deterministic algorithm that did achieve the

5

O(K + nlogn) worst case running time. Around the same time independently Mulmuley
[42] as well as Clarkson and Shor [18] developed rather simple randomized algorithms with
O(K + nlogn) expected running time. Clarkson and Shor based the analysis of the running
time of their algorithm on the general theory of random sampling. They even managed to
come up with a version of the algorithm that required only O(n) space. Mulmuley analyzed
the performance of his algorithm via probabilistic games that he developed for this purpose.
His analysis is reasonably complex, however it yields rather tight constants.

In this section we present Mulmuley’s algorithm and give a very simple analysis of its
expected performance that is based on our backwards view.

For the sake of ease of presentation let us assume we are dealing with a set S of n segments
that is non-degenerate in the sense that no two segments of S have the same endpoint, no three
segments intersect in a common point, no two segment endpoints have the same z-coordinate,
and that no segment endpoint lies in the relative interior of some other segment. As usual
such non-degeneracy could be simulated by standard perturbation methods [25, pp. 185], or
also the algorithm could easily be modified so that none of these assumptions are necessary.

Mulmuley’s algorithm does more than just determine which pairs of segments in S intersect.
It constructs what we call the trapezoidal decomposition induced by S. This decomposition
7 (S) can be intuitively defined as follows: First draw a sufficiently large axis-parallel rectangle
frame I’ that contains in its interior all segments of S. Next draw all segments of S in the
rectangle F'. Finally, from each intersection point and from each segment endpoint draw its
vertical extensions, i.e. start drawing two vertical rays, one going up, the other going down,
that extend until they hit a segment of S or the boundary of F' (see Figure 2). Thus F' is
decomposed into trapezoids that each have two vertical sides (one of which can have length
0). Using a sweep argument it is not hard to prove that 7(S) contains exactly 3(n + K) + 1
trapezoids; thus, when viewed as a planar graph, 7 (S) has O(K +n) faces, edges, and vertices.

Let us define for any subset R C S the trapezoidal decomposition 7g(R) in a similar way
as follows: Draw all segments of R in the rectangle frame F', and for each intersection point
of segments in R as well as for each endpoint of a segment in S (note: in S) draw its vertical
extensions. But now the rays that form the vertical extensions extend only until they hit a
segment of R or the boundary of the rectangle F' (see Figure 3). The decomposition Zg(R)
partitions I into 2n 4+ r + 3K + 1 trapezoids, where r = |R| and Kp is the number of pairs

of intersecting segments in R, and thus 7g(R) as a planar graph has O(n + Kg) faces, edges,
and vertices

Mulmuley’s algorithm for computing 7(S) = 7g(S) is very simple: First compute 7Zg(0)
and then insert the segments of S into the trapezoidation in random order to compute 7g(R)
for an every increasing R C S.

Figure 3: 75(R) for R = {1,2,3,4,5} Figure 4: Introduction of zero-width faces for pieces
yields Gg(R)

Figure 5a: Inserting segment 6 Figure 5b: Pr(6) shaded

We will express his algorithm for computing 7s(R) recursively:

If R = () then compute Zg(R) directly by sorting the endpoints of S by their
z-coordinates.

Otherwise randomly pick a segment s € R, recursively compute 7g(R \ {s}), and
introduce s into this trapezoidation to obtain Zg(R).

We still have to specify how a segment s is introduced into the current trapezoidation. In order
to do this we need to give more detail about the representation of trapezoidations. Mulmuley
chooses a somewhat idiosyncratic representation that essentially works as follows: Consider
7s(R), and consider some segment s € R. Assume s is intersected by i other segments in
R. Thus s is partitioned into ¢ + 1 pieces. Conceptually Mulmuley makes each piece of each
segment in R into a narrow zero-width face, and obtains this way from Zg(R) a plane graph
that we denote by Gg(R). Figure 4 should make the idea clear. Note that G'g(R) has the same
number of vertices as Zg(R) and thus it also has complexity O(n + Kg). Also note that in
the graph Gg(R) faces that correspond to trapezoids of 7g(R) have at most six edges around
them, only the zero-width faces can have more than a constant number of edges around them.

How does one now introduce segment s into Gg(R') to obtain Gg(R), where R = R\ {s}?
It works in two phases (that of course could be combined into one). In the first phase one
determines which faces and edges of Gg(R’) are intersected by s. In the second phase the new
faces of Gg(R) are created. This involves splitting the faces of Gg(R') that are intersected by
s, creating the zero-width faces for the pieces of s, introducing the vertical extensions from the
intersection points of s with the other segments of R, and merging faces that are separated by
vertical edges that are not part of vertical extensions any more because of the introduction of
s. We leave the details of the second phase to the reader.

The first phase can simply be done as follows: Since the two endpoints of s are vertices
of Gs(R') already, we can determine in constant time, say, the leftmost face of Gg(R’) that
is intersected by s. Now we “thread” s through Gg(R') in the usual way, similar to the
incremental line arrangement construction algorithm [27, 13]: We walk along the segment s;
assume we just entered a face f through some edge e; we determine through which edge the
segment s leaves f and which new face the segment enters by simply testing all edges of f
(say, in clockwise order starting after e). Now we have reached a new face, and we repeat.
Obviously, this procedure can also tell when we have reached the right endpoint of s.

What is the time necessary for introducing segment s? It is not hard to see that the cost of
phase one dominates the cost of phase two. Thus it suffices to consider just the cost of phase
one. This cost is clearly the sum of the degrees of all the faces of Gg(R’) that are intersected
by s (here the degree of a face f of Gg(R'), for short deg(f, Gs(R')), is the number of edges
of Gg(R') incident to f). However, what does this evaluate to for a random segment s € R?

Now let us apply backwards analysis. The first important step is to express the cost of
phase one of introducing a segment s into Gg(R') in terms of the result graph Gg(R) and not
in terms of G'g(R'). It is not hard to see that this cost is given by 3 sep, (s deg(f, Gs(R)),

8

where Pg(s) is the set of all zero-width faces of Gg(R) that either derive from pieces of s in
Gs(R) or from those pieces of other segments in R that are incident to intersection points
with s (see Figure 5).

It follows that if s is randomly chosen from the r segments in R, then the expected cost
of adding s to Gg(R\ {s}) is proportional to

LSS deg(r s

SER fePR(s)

But in this double sum every piece of a segment in R contributes at most three times. Thus
if P(R) denotes the set of all faces that derive from pieces of segments in R, then this double
sum is at most

> > deg(f,Gs(R)).

" feP(R)

Since Gg(R) is a planar graph, this sum is clearly proportional to the complexity of the graph,
and thus it is O(n+ Kg). It follows that the expected cost of introducing the last segment of
Ris O(% 4 £r),

But what is the expected value of Kr? By the way the algorithm proceeds it is clear
that R is a random subset of S of size . Now if {s,¢} is one of the K pairs of intersecting
segments in .S, what is the probability that they are both in R? Clearly ;EZ_—?) It follows that

the expected number of pairs of intersecting segments in R, i.e. the expectation K, of Ky is

(r—1)
NCETRAE

Thus the expected cost of introducing the last segment into Gg(R) is O(% + n(rn;_ll)) To
obtain the expected cost for all recursive calls of the entire algorithm one clearly only needs

to sum this expression for 1 < r < n, which yields

O(nH, + K),

where H, =1+ 1/2+ ... 4+ 1/n ~ logn. Since computing Gg(f) just amounts to sorting 2n
numbers it follows that the expected running time of the entire algorithm is O(K + nlogn).

Remarks: As an exercise the reader may want to try this type of analysis on a version of
this algorithm that does not use zero-width faces and uses instead of Gg(R) simply a planar

In the presentation of Mulmuley’s algorithm we assumed non-degeneracy. This is not too
much of an issue, except in cases where many segments intersect in one point. In such a
situation it would be desirable to obtain an expected running time of O(/ 4+ nlogn), where is
I is the number of intersection points between segments. (Note that if all segments intersect
in one point, then I = 1 but K = (g)) By fairly obvious modifications of the algorithm

outlined above it is possible to achieve this O(I + nlogn) bound. The only complications
arise in the analysis, since [, the analogue of K, seems to be difficult to express in a nice

9

closed form. However, the following can be shown and saves the analysis: If X is the set of
intersection points between segments of S and if for p € X the number of segments of S that
intersect in p is denoted by d(p), then'

Iy

Y. T =3 (Hap—1).

1<r<n T pex

But since Y ,cx d(p) = O(I +n), clearly >,cx(Hqap) — 1) and therefore also Y1<,<, I,/ is
O(I +n).

Finally we should point out that the algorithm described here does not exploit at all
the straightness of the segments in S or the fact that any two segments intersect at most
once. With very straightforward modifications the algorithm can be adapted to construct the
trapezoidal decomposition induced by a set S of “segments,” where each member s € S is a
bounded z-monotone curve (i.e. every vertical line intersects s at most once), where every
pair s, s’ € S intersect in a finite number of points, and where for any vertical line £ one can
determine in O(1) time the “first” intersection point between s and s’ to the right of £. No
changes in the analysis are necessary at all. It is still O(I + nlogn), where I now stands for
the number of intersection points and can be arbitrarily large.

4 Constructing Planar Convex Hulls

The convex hull conv S of a set S of n points in the plane is the smallest convex polygon that
contains S. Computing such a convex hull amounts to determining the circular sequence of
points in S that constitute the corners around the polygon conv S.

The planar convex hull problem has received an extraordinary amount of attention in the
computational geometry literature. We will not attempt to give a complete history here, but
just list three mile stones: in 1972 Graham gave the first O(nlogn) algorithm [29]; in 1978
Bentley and Shamos showed that for a large class of geometric distributions the convex hull of
a set of n points drawn according to such a distribution could be computed in O(n) expected
time [6] (here the expectation is with respect to the input distribution); in 1983 Kirkpatrick
and Seidel gave an algorithm whose worst case running time also depends on the output-size
and comes to O(nlog H), where H is the number of corners of the output polygon [35].

The attractiveness of the planar convex hull problem to computational geometers stems
partly from the fact that most computational paradigms can be successfully applied to this

IThe derivation of this formula — at least as done by the author — is not completely straightforward and
requires some massaging of sums involving quotients of binomial coefficients. In particular one needs to show
that

> 1[1_ (G B G

155 " (7) ()

where the quantity in the square brackets is the probability that an intersection point among d segments of S
exists in a random sample of r segments.

10

problem. This is also the case with our paradigm of backwards analysis. In this section we
present a randomized algorithm and anlyze its expected running time exploiting this back-
wards view. I am not sure whom to attribute this algorithm to. It certainly owes a lot to the
conflict graph based algorithm of Clarkson and Shor [18], and it seems to have grown out of
discussions among several researchers at a DIMACS workshop in the fall of 1989.

For the sake of ease of presentation we will again assume that we are dealing with a set .S of
n points in non-degenerate position, which in this case is to mean that no three points in S are
colinear. Moreover, we will assume that n > 2. Our algorithm again works incrementally. It
puts the points of S in a random order and then computes the convex hulls of ever increasing
subsets of S. We will again describe the algorithm recursively. In this description we will
assume the existence of the following kind of oracle: If for T" C S we know Pp = convT,
then the oracle can tell for any point ¢ € S\ T whether ¢ is contained in Pr, and if ¢ is not
contained, the oracle can tell one edge of Pr that is “visible” from ¢, i.e. the straight line
through that edge separates Pr and q.

Here is the algorithm for computing Pr = conv R, where R C S.

If |R| = 3 then Pp is the triangle formed by the three points in R.
If |R| > 3 then randomly choose a point ¢ from R, and let R = R\ {q}.

Recursively compute Pr = conv R', and then “insert” point ¢ as follows to obtain
Pr = conv R:

Query the oracle about ¢ and Pg. If ¢ is contained in Pg/, then Pr = Pr and
nothing needs to be done.

Otherwise, the oracle returns an edge e of Pg that is visible form ¢. Starting at e
perform a search to determine all edges of Pgr/ that are visible from ¢. These edges
form a chain. To obtain Py replace that chain by a new chain of two edges that
have ¢ as common endpoint (see Figure 6).

If one is allowed to disregard the costs incurred by the oracle, then by the following amor-
tization argument the running time of this algorithm is easily seen to be O(n). The cost of
computing Pr from Pg/, provided they are different, is clearly proportional to the number of
edges of Pg that are found to be visible from q. There can be a large number of such edges.
However, as they are all deleted and never re-appear, one can charge this cost to the creation

of those edges. But whenever a point of S is added at most two new edges are created, and
thus the overall cost for all creations and deletions and hence for the entire algorithm (without
the cost of the oracle calls) is O(n).

11

before ”inserting” q after ”inserting” ¢

Figure 6

How can one implement the oracle? The idea is to maintain for each point p in S\ R a
canonical edge e, of Pg that is visible form p (or to note that no visible edge exists for p).
This canonical edge is defined as follows: Let ¢ be a fixed point (not necessarily in S) in the
interior of Pr. For each point p € '\ R that lies outside of Pk, its visible “conflict” edge e, is
the unique edge of Pr that is intersected by the straight line segment that connects ¢ and p
(uniqueness can be enforced by considering each corner of Py as part of exactly one or its two
incident edges). With this information clearly each oracle call can be answered in constant
time. It remains to specify how this information is maintained.

So assume that in the procedure outlined above the recursive call has produced for each
point p € S\ R’ its canonical conflict edge e, of Pr. If for p € S\ R the conflict edge e, is
not visible from ¢, then this edge is also an edge of Pr and remains to be the conflict edge
for p. (Note that if ¢ is in Pp, then it is also in Pg.) If, on the other hand, e, is visible from
q and gets deleted, then the only candidates for being the new conflict edge for p are the two
new edges of Pg that are incident to the new point p. Assuming that for each edge e of the
current convex hull we maintain the set of all p for which e, = e, it should be clear that the
cost of producing the conflict information with respect to Pr given the conflict information

We estimate the expected cost of maintaining the conflict information by considering each
point p € S individually. Since in case of a change p’s new conflict edge can be determined
in constant time, it suffices to estimate the expected number of changes for p. So what is
the probability that for p € S the conflict edge e, changes when computing Pr from Pp?
Backwards analysis suggests that we should express this probability in terms of the “output”
Pr. Clearly e, is new for p iff ¢ is one of the two endpoints of e,. But since the algorithm
chose ¢ to be a random element of R, the probability that ¢ happens to be one of the two
endpoints of e, is 2/r. Thus the expected number of conflict edge changes for a point p € S

12

when computing Pg from Pg is at most 2/r (note that p could be already in R in which case
no change can occur any more). Summing over all r < n now yields that the expected total
number of conflict edge changes for a point p € S is at most 2H,,, which is O(logn).

Observing that creating the initial conflict information in the “bottoming out” case where
|R| = 3 takes O(n) time, we can now conclude that the entire maintenance of the conflict
information and also the entire algorithm takes expected time O(nlogn).

Remarks: Using the techniques described in the next section it is possible to show that
the probability that the running time of the convex hull algorithm presented here exceeds its
expected value by a multiplicative factor of ¢ is only O(n=c¢(8e=1),

5 Backwards Analysis of QUICKSORT

QUICKSORT constitutes the archetypical example of a randomized? algorithm. Invented by
Hoare in 1960 [33], it has since been amply analyzed (see for instance Sedgewick’s book [49])
and with its various versions it has become the maybe most frequently used sorting algorithm
in practice.

We will consider a somewhat different version of QUICKSORT that is more amenable to
backwards analysis than the usual version. However, we also show that both versions have

exactly the same running time distribution. Thus the results of our analysis carry over to
ordinary QUICKSORT.

Let S be a set of n distinct keys. (The presence of non-distinct keys does not increase the
running time of QUICKSORT.) Our algorithm at first puts those keys into a random order
Ply--eyPp. For 0 < r < nlet S, = {pli <r}. Our algorithm will make n iterations (or
“rounds”), maintaining the following invariant I, upon completion of each round r:

The r keys in S, have been sorted correctly; say, their order is
qo=—00<q1 <@gz <-<¢ <O00={(rq1 -

The remaining keys in S\ S, have been partitioned into r + 1 sets By, By, ..., B;, where
Bj={q €S\ Slg; <q<agn}.

At the beginning of execution obviously invariant [y holds with By = S. In the end

n 9 - n
What needs to happen in round r, so that, assuming invariant I._;, one can establish /.7
At the beginning of the round key p, has to be contained in some B;. Thus p, lies between g;
and ¢j41, and hence we now know the sorted order of S,, as desired. To establish the second
part of invariant I, we only need to split the set B; \ {p,} into two subsets comprising the
keys smaller than “pivot” p, and larger than “pivot” p,, respectively (see Figure 7).

20f course the original version of QUICKSORT was deterministic and it was probabilistically analyzed
with respect to an assumed input distribution, namely all permutations of the output occur equally likely as
input.

13

Bo Bl B2 B3 B4 B5 B6 B7
before round 8 o O 0 O 0 O o O o o O o O o O o
9o q. q. q3 q4 / \1 q5 qe Q7 qs
4

Ps
Bo B B: B3 B) B5 Bs B7 Bs
after round & o O o O o O o O o O o) O o) O o) O OO u]
9o q: q. Q:; q4 Q5 g6 q7 qs qg

Figure 7

This already completes our description of the algorithm. In this description we have
omitted all data structuring aspects. This is justified since we don’t intend this algorithm to

be implemented but rather to serve as a vehicle for analyzing the number of key comparisons
that happen in the usual version of QUICKSORT.

Where do key comparisons happen in this algorithm? They only happen when a set
B; \ {p,} is split into two. In that case each element of that set has to be compared with
“pivot” p,. We want to estimate the expected number of such comparisons. (It makes sense to
talk about expectations since our algorithm starts by putting the elements of S into random
order.)

Let us fix our attention at an arbitrary key p € S and ask how often p is involved in a
comparison where it is not the “pivot.” Let us just concentrate on some round r. If p € S,
then it certainly did not participate in such a comparison. So assume p ¢ S, which means p
must be in some B;. In that case a comparison involving p only happened if B; is “new,” i.e.
did not exist in round r — 1. But B; can only be new if one of g; or ¢;1; was p,. Backwards
analysis now says that any one of ¢y, ..., q. has the same probability of being p,. Thus with
probability at most 2/r one of ¢; or ¢;11 was p, (we say “at most” since the fictitious ¢y and
¢r+1 cannot be p,). This means that the expected number of comparisons involving p in round
7 is at most 2/r, and hence the the expected number of comparisons involving p (not as pivot)
over all rounds is at most 2H,,. Considering every key p € S in turn immediately yields a
2nH, upper bound for the expected number of comparisons made by our algorithm.

Let us try to tighten this analysis. Call a comparison in our algorithm between a key p
and a pivot p, an L-comparison if p, < p; call it an R-comparison otherwise. Let p be the k-th
smallest key in S and let Ly = {q € S|¢ < p}. Let us try to estimate the expected number
of L-comparisons for p, i.e. comparisons that involve p as non-pivot and some other member
of Ly as pivot, in other words, we want to estimate the number of times that a set B; that
contains p is split and p turns out to be larger than the splitting pivot key. For this purpose it
suffices to consider only L-rounds of our algorithm, i.e. rounds r where the pivot p, is in L.
Clearly there are exactly k such L-rounds. Let us number them from 1 to k. Consider now

14

L-round 7, where 1 < i < k. What is the probability F; that p is involved in an L-comparison,
i.e. what is the probability that the set B; that contains p was just split? Well, out of the
i pivots chosen from Ly so far, ¢; must have been the last one. By backwards analysis the
probability for this event is 1/i. However, for an L-comparison involving p to occur it must
also be the case that p was not one of the i pivots chosen so far. The probability for this event
is (1—1i/k). It follows that P, = (1 —i/k)-(1/i) and thus the expected number L-comparisons
in L-round i that involve p is 1/i—1/k. Summing over all & L-rounds we get that the expected
number of L-comparisons involving p is Hy — 1. Summing now over all n keys of S we find
that the expected number of all L-comparisons is > <<, Hy — n, which is (n 4 1)H,, — 2n.
By symmetry the expected number of R-comparisons is the same and thus the expected total
number of key comparisons made by our QUICKSORT algorithm is 2(n + 1) H,, — 4n.

We should now convince the reader that our version of QUICKSORT has the same running
time behaviour as the usual version, so that we can claim that our analysis applies to the ususal
version also. The usual version sorts a set S of n keys as follows: Choose a p € S uniformly
at random, and compute the sets S. = {q € S|¢ < p} and S~ = {q € S|q¢ > p}. Output the
result of applying the algorithm recursively to S., followed by p, followed by the the result of
applying the algorithm to S-.

With every run of this algorithm we can associate a binary n-node tree T'. It is recursively
defined as having p as its root whose left child is the tree associated with the sort of S. and
whose right child is the tree associated with the sort of S.. The number of key comparisons
made in a particular run can now be expressed as a function C'(T') of the associated tree T,
namely the sum of the sizes of all n rooted subtrees, minus n. Thus the expected running
time of the ordinary version of QUICKSORT can be expressed as the sum over all possible
such trees T of the product of C'(T') and the probability that 7" arises.

We can also associate a binary n-node tree T" with every run of our version of QUICKSORT.
We do this inductively by associating a tree T, with every round r of our algorithm. 7). has r
interior nodes, namely the keys in S,, and it has 741 leaves, the sets B;. Tree T, is obtained
from T, by replacing the leaf B; that contains p,;; by a tree whose root is p,;; and whose left
and right children are the newly generated B; and Bj, respectively. The final tree 7" is then
T, stripped of all its leaves. Again the number of key comparisons made in a particular run of
our algorithm is expressed exactly by C'(T'). It follows that the two versions of QUICKSORT
have the same running time distribution if every tree T is generated by our version with the

b ocbili bt Fverstonr—B : treck—thet-indeed-botl :

produce a particular tree 7' with probability [T, node of 77 1/ (size of subtree rooted at p).

That the expected number of comparisons of QUICKSORT is 2(n + 1)H,, — 4n is a well
known result and has been derived before without using backwards analysis (see e.g. [28]).
We will now use backwards analysis to estimate in a reasonably painless way the probability
that the running time of QUICKSORT is significantly larger than its expectation (see [47]) for
a similar result). For this purpose we will artificially slow down our algorithm as follows: If in
round r the new pivot p, is in By, then all keys in B, are compared with p, also. Similarly, if

15

pr isin B,., then all keys in By are compared with p, also. Conceptually we are now performing
a cyclical sort of S, where after round r there are r sets Bj;, for which index arithmetic is done
modulo r. This “cyclical” modification of the algorithm removes all “boundary” effects and
makes all keys appear symmetrically the same. We will also slow down our algorithm even
further. In each round r the pivot p, will make two extra comparisons (say, with itself).

We will again partition the comparisons made by our slowed down algorithm into L-
comparisons and R-comparisons. Again, an L-comparison is a comparison between a key p
and a pivot p,, where p, < p. We will also consider to be an L-comparison one of the two
extra comparisons made by every pivot p,.

For a key p € S let L, be a random variable that counts the number of L-comparisons
that p is involved in plus the one L-comparison between p and itself when p is the pivot.
Define R, analogously. Let now X = 3 ,cs(L, + R,) be a random variable counting the total
number of comparisons made by our slowed down algorithm. We are interested in estimating
the probability that X exceeds its expectation by a multiplicative factor of ¢. This can clearly
only happen if at least one of the random variables L, or I, exceeds its expectation by a
factor of ¢. Thus we have

Pr(X > c¢-E[X]) <> Pr(L, > ¢-E[Ly]) + Y Pr(R, > ¢ E[R,]).

peS peS

Since our setup is completely symmetric all random variables L, and R, have the same dis-
tribution. Thus for any p € S we have

Pr(X > c¢-E[X]) <2n-Pr(L, > c-E[L,]) . (1)

Let us now fix our attention on some key p € S andlet Y = L,. For 1 <r <nlet Y, be a
0-1 random variable counting the contribution of round r to Y. Using the ideas of the previous
paragraphs and observing the slow down modifications of our algorithm it is easy to see that
Y, is 1 with probability exactly 1/r. Thus E[Y] = >, E[Y:] = Y1<<n 1/t = H, and
therefore E[X] the expected number of comparisons in our slowed down algorithm is 2nH,,.

To estimate Pr(Y > c¢-E[Y]) we can now use the well-known Chernoff bound (see [47, 31]),
which in one form states that if a random variable Z is the sum of n independent 0-1 random
variables and the expectation of Z is F, then for ¢ > 1

Pr(Z > c- E) < ¢ Fl-cteloge)

In our case the Y;’s can easily be proven to be independent. Thus we obtain
Pr(Y > ¢ E[Y]) < e Mallzcteloge) — g (p~(Ltelloge=1))y

From this and inequality 1 we can now conclude that the probability that the running time
of our modified algorithm exceeds its expectation by a multiplicative factor of ¢ > 1 is
O(n—cloge=1)) Since this algorithm always performs more comparisons than ordinary QUICK-
SORT we can conclude that the probability that QUICKSORT makes more than 2c¢nH,, com-
parisons is also O(n—¢8¢=1),

16

6 A Bad Example

Consider the following higher-dimensional triangulation problem: Suppose a set .S of n points
in IR? is contained in the interior of a d-simplex D with vertex set Q = {qo,q1,...,qqa}. We
are to triangulate S, i.e. construct a collection of simplices 7, so that U{A € T} = D, each
simplex A € 7 has its vertex set in S U @, every p € S is vertex of some simplex in 7, and
every two simplices in 7 intersect in a common face (which can be the empty set).

Deterministic algorithms for solving this problem in O(nlogn) time have been presented
in [4, 26]. Here we consider the following randomized incremental algorithm that was inspired
by the QUICKSORT algorithm of the previous section. For the purpose of illustration we will
assume that the points in S U () are in non-degenerate position, i.e. no d + 1 points lie in a
common hyperplane.

Our algorithm will at first put the points in S in some random order pi,...,p,. For
0 <r <nletnow S, = {p;Ji <r}. The algorithm works in n rounds. Upon completion of
round r a triangulation 7, will have been computed, and for each simplex A € 7, the set Ba
will contain the points in S\ S, that lie in the interior of A. Initially we have 7o = {D} and
Bp=S.

Assuming inductively that the algorithm has correctly completed round r—1, our algorithm
only needs to do the following in round r: Let A be the simplex in 7,_; that has p, in its
interior and let Ba be the corresponding subset of S\ S,_;. The simplex A is split into d + 1
simplices Ay, ..., Ay, each being a pyramid with a facet of A as base and with p, as apex.
The set Ba \ {p,} is split accordingly.

In any reasonable implentation the running time of this algorithm will be proportional to
the number of times that during the execution the containing simplex changes for a point
p € S. It is now tempting to apply backwards analysis to obtain the expectation of this
quantity. Fixing attention at a point p € S and at some round r it seems that the probability
that the containing simplex of p changed in round r is at most (d + 1)/r. After all, either p
is contained in S, in which case no change occurs, or otherwise p must be in some simplex
A € 7., which is “new” iff one of its d + 1 vertices happened to be p,. By backwards analysis
this happens with probability at most (d + 1)/r. Thus the expected number of containing
simplex changes for p in the entire algorithm is at most (d + 1)H,,, and hence the expected
running time of the algorithm is O((d + 1)nH,).

7. of S, is not canonical, i.e. it depends on the ordering of the points in S5,. In particular this
means that the containing simplex of p is not canonical. Thus it is difficult to argue that p,
is a vertex of that simplex with probability at most (d + 1)/r.

For dimension d = 1 this algorithm indeed does have O(nH,) expected running time,
since any 1-dimensional point set admits exactly one triangulation, and hence 7, is always
canonical. But of course for d = 1 the triangulation algorithm of this section is nothing but
QUICKSORT. It remains to be seen whether for fixed d > 1 the expected running time of
this triangulation algorithm is indeed O(nlogn).

17

7 Linear Programming for Small Dimension

General linear programming has a long history. In this paper we are only interested in the
case where the dimension (or number of variables) d is a small constant and m, the number of
halfspaces (or constraints), can be quite large. In the last decade deterministic algorithms were
developed that solve such linear programs in O(m) worst case time [39, 40, 22, 23, 19]. However
those algorithms are mostly of theoretical interest only since they are quite complicated and
the dependence of their running times on the dimension d is exponential and has only been
shown to be 3¢ at best. More recently Ken Clarkson [20] proposed a randomized algorithm
with a remarkable running time of O(d?m) + (logm)O(d)¥?*°M) + O(d*\/mlogm). Here
we briefly present another randomized algorithm that was first described in [50]. The main
virtues of this algorithm are its simplicity and its amenability to backwards analysis (well —
for the purpose of this paper this is a virtue).

Geometrically, linear programming amounts to the following: One is given a set ‘H of m
halfspaces and a vector @ in IR, and one wants to find a vertex v of the polyhedron P formed
by the intersection of the halfspaces, so that v maximizes the linear functional specified by a;
in other words, v must be contained in the tangent hyperplane of P whose outward normal
is a.

The reader might wonder about our specification of linear programming. The required
optimum vertex v of P might not exist, either because P is empty or because P is unbounded.
Thus we amend our specification. In case of emptiness of P we require this fact to be reported
by the algorithm. For the sake of ease of presentation we will ignore for the time being the
unboundedness situation and assume that our problem and all subproblems to be encoutered
are very well behaved in the sense that if a problem is feasible a unique optimum vertex exists
and that this vertex is the intersection of the bounding hyperplanes of exactly d of the given
halfspaces. We will show later how those assumptions can be removed.

Here is our algorithm for solving such a linear program given by a set H of m > d halfspaces
and a direction a in R

If d = 1, then the problem amounts to finding the smallest (or largest) real number
satisfying m inequalities. With m comparisons this number can easily be found or
it can be established that a number satisfying all inequalities does not exist.

Now assume d > 1. If !H! = d, then by our agsumptions the solution is the inter-

section of the d hyperplanes that bound the halfspaces in H. Thus this optimum
vertex can be found in O(d?) time.

So assume that |H| > d. Choose a halfspace H € H uniformly at random. Re-
cursively solve the d-dimensional linear program given by the m — 1 halfspaces
H \ {H} and direction a. This yields an optimum point w. (If such an optimum
does not exist, the original problem does not have a solution.)

Now, if w is contained in H, then clearly w is also the solution for the original
problem and we are done. If w is not contained in H, then the optimum vertex v

18

for H, if it exists at all, must be contained in the hyperplane h that bounds H. Asa
matter of fact v must be the solution of the (d—1)-dimensional linear programming
problem given by the m — 1 constraints H' = {I/ Nh |l € H\ {H}} and direction
a’, the orthogonal projection of a into h. The solution of that problem is now
found recursively.

Let us now analyze the expected running time of this algorithm. The most important issue
seems to be to estimate the probability that the (d — 1)-dimensional problem for H' needs to
be solved. This is exactly where backwards analysis comes into play. Note that this recursive
call is necessary iff the optimum vertex v for H is different from the optimum vertex w for
H\ {H}. But such a difference can only occur if the bounding hyperplane of H is one of the
d hyperplanes that define v. But since H is chosen from the m hyperplanes in H at random
this happens with probability d/m.

Now let T'(d, m) be the expected running time of our algorithm for solving a linear program
with m > d halfspaces in IR?. Assuming that testing whether a point v lies in a halfspace H
takes O(d) time and that computing the intersection of a halfspace with a hyperplane takes
also O(d) time, T'(d, m) is defined recursively as follows:

O(m) ifd=1
T(d,m) =23 O(d®) ifm=d
T(d,m —1)+O(d) + L£0(dm) + £T(d — 1,m — 1) otherwise

It is now easy to check that T'(d,m) = O<Zl§i§d ﬁd!m), which is O(d!m) since the sum

converges even without an upper bound for 4.

We still have to deal with the various assumptions we made initially. Uniqueness of
the optimum vertex can be achieved by standard perturbation techniques, or by requiring
the algorithm always to return the optimum vertex that has the lexicographically smallest
coordinate representation. Note that in light of the previous section it is crucial for the
analysis of our algorithm that the optimum vertex is defined uniquely and canonically.

The assumption that an optimum vertex must always be the intersection of the bounding
hyperplanes of exactly d halfspaces can be dropped altogether. Involvement of more than d
halfspaces in v makes it less likely that v is different from w and hence cannot increase the

'mm‘ning time of our f\]gnrifh‘m

The boundedness assumption appears to be the most difficult to remove. One approach
is to enforce it simply by stipulating that we are not interested in all of IR but just some
“bounding box” B (i.e. we impose explicit lower and upper bounds for the variables; see [50]
for details). Another approach involves generalizing the notion of “optimum vertex:” in case
of unboundedness define the “optimum” to be the unit vector in the direction of a ray in
the feasibility region that maximizes the inner product with the objective direction a. Both
approaches require slight changes in the “bottoming-out” part of our procedure. See the next
section for an abstract description.

19

8 Welzl’s Minidisk Algorithm

Here we present an algorithm due to Emo Welzl [56] for constructing the smallest enclosing
ball for a finite point set 7' C IR?. The algorithm is very similar to the linear programming
algorithm of the previous section. However, the idea of recursively solving a problem of
smaller dimension has to be viewed now as recursively solving a problem with more equality
constraints.

Below we describe a function minidisk(7, ('), which takes as input two disjoint finite sets
T,C c IR? and which is to return the ball of smallest radius that contains 7 and has all
points of C' on its boundary. Of course, for arbitrary sets T and ' such a ball need not exist.
However, we will assume that the function will only be called with parameters T and C' for
which the existence of such a ball is guaranteed. In particular note that minidisk (7,0)
simply computes the smallest enclosing ball of T', and such a ball of course always exists (for
the case T = () we consider the empty set to be a degenerate ball).

Note that the smallest enclosing ball of a set T" will always be determined by at most d+ 1
points of T'. For our implementation of minidisk () we will assume the existence of a function
primitive ball (D), which given any set of D of at most d + 1 points returns in time O(d?)
the smallest ball that has all of D on its boundary (again assuming the existence of such a
ball).

minidisk(7,C)
if T'= () then return primitive_ball(C);
choose some p from 7' uniformly at random and let 7" :=T"\ {p};
B’ := minidisk(7",C);
if p € B’ then return B’
else return minidisk(7",C' U {p});

The correctness of this function follows form the following two lemmas:

Lemma 8.1 Let 7 and C be two sets in IR%. The smallest ball that contains 7" and has all
points of C' on its boundary is unique (provided it exists).

Proof. Assume B; and B, are two distinct smallest enclosing balls for T' that have C' on their

boundary. Let ¢; and ¢y be the two centers and let R be the common radius. Then it is easy to
check that the smaller ball with center (¢;+cs)/2 and radius r given by r? = R?—(c;—cy, ¢1—Ca)
also contains T" and has all points of C' on its boundary.

Lemma 8.2 Let 7" and C be two sets in IR so that the smallest enclosing ball B for T” that
has all points of C' on its boundary exists.

If some point p € IR? is not contained in B’, then the smallest enclosing ball B for T'U{p}
that has all points of C' on its boundary also has p on its boundary (provided it exists).

20

Proof. Assume B does not have p on its boundary, i.e. p lies in the interior of B. But in
this case B must also be the smallest enclosing ball for 7" hat has C' on its boundary. By
the previous lemma that ball is unique, i.e. B = B’, which would mean p € B and p ¢ B, a
contradiction.

For the analysis of the expected running time of minidisk(7’, (') the most important step
is to estimate the probability that a point p chosen randomly from T is not contained in the
ball B’. Let B be the smallest enclosing ball of T" that has all points of C' on its boundary.
Lemma 8.2 tells us that p ¢ B’ implies that p lies on the boundary of B and that B # B’. In
the non-degenerate case where no d + 1 points of 7T"U C' are co-spherical it is clear that there
are at most d + 1 — |C| choices for p that render B and B’ different. It is not too hard to
see that this number cannot be larger if there are degeneracies. Thus the probability that a
random point p of T is not contained in the ball B’ is at most §/|T'|, where § = d+ 1 — |C].

Now consider a call minidisk(7, C), where T,C' C R%,|T| =n, and |C| =d + 1 — 4. Let
f(n,d) denote the expected number of recursive invocations minidisk(S, D) for which S # (),
and let g(n,d) denote the expected number of recursive invocations for which S = (). Thus f
and ¢ satisfy the following recursive relationships:

0 iftn=20
f(n,9) S{ 1+f(n—1,5>+%f(n—175—1) otherwise

1 ifn=20
9(n,9) < { g(n—1,8)+2g(n—1,6 — 1) otherwise
It is an easy inductive exercise to check that now f(n,d) < Y <5 50!, which is O(d!n),
and that g(n,d) < 6!(1 4+ H,)?, which is O(6!log’ n). If we assume that an invocation with
S #) takes time O(d) and an invocation with S =) (i.e. a call to primitive_ball) takes
time O(d?) we get the following:

Theorem 8.3 For a set T of n points IR? a call to minidisk(7,) computes the smallest
enclosing ball of T" in expected time O(d(d + 1)!n).

also to other problems, such as computing the smallest enclosing ellipsoid of a point set in IR,
or computing the largest inscribed sphere of a convex polyhedron. It is possible to unify these
algorithms by considering the relevant problems as special instances of a suitably axiomatized
abstract optimization problem.?

Very recently Micha Sharir and Emo Welzl [54] proposed a new axiomatic framework along
with a new randomized algorithm for the linear programming type of problems considered here

3Previous versions of this paper contained an attempt of such an axiomization. However, that framework
turned out to be too weak, and the algorithmic results claimed in those previous versions are fallacious.

21

and in the previous section. Their method avoids the recursion on the dimension and in the
case of linear programming achieves an expected time bound of O(29n). The complexity
analysis of their new algorithm also exploits aspects of “backwards” analysis. Even more
recently the same two authors together with Jifi Matousek [38] managed to improve the

analysis of that algorithm to the remarkable expected time bound of O((nd 4 d®)e*V 4R +1)y,

9 Clarkson’s Backwards Analysis of the Conflict Graph
Based Convex Hull Algorithm

In their landmark paper on applications of random sampling in computational geometry [18]
Clarkson and Shor described a randomized algorithm for constructing convex hulls of point
sets in IR? that has optimal expected running time. Their analysis of the expected running
time was based on very general lemmas about random sampling. Recently Ken Clarkson
[21] has discovered a new analysis that is completely self-contained and relies heavily on the
idea of backwards analysis. In this section we give first a brief description of the convex hull
algorithm* and then its new analysis.

We want to construct the convex hull of a set S of n points in IRY, with n > d > 1. We
will assume that S is in non-degenerate position, i.e. no d + 1 of its points lie in a common
hyperplane. Such non-degeneracy can easily be simulated with impunity using standard per-
turbation techniques [25, pp. 185]. Non-degeneracy ensures that the convex hull of any subset
of S is a simplicial polytope.

A few relevant basics about polytopes: Let P be a simplicial d-polytope, let V' be the
vertex set of P, and let m = |V|. It is known that P can have at most O(ml%2!) faces. We
call the (d —1)-faces of P facets and the (d — 2)-faces ridges. Every facet is uniquely identified
by the d-tuple of its vertices. Similarly every ridge can be identified by a (d — 1)-tuple of
vertices in V. Since every ridge is contained in precisely two facets one can represent the
facial structure of P by its facet graph G(P), which has the facets of P as its nodes and two
facets adjacent iff they share a common ridge of P. Note that for simplicial d-polytopes the
facet graph is regular of degree d.

Let p be some point in IR? in non-degenerate position with respect to V. We call a facet
F of P wisible from p iff the hyperplane spanned by F' separates P and p. We call I’ obscured

otherwise. We call a face GG of P visible from p iff it is only contained in facets of P that are
visible from p. Obscured faces are defined analogously. We call GG a horizon face with respect
to x iff it is contained in some visible and some obscured facet.

This terminology allows a convenient characterization of the facial structure of the polytope
P" = conv (P U{z}) in terms of the faces of P: No visible face of P is a face of P’; all
obscured and all horizon faces of P are faces of P’; for each horizon face GG of P the pyramid

4We actually present a slightly different version than the one in [18] in that we do not dualize and use a
slightly different notion of a conflict graph.

22

conv (G U {x}) is a face of P’; this yields all faces of P’

This characterization justifies the following method for obtaining P’ from P and x. We
assume here that the polytopes are represented by their facet graphs. Thus, to be more
precise, the procedure outlined below is intended to compute the facet graph G(P’) from
x and the facet graph G(P), and when we talk about facets or ridges we are simultaneoulsy
referring to nodes and arcs of a facet graph (which are identified by d-tuples and (d—1)-tuples,
respectively, of the points in S U {z}).

(i) Determine the set Vis(x, P) of all facets of P that are visible from z. (In case no visible
facets exist at all, must be contained in P already, i.e. G(P') = G(P), and nothing
further needs to be done.)

(ii) Partition the ridges contained in facets of Vis(x, P) into the set of visible and the set of
horizon ridges of P with respect to x, by checking for each ridge whether both containing
facets are in Vis(z, P). Delete all visible facets and ridges.

(ili) For each horizon ridge GG of P generate the new facet conv (G U {z}) of P' (i.e. a new
node for the facet graph).

(iv) Generate the new ridges of P’ (i.e. the edges between the new nodes of the facet graph).

Step (i) of this algorithm is still rather vaguely specified. We defer the details of how the
visibility set Vis(x, P) can actually be obtained. Let us first analyze the cost of this algorithm,
but ignoring the cost incurred by step (i).

The cost of step (ii) is clearly proportional to the number of facets in Vis(z, P). But since
all those facets are deleted, and every facet can be deleted at most once, we can charge the
deletion cost of each facet to its creation, and thus in the amortized sense, step (ii) incurs no
cost at all.

Step (iii) has cost proportional to the number of new facets created. These are exactly the
facets of P’ that contain x. Let us denote their number by deg(z, P’).

The number of new ridges created in step (iv) is proportional to the number of new facets,
to be precise, their number is (d — 1)deg(x, P')/2. How can they be found? For every new
facet generated in step (iii) the d — 1 new ridges contained by it can be determined “locally.”

Radix sorting the (d — 1)-tuples of vertices (or rather vertex indices) that identify these ridges
then allows to match them up and to form the new edges of the facet graph G(P’) in time
proportional to n + deg(x, P'). When d < 4 the radix sort can be avoided: In the case d = 2
there are only two new facets and one new ridge, namely z. In the case d = 3 one can exploit
the planar graph nature of the facet graphs to find the new ridges in time proportional to
their number. We omit here the details of how to do this.

We conclude that, ignoring step (i), the total cost of this insertion algorithm is proportional
to deg(z, P') in case d = 2,3 and proportional to n + deg(z, P’) for d > 3.

23

Consider now the following algorithm for constructing the convex hull of a set S of n > d
points in IR? in non-degenerate position.

1. Put the points of S in a random order pi,...,p,. For 1 < r < n let S, denote
{p1,...,pr}, and let P, denote conv S,.

2. Form the facet graph G(P;.1). (Note that this graph is simply the complete graph on
d + 1 vertices.)

3. For d+ 1 < r < n, using the insertion procedure outlined above, form the facet graph
G(P,) from G(P,_1).

We want to determine the expected running time of this algorithm. Obviously the most
important question is to determine the expected cost of step 3. We know that, ignoring step
(i) of the insertion algorithm, the expected cost of the insertion in iteration r is determined
by the expectation of deg(p,, P.). Now apply backwards analysis. With probability 1/r point
pr was the last one in the random permutation of S,. Thus the expected value of deg(p,, P,)
is (1/7)- > pes, deg(p, S,), which, since every facet contains exactly d vertices, is (d/r) - F'(F,),
where F'(P,.) denotes the number of facets of P,. But P, has at most r vertices. Thus by the
upper bound theorem for polytopes F(P,) = O(rl%2)), and the expected value of deg(p,, P,)
is therefore O(r%21=1). We conclude that for d > 3 the expected running time of the entire
algorithm is 3441 cp<p, O(r+742=1) which is O(n'¥/%)). For d = 2,3 we get that the expected
running time of the algorithm is >°;,1.,<, O(1), which is O(n).

But recall that this analysis does not take into account the cost incurred by step (i) of
the insertion algorithm. Let us now turn to the details of how that step can be implemented.
How can one determine the set Vis(p,, P,_1) of all facets of P,_; that are visible from p,?

As pointed out in [50] there is a simple solution for this problem that turns out to be
reasonably efficient for the case d > 3. Since the facets in Vis(p,, P-_1) induce a connected
subgraph in the facet graph G(F,_1) it suffices to find just one visible facet. The remaining
ones can then be determined by a depth-first search in time proportional to their number. All
the visible facets found will be deleted, never to reappear again, and thus we can charge their
discovery cost to their creation. In other words, in the amortized sense this depth-first search
incurs no cost at all, and we only have to worry about the time necessary to discover one
facet of Vis P,_1). However, this problem is nothing but a linear programming problem
with 7 constraints and in d variables and can thus, as we saw in Section 7, be solved in O(r)
expected time. Summing over all n insertions this yields an overall expected cost of O(n?),
which for d > 3 is subsumed by the O(nl%2!) expected running time of the remaining parts
of the algorithm.

A solution to this “visibility problem” that performs satisfactorily in all dimensions, and
not just for d > 3, was invented by Clarkson and Shor [18]. In essence, they proposed to
maintain at each iteration 7 of the algorithm the complete visibility set® Vis(p, P,) for each

5Clarkson and Shor have the notion of a “conflict graph,” which in our case would be a bipartite graph

24

point p € S\ S,. We will here describe a variant of this approach that was also already
considered in [18], where for each point p € S\ S, only one representative visible facet
V F(p, P,) € Vis(p, P,) is maintained (provided such a facet exists at all).

Initially some V F(p, P;11) can be computed for all p € S\ Sgy1, in O(n) time. For
r > d+ 1 how can one compute V F(p, P,) from VF(p, P._1)? For some point p € S\ S,
let F'=VF(p, P,_y). If Fis undefined (because p is contained in P,_;), then also V F(p, P,)
is undefined. If the facet F' is also a facet of P, then one can choose V F(p, P,) = F. We
only have to actually do something if the facet I’ of P,_; is not a facet of P, any more, i.e.
F € Vis(pr, Pr—1) and is thus one of the facets that gets deleted in step (ii) of the insertion
algorithm. In order to discover all p € S\ S, for which we actually have to do something we
need to maintain for each facet the set of points p for which the facet is the representative
visible facet.

To find the replacement p-visible facet of P, we now start at I’ a depth-first search in the
facet graph G(P,_1) to discover all facets in Vis(p,, P._1)NVis(p, P,_1) in time proportional to
their number. Let D be the set of horizon ridges (with respect to p,) contained in those facets.
For each ridge G € D now check if its containing facet of P,_; that is not in Vis(p,, Pr_1)
(which is therefore a facet of P,) is visible from p, and check if the “new” facet conv(GU{p,}) of
P, is visible from p. If no p-visible facet is found this way, then we make V F'(p, P,) undefined,
otherwise we set V F'(p, P,) to one of those p-visible facets. The correctness of this approach
is a consequence of the fact that for a polytope P and any set X C IR%\ P the facets of P
that are visible from all points in X induce a connected subgraph of the facet graph G(P).

The cost of finding the new representative p-visible facet on P, is thus proportional to
the size of Vis(p,, Pr—1) N Vis(p, P,_1), or in other words, the number of visibilities between
facets and p that cease to exist with the insertion of p,.. Therefore, in order to estimate the
cost of maintaining representative visible facets for all p over the entire algorithm, we need to
determine the expected number of visibilities between facets and points that cease to exist in
the course of the algorithm. Obviously this is the same as the expected number of visibilities
that come into existence. We will now estimate the latter quantity.

Let R ={p1,...,pr}. Since the p;’s are in a random order R is now a random subset of S
of size r. What is the expected number of visibilites between facets of conv R and points in
S\ R that came into existence when the last point of R was inserted? Let’s do it backwards!
Which visibilities would disappear if a random point g of R was removed? Exactly those that

involved a facet that contained q Since every. facet is determined hy mmnﬂ} d points of R the

probability that any particular facet contains ¢ is d/r. It follows that the expected number of
visibilities that disappear when a random point of R is removed (or visibilites created when ¢
is inserted) is

d

— > |Vis(q,conv R)]| .

r qeS\R

whose nodes are the facets of P, and the points in S\ S, and that has an arc joining facet F’ with point ¢ iff
F is visible from q.

25

Let vis(q, R) denote |Vis(q, conv R)|. For A C S let now f(A) denote the number of facets of
conv A, and for a € A let deg(a, A) now denote the number of facets of conv A that contain
a. Here comes an ingenious observation due to Ken Clarkson [21]:

vis(q, R) = f(R) — f(RU{q}) + deg(q, RU{q}) , (2)

since the facets of conv R that are not visible from ¢ are exactly the facets of conv (RU {q})
that do not contain q.

It follows that C,., the expected number of visibilities created when the r-th point of S is
inserted, is

(>Z > visl, B —<)Z © % (4R = (RU{a) + degla, RUa))

|R|CS " 4es\r |§|CS " 4es\r

Now let f, = ﬁ ZI%IC—S f(R) denote the expected value of f(R). Note that f, actually also

depends on the set S . We will estimate each of the three main summands of the sum above
separately.

r
RCS ' geS\R

r

|R|=r

F(R) = Ln -,
(n> DY

()Z S f(RU{g)) %)Z SRy

RCS qu\R R'CS qeR’
|R|=r |R/|=r+1

/N
=

= () Z (E:3> C;i(“L f(R)
T+ |R]’%|:Cril "
— A S L) = L) g
(h)
U S
= le_l((T—’_l))fr—l-l"‘ (1)fr+1
S S degla UL = o ¥ (1) d S deg(q, R
() IRC_S;“ qu\R (T—i—l) |R€E|/:Cr§_1 (r) qER!
= (i) > P S pw)
r+1 lRﬁl':C
= (Td_'_ 1)(T)fr—l—l

Thus the total expected number of visibilities created in the entire course of the algorithm is

S 0= % (Gonh o s ot))
d+1<r<n ' d+1<r<n \T tortl e+)T i+ 1) T
This is a telescoping sum, and therefore we get

d fr fT—l—l
Cr=——m—d—1)fg41+dd—1)n —_ _? .
d+1§<n d +1 d+1§<n T(T + 1) d+1§<n r+1

But since any d-polytope with r vertices has O(rl%/2) facets it is certainly the case that
fr = O(rl%2]), Thus it is easy to see that for d > 3 the expected total number of visibilities
created is O(nl%?]), whereas for d = 2,3 this number is O(nH,,), which is O(nlogn).

We can therefore conclude that the randomized incremental algorithm for constructing
the convex hull of n points in IR? has an expected running time of O(nlogn) for d = 2,3
and O(nl%2)) for d > 3, which was the best we could hope for. Note that this analysis gives
amazingly tight bounds for the expected number of visibilities for the case d = 2, 3.

10 0Odds and Ends

It should be pointed out that the type of analysis presented in the previous section is not par-
ticular to the convex hull problem but can be applied to randomized incremental construction
in the formal framework of Clarkson and Shor [18]. In their terminology the generalization
of the crucial insight (2) is the observation that the regions defined by R that do not conflict
with object ¢ are exactly those regions defined by R U {q} that do not involve ¢q. Note that
most of the problems and algorithms presented in this paper actually fall into Clarkson and
Shor’s framework — maybe this paper should have been made much shorter.

There are a number of problems and algorithms that should have been included in this
survey, but were not because of time constraints. Maybe the most serious gap concerns geo-
metric searching, in particular planar subdivsion searching. A search structure is constructed
using a randomized algorithm; query times are then random variables with respect to the
“coin flips” made during the construction. Backwards analysis works very well for determin-

is also added to this approach, which yields a rather straightforward randomized method for
triangulating a simple polygon in nearly optimal O(nlog* n) expected time.

In section 5 we gave some analysis of how tightly the running time of QUICKSORT is
concentrated around its expectation. What about tail estimates for the running times of the
other algorithms presented in this paper? What is the probability that the actual running time
on a problem of size n exceeds the expectation by a multiplicative factor of ¢? For the polygon
triangulation algorithm of secion 2 one can use a general result of Mehlhorn [41] to show that
this probability is at most %(%)c For Mulmuley’s algorithm of section 3 Matousek and Seidel

27

[37] have recently shown a tail estimate of O(n~°), provided K, the number of intersecting
segment pairs, is not too small relative to n. For the linear programming algorithm of section 7
a bound of O(c™%) is given in [50], where d is the dimension. A similar bound applies to the
algorithm of section 8. To my knowledge no non-trivial tail estimate is known for the convex
hull algorithm of section 9.

11 Acknowledgements

Many people have wittingly and unwittingly contributed to this paper in one form or an-
other. I would like to give credit to all the participants of the various DIMACS workshops on
computational geometry in 1989/90. In particular I would like to thank Ken Clarkson, Emo
Welzl, Giinter Rote, Peter Shor, Kurt Mehlhorn, Ricky Pollack, Leo Guibas, Micha Sharir,
Herbert Edelsbrunner, Ketan Mulmuley, and Otfried Schwarzkopf. Finally, I am grateful to
Janos Pach for his seemingly infinite patience.

Thanks to Laszlo Kozma for seeing to it that finally, in 2011, this version of the paper actually
contains figures.

References

[1] P.K. Agarwal, H. Edelsbrunner, O. Schwarzkopf, and E. Welzl. “Fuclidean Minimum
Spanning Trees and Bichromatic Closest Pairs.” Proc. 6th ACM Symp. on Computational
Geometry (1990), pp 203-210.

[2] A. Aggarwal, L.J. Guibas, J. Saxe, and P.W. Shor. “A Linear Time Algorithm for Com-
puting the Voronoi Diagram of a Convex Polygon.” Proc. 19th ACM Symp. on Theory
of Computing (1987) pp 39-47.

[3] F. Aurenhammer. “Voronoi Diagrams — A Survey.” To appear in ACM Computing
Surveys.

[4] D. Avis and H. ElGindy. “Triangulating Simplicial Point Sets in Space.” Proc. 2nd ACM
Symp. on Computational Geometry (1986) pp 133-141.

[5] J.L. Bentley and T.A. Ottmann. ‘‘Algorithms for Reporting and Counting Geometric
Intersections.” IEEE Transactions on Computers 28 (1979) pp 643-647.

[6] J.L. Bentley and M.I. Shamos. “Divide-and-Conquer for Linear Expected Time.” Infor-
mation Processing Letters 7 (1978) pp 87-91.

[7] J.D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. “Applications
of Random Sampling to On-line Algorithms in Computational Geometry.” INRIA Tech.
Report 1285 (1990).

28

[8] J.D. Boissonnat, O. Devillers, and M. Teillaud. “A Randomized Incremental Algorithm
for Constructing Higher Order Voronoi Diagrams.” to appear in Algorithmica.

[9] J.D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. “On-line Algorithms
with Good Expected Behaviours.” Manuscript (1991).

[10] B. Chazelle. “Reporting and Counting Segment Intersections.” J. Computer System Sci-
ence 32 (1986) pp 156-182.

[11] B. Chazelle and H. Edelsbrunner. “An Optimal Algorithm for Intersecting Line Segments
in the Plane.” Proc. 29th IEEE Symp. on Foundations of Computer Science (1988) pp
590-600.

[12] B. Chazelle, H. Edelsbrunner, L.J. Guibas, and M. Sharir. “Computing a Face in an
Arrangement of Line Segments.” Proc. 2nd ACM-SIAM Symp. on Discrete Algorithms
(1991) pp 441-448.

[13] B. Chazelle, L.J. Guibas, and D.T. Lee. “The Power of Geometric Duality.” BIT 25
(1985) pp 76-90.

[14] P. Chew. “Building Voronoi Diagrams for Convex Polygons in Linear Expected Time.”
Manuscript (1986).

[15] K.L. Clarkson. “A Probabilistic Algorithm for the Post Office Problem.” Proc. 17th ACM
Symp. on Theory of Computing (1985), pp 175-184.

[16] K.L. Clarkson. “New Applications of Random Sampling in Computational Geometry.”
Discrete & Computational Geometry 2 (1987), pp 195-222.

[17] K.L. Clarkson and P.W. Shor. “Algorithms for Diametral Pairs and Convex Hulls that
are Optimal, Randomized, and Incremental.” Proc. 4th ACM Symp. on Computational
Geometry (1988), pp 12-17.

[18] K.L. Clarkson and P.W. Shor. Applications of Random Sampling in Computational Ge-
ometry, 11.” Discrete & Computational Geometry 4 (1989), pp 387-421.

[19] K.L. Clarkson. “Linear Programming in O(n3%) Time.” Inf. Proc. Letters 22 (1986) pp

21-24.

[20] K.L. Clarkson. “A Las Vegas Algorithm for Linear and Integer Programming when the
Dimension is Small.” Manuscript; a preliminary version appeared in Proc. 29th TEEE
Symp. on Foundations of Computer Science (1988) pp 452-456.

[21] K.L. Clarkson. Personal Communication, September 10 (1990).

[22] M.E. Dyer. “Linear Algorithms for Two and Three-Variable Linear Programs.” SIAM J.
on Computing 13 (1984) pp 31-45.

29

[23] M.E. Dyer. “On a Multidimensional Search Technique and its Applications to the Eu-
clidean One-Centre Problem.” SIAM J. on Computing 15 (1986) pp 725-738.

[24] M.E. Dyer and A.M. Frieze “A Randomized Algorithm for Fized-Dimensional Linear
Programming.” Mathematical Programming 44 (1989) pp 203-212.

[25] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer Verlag (1987).

[26] H. Edelsbrunner, F.P. Preparata, and D.B. West. “Tetrahedrizing Point Sets in Three
Dimensions.” Tech. Rep. UIUCDCS-R-86-1310, Univ. of Illinois, Dept. Computer Science
(1986).

[27] H. Edelsbrunner, J. O'Rourke, and R. Seidel. “Constructing Arrangements of Hyperplanes
and Applications.” STAM J. on Computing 15 (1986), pp 341-363.

[28] G.H. Gonnet. Handbook of Algorithms and Data Structures. Addison-Wesley
(1984).

[29] R.L. Graham. “An efficient algorithm for determining the convex hull of a finite planar
set.” Inform. Proc. Lett., 1 (1972), pp 132-133.

[30] L.J. Guibas, D.E. Knuth, and M. Sharir. “Randomized Incremental Construction of De-
launay and Voronoi Diagrams.” Proc. ICALP (1990).

[31] T. Hagerup and C. Riib. “A Guided Tour of Chernoff Bounds.” Inform. Proc. Letters 33
(1989/90), pp 305-308.

[32] D. Haussler and E. Welzl. “Epsilon-Nets and Simplex Range Queries.” Discrete & Com-
putational Geometry 2 (1987), pp 127-151.

[33] C.A.R. Hoare. “Quicksort.” Computer Journal 5.1 (1962), pp 10-15.

[34] R.M. Karp. “An Introduction to Randomized Algorithms.” To appear in Discrete Applied
Mathematics.

[35] D.G. Kirkpatrick, R. Seidel. “The Ultimate Planar Convexr Hull Algorithm?” SIAM J.
on Comput., Vol. 15, No. 1 (1986), pp 287-299.

[36] R. Klein. Concrete and Abstract Voronoi Diagrams. Springer Verlag, Lecture Notes
in Computer Science 400 (1989).

[37] J. Matousek and R. Seidel. “On Tail Estimates for Mulmuley’s Segment Intersection
Algorithm.” In preparation.

[38] J. Matousek, M. Sharir, and E. Welzl. “A Subexponential Bound for Linear Program-
ming.” To appear in Proc. of 8th ACM Symp. on Computational Geometry (1992).

30

[39] N. Megiddo. “Linear-Time Algorithms for Linear Programming in R?® and Related Prob-
lems.” STAM J. on Computing 12 (1983) pp 759-776.

[40] N.Megiddo. “Linear Programming in Linear Time when the Dimension is Fized.” Journal
of the ACM 31 (1984) pp 114-127.

[41] K. Mehlhorn. Personal Communication, October (1990).

[42] K. Mulmuley. “A Fast Planar Partition Algorithm: Part I.” Proc. 29th IEEE Symp. on
Foundations of Computer Science (1988), pp 580-589.

[43] K. Mulmuley. “A Fast Planar Partition Algorithm: Part II.” Proc. 5th ACM Symp. on
Computational Geometry (1989), pp 33-43.

[44] K. Mulmuley. “On Obstructions in Relation to a Fized Viewpoint.” Proc. 30th IEEE
Symp. on Foundations of Computer Science (1989), pp 592-597.

[45] F.P. Preparata and M.I. Shamos. Computational Geometry — An Introduction.
Springer Verlag (1985).

[46] M.O. Rabin. “Probabilistic Algorithms.” In J.F. Traub, editor, Algorithms and Com-
plexity, Recent Results and New Dierections. Academic Press, New York (1976),
pp 21-39.

[47] P. Raghavan. “Lecture Notes on Randomized Algorithms.” IBM T.J. Watson Research
Center Computer Science Report RC 15430 (1990).

[48] G. Rote. Personal Communication, October 15 (1990).
[49] R.Sedgewick. Quicksort. Garland, New York (1978).

[50] R. Seidel. “Linear Programming and Convex Hulls Made Fasy.” Proc. 6th ACM Symp.
on Computational Geometry (1990), pp 211-215.

[51] R. Seidel. “A Simple and Fast Incremental Algorithm for Computing Trapezoidal Decom-
positions and for Triangulating Polygons.” To appear in COMPUTATIONAL GEOME-
TRY: Theory and Applications (1991).

[52] M.I. Shamos. Computational Geometry. Ph.D. thesis, Dept. of Computer Science,
Yale Univ. (1978).

[53] M.I. Shamos and D. Hoey. “Closest Point Problems.” Proc. 16th IEEE Symp. on Foun-
dations of Computer Science (1975) pp 151-162.

[54] M. Sharir and E. Welzl. “A Combinatorial Bound for Linear Programming and Related
Problems.” Proc. of 9th Symp. on theoretical Aspects of Computer Science (STACS 1992).

31

[55] J.S. Vitter and Ph. Flajolet. “Average-Case Analysis of Algorithms and Data Struc-
tures.” In J. van Leeuwen, editor, Handbook of Theoretical Computer Science:
Algorithms and Complexity. Elsevier (1990), pp 431-524.

[56] E. Welzl. “Smallest Enclosing Disks (Balls and Ellipsoids).” In H. Maurer, editor, New
Results and New Trends in Computer Science. Springer Lecture Notes in Computer
Science 555 (1991), pp 359-370.

32

