Statistical NLP Spring 2009

Berkeley

Lecture 15: Parsing II
Dan Klein - UC Berkeley

Classical NLP: Parsing

- Write symbolic or logical rules:

Grammar (CFG)
Lexicon

ROOT \rightarrow S
NP \rightarrow NP PP
NN \rightarrow interest
NNS \rightarrow raises
VBP \rightarrow interest
VBZ \rightarrow raises

- Use deduction systems to prove parses from words
" Minimal grammar on "Fed raises" sentence: 36 parses
- Simple 10-rule grammar: 592 parses
- Real-size grammar: many millions of parses
- This scaled very badly, didn't yield broad-coverage tools

Probabilistic Context-Free Grammars

- A context-free grammar is a tuple $<N, T, S, R>$
- N : the set of non-terminals
- Phrasal categories: S, NP, VP, ADJP, etc.
- Parts-of-speech (pre-terminals): NN, JJ, DT, VB
- T : the set of terminals (the words)
- S : the start symbol
- Often written as ROOT or TOP
- Not usually the sentence non-terminal S
- R : the set of rules
- Of the form $X \rightarrow Y_{1} Y_{2} \ldots Y_{k}$, with $X, Y_{i} \in N$
- Examples: $\mathrm{S} \rightarrow$ NP VP, VP \rightarrow VP CC VP
- Also called rewrites, productions, or local trees
- A PCFG adds:
- A top-down production probability per rule $P\left(Y_{1} Y_{2} \ldots Y_{k} \mid X\right)$

Treebank Sentences

((S (NP-SBJ The move)
(VP followed
(NP (NP a round)
(PP of
(NP (NP similar increases)
(PP by
(NP other lenders))
(PP against
(NP Arizona real estate loans)))))
,
(S-ADV (NP-SBJ *)
(VP reflecting
(NP (NP a continuing decline)
(PP-LOC in
(NP that market))))))
.))

Treebank Grammars

- Need a PCFG for broad coverage parsing.
- Can take a grammar right off the trees (doesn't work well):

- Better results by enriching the grammar (e.g., lexicalization).
- Can also get reasonable parsers without lexicalization.

Treebank Grammar Scale

- Treebank grammars can be enormous
- As FSAs, the raw grammar has $\sim 10 \mathrm{~K}$ states, excluding the lexicon
NP ${ }^{\text {Better parsers usually make the grammars larger, not smaller }}$

Chomsky Normal Form

- Chomsky normal form:
- All rules of the form $X \rightarrow Y$ Z or $X \rightarrow$ w
- In principle, this is no limitation on the space of (P)CFGs
- N-ary rules introduce new non-terminals

- Unaries / empties are "promoted"
- In practice it's kind of a pain:
- Reconstructing n-aries is easy
- Reconstructing unaries is trickier
- The straightforward transformations don't preserve tree scores
- Makes parsing algorithms simpler!

A Recursive Parser

```
bestScore(X,i,j,s)
        if (j = i+1)
            return tagScore(X,s[i])
        else
            return max score(X->YZ) *
                        bestScore(Y,i,k) *
                        bestScore(Z,k,j)
```

- Will this parser work?
- Why or why not?
- Memory requirements?

A Memoized Parser

- One small change:

```
bestScore(X,i,j,s)
    if (scores[X][i][j] == null)
        if (j = i+1)
        score = tagScore(X,s[i])
        else
            score = max score(X->YZ) *
                        bestScore(Y,i,k) *
                        bestScore(Z,k,j)
        scores[X][i][j] = score
    return scores[X][i][j]
```


A Bottom-Up Parser (CKY)

- Can also organize things bottom-up

```
bestScore(s)
    for (i : [0,n-1])
        for (X : tags[s[i]])
            score[X][i][i+1] =
            tagScore(X,s[i])
    for (diff : [2,n])
        for (i : [0,n-diff])
            j = i + diff
            for (X->YZ : rule)
            for (k : [i+1, j-1])
                    score[X][i][j] = max score[X][i][j],
                            score(X->YZ) *
                            score[Y][i][k] *
                            score[Z][k][j]
```


Unary Rules

- Unary rules?

```
bestScore(X,i,j,s)
    if (j = i+1)
        return tagScore(X,s[i])
    else
        return max max score(X->YZ) *
            bestScore(Y,i,k) *
                bestScore(Z,k,j)
                max score(X->Y) *
                bestScore(Y,i,j)
```


CNF + Unary Closure

- We need unaries to be non-cyclic
- Can address by pre-calculating the unary closure
- Rather than having zero or more unaries, always have exactly one

- Alternate unary and binary layers
- Reconstruct unary chains afterwards

Alternating Layers

```
bestScoreB(X,i,j,s)
    return max max score(X->YZ) *
                        bestScoreU(Y,i,k) *
        bestScoreU(Z,k,j)
```

bestScoreU(X,i,j,s)
if (j = i+1)
return tagScore (X,s[i])
else
return max max score $(X->Y)$ *
bestScoreB(Y,i,j)

Memory

- How much memory does this require?
- Have to store the score cache
- Cache size: \mid symbols|* ${ }^{2}$ doubles
- For the plain treebank grammar:
- X $\sim 20 \mathrm{~K}, \mathrm{n}=40$, double ~ 8 bytes $=\sim 256 \mathrm{MB}$
- Big, but workable.
- Pruning: Beams
- score[X][i][j] can get too large (when?)
- Can keep beams (truncated maps score[i][j]) which only store the best few scores for the span [i,j]
- Pruning: Coarse-to-Fine
- Use a smaller grammar to rule out most $X[i, j]$
- Much more on this later...

Time: Theory

- How much time will it take to parse?
- For each diff (<= n)
- For each $i(<=n)$
- For each rule $X \rightarrow Y Z$
- For each split point k Do constant work
- Total time: |rules|* ${ }^{*}{ }^{3}$
- Something like 5 sec for an unoptimized parse of a 20 -word sentences

Time: Practice

- Parsing with the vanilla treebank grammar:

- Why's it worse in practice?
- Longer sentences "unlock" more of the grammar
- All kinds of systems issues don't scale

Same-Span Reachability

Rule State Reachability

Example: NP CC •

Example: NP CC NP •

- Many states are more likely to match larger spans!

Agenda-Based Parsing

- Agenda-based parsing is like graph search (but over a hypergraph)
- Concepts:
- Numbering: we number fenceposts between words
- "Edges" or items: spans with labels, e.g. PP[3,5], represent the sets of trees over those words rooted at that label (cf. search states)
- A chart: records edges we've expanded (cf. closed set)
- An agenda: a queue which holds edges (cf. a fringe or open set)

Word Items

- Building an item for the first time is called discovery. Items go into the agenda on discovery.
- To initialize, we discover all word items (with score 1.0).

AGENDA
critics[0,1], write[1,2], reviews[2,3], with[3,4], computers[4,5]

CHART [EMPTY]
0

2

critics write reviews with computers

Unary Projection

- When we pop a word item, the lexicon tells us the tag item successors (and scores) which go on the agenda

critics $[0,1]$	write[1,2]	reviews[2,3]	with[3,4]	computers[4,5]
NNS[0,1]	VBP[1,2]	NNS[2,3]	IN[3,4]	NNS[4,5]

critics write reviews with computers

Item Successors

- When we pop items off of the agenda:
- Graph successors: unary projections (NNS \rightarrow critics, NP \rightarrow NNS)

$$
Y[i, j] \text { with } X \rightarrow Y \text { forms } X[i, j]
$$

- Hypergraph successors: combine with items already in our chart

$$
Y[i, j] \text { and } Z[j, k] \text { with } X \rightarrow Y Z \text { form } X[i, k]
$$

- Enqueue / promote resulting items (if not in chart already)
- Record backtraces as appropriate
- Stick the popped edge in the chart (closed set)
- Queries a chart must support:
- Is edge $X:[i, j]$ in the chart? (What score?)
- What edges with label Y end at position j?
- What edges with label Z start at position i?

An Example

NNS[0,1] VBP[1,2] NNS[2,3] IN[3,4] NNS[3,4] NP[0,1] VP[1,2] NP[2,3] NP[4,5] S[0,2] VP[1,3] PP[3,5] ROOT[0,2] S[0,3] VP[1,5] NP[2,5] ROOT[0,3] S[0,5] ROOT[0,5]

Empty Elements

- Sometimes we want to posit nodes in a parse tree that don't contain any pronounced words:

I want you to parse this sentence
I want [] to parse this sentence

- These are easy to add to a chart parser!
- For each position i, add the "word" edge $\varepsilon:[i, i]$
- Add rules like NP $\rightarrow \varepsilon$ to the grammar
- That's it!

UCS / A*

- With weighted edges, order matters
- Must expand optimal parse from bottom up (subparses first)
- CKY does this by processing smaller spans before larger ones
- UCS pops items off the agenda in order of decreasing Viterbi score
- A* search also well defined
- You can also speed up the search without sacrificing optimality

- Can select which items to process first
- Can do with any "figure of merit" [Charniak 98]
- If your figure-of-merit is a valid A^{*} heuristic, no loss of optimiality [Klein and Manning 03]

(Speech) Lattices

- There was nothing magical about words spanning exactly one position.
- When working with speech, we generally don't know how many words there are, or where they break.
- We can represent the possibilities as a lattice and parse these just as easily.

Non-Independence I

- Independence assumptions are often too strong.

- Example: the expansion of an NP is highly dependent on the parent of the NP (i.e., subjects vs. objects).
- Also: the subject and object expansions are correlated!

Non-Independence II

- Who cares?
- NB, HMMs, all make false assumptions!
- For generation, consequences would be obvious.
- For parsing, does it impact accuracy?
- Symptoms of overly strong assumptions:
- Rewrites get used where they don't belong.
- Rewrites get used too often or too rarely.

Breaking Up the Symbols

- We can relax independence assumptions by encoding dependencies into the PCFG symbols:

Parent annotation
[Johnson 98]

Marking
possessive NPs

" What are the most useful "features" to encode?

Lexicalization

- Lexical heads important for certain classes of ambiguities (e.g., PP attachment):
- Lexicalizing grammar creates a much larger grammar. (cf. next week)

- Sophisticated smoothing needed
- Smarter parsing algorithms
- More data needed
- How necessary is lexicalization?
- Bilexical vs. monolexical selection
- Closed vs. open class lexicalization

Typical Experimental Setup

- Corpus: Penn Treebank, WSJ

Training:
Development:
Test:
sections 02-21
section 22 (here, first 20 files) section 23

- Accuracy - F1: harmonic mean of per-node labeled precision and recall.
- Here: also size - number of symbols in grammar.
- Passive / complete symbols: NP, NP^S
- Active / incomplete symbols: NP \rightarrow NP CC •

Horizontal Markovization

Order 1

Order ∞

Vertical Markovization

- Vertical Markov order: rewrites depend on past k ancestor nodes.
(cf. parent annotation)

Order 1

Order 2

Vertical and Horizontal

Horizontal Order

- Examples:
- Raw treebank: $\mathrm{v}=1, \mathrm{~h}=\infty$
- Johnson 98: $\quad \mathrm{v}=2, \mathrm{~h}=\infty$
- Collins 99: $\quad \mathrm{v}=2, \mathrm{~h}=2$
- Best F1:
$v=3, h=2 v$

Model	F1	Size
Base: $v=h=2 v$	77.8	7.5 K

Unary Splits

- Problem: unary rewrites used to transmute categories so a high-probability rule can be used.
- Solution: Mark unary rewrite sites with -U

Annotation	F1	Size
Base	77.8	7.5 K
UNARY	78.3	8.0 K

Tag Splits

- Problem: Treebank tags are too coarse.
- Example: Sentential, PP, and other prepositions are all marked IN.

- Partial Solution:
- Subdivide the IN tag.

Annotation	F1	Size
Previous	78.3	8.0 K
SPLIT-IN	80.3	8.1 K

Other Tag Splits

- UNARY-DT: mark demonstratives as DT^U ("the X" vs. "those")
- UNARY-RB: mark phrasal adverbs as RB^U ("quickly" vs. "very")
- TAG-PA: mark tags with non-canonical parents ("not" is an RB^VP)
- SPLIT-AUX: mark auxiliary verbs with -AUX [cf. Charniak 97]
- SPLIT-CC: separate "but" and "\&" from other conjunctions
- SPLIT-\%: "\%" gets its own tag.

F1	Size
80.4	8.1 K
80.5	8.1 K
81.2	8.5 K
81.6	9.0 K
81.7	9.1 K
81.8	9.3 K

A Fully Annotated (Unlex) Tree

Some Test Set Results

Parser	LP	LR	F1	CB	0 CB
Magerman 95	84.9	84.6	84.7	1.26	56.6
Collins 96	86.3	85.8	86.0	1.14	59.9
Unlexicalized	86.9	85.7	86.3	1.10	60.3
Charniak 97	87.4	87.5	87.4	1.00	62.1
Collins 99	88.7	88.6	88.6	0.90	67.1

- Beats "first generation" lexicalized parsers.
- Lots of room to improve - more complex models next.

